aboutsummaryrefslogtreecommitdiffstats
path: root/docs/testing/user/userguide/12-nsb-overview.rst
diff options
context:
space:
mode:
authorEmma Foley <emma.l.foley@intel.com>2018-03-07 18:40:28 +0000
committerEmma Foley <emma.l.foley@intel.com>2018-04-03 08:15:50 +0000
commit3248682fcc789f95ff8246a8d1f208a6a3abd46d (patch)
tree09431d10ed8e3bd65be6b2e41e74ff8eb8dfd177 /docs/testing/user/userguide/12-nsb-overview.rst
parentcff53001219021a0dd79f278ca3fdda0f26cf9f4 (diff)
[docs] Move user guide chapters to make room for new chapter.
* Increment the numbering on chapters * Fix some of the changes flagged by doc8 Change-Id: Ie03d165297671dfd50b9de339612cdc8bf00b988 Signed-off-by: Emma Foley <emma.l.foley@intel.com>
Diffstat (limited to 'docs/testing/user/userguide/12-nsb-overview.rst')
-rw-r--r--docs/testing/user/userguide/12-nsb-overview.rst206
1 files changed, 206 insertions, 0 deletions
diff --git a/docs/testing/user/userguide/12-nsb-overview.rst b/docs/testing/user/userguide/12-nsb-overview.rst
new file mode 100644
index 000000000..71a5c1130
--- /dev/null
+++ b/docs/testing/user/userguide/12-nsb-overview.rst
@@ -0,0 +1,206 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International
+.. License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) OPNFV, 2016-2017 Intel Corporation.
+
+===================================
+Network Services Benchmarking (NSB)
+===================================
+
+Abstract
+========
+
+.. _Yardstick: https://wiki.opnfv.org/yardstick
+
+This chapter provides an overview of the NSB, a contribution to OPNFV
+Yardstick_ from Intel.
+
+Overview
+========
+
+The goal of NSB is to Extend Yardstick to perform real world VNFs and NFVi
+Characterization and benchmarking with repeatable and deterministic methods.
+
+The Network Service Benchmarking (NSB) extends the yardstick framework to do
+VNF characterization and benchmarking in three different execution
+environments - bare metal i.e. native Linux environment, standalone virtual
+environment and managed virtualized environment (e.g. Open stack etc.).
+It also brings in the capability to interact with external traffic generators
+both hardware & software based for triggering and validating the traffic
+according to user defined profiles.
+
+NSB extension includes:
+
+ - Generic data models of Network Services, based on ETSI spec `ETSI GS NFV-TST 001 <http://www.etsi.org/deliver/etsi_gs/NFV-TST/001_099/001/01.01.01_60/gs_nfv-tst001v010101p.pdf>`_
+
+ - New Standalone context for VNF testing like SRIOV, OVS, OVS-DPDK etc
+
+ - Generic VNF configuration models and metrics implemented with Python
+ classes
+
+ - Traffic generator features and traffic profiles
+
+ - L1-L3 state-less traffic profiles
+
+ - L4-L7 state-full traffic profiles
+
+ - Tunneling protocol / network overlay support
+
+ - Test case samples
+
+ - Ping
+
+ - Trex
+
+ - vPE,vCGNAT, vFirewall etc - ipv4 throughput, latency etc
+
+ - Traffic generators like Trex, ab/nginx, ixia, iperf etc
+
+ - KPIs for a given use case:
+
+ - System agent support for collecting NFVi KPI. This includes:
+
+ - CPU statistic
+
+ - Memory BW
+
+ - OVS-DPDK Stats
+
+ - Network KPIs, e.g., inpackets, outpackets, thoughput, latency etc
+
+ - VNF KPIs, e.g., packet_in, packet_drop, packet_fwd etc
+
+Architecture
+============
+
+The Network Service (NS) defines a set of Virtual Network Functions (VNF)
+connected together using NFV infrastructure.
+
+The Yardstick NSB extension can support multiple VNFs created by different
+vendors including traffic generators. Every VNF being tested has its
+own data model. The Network service defines a VNF modelling on base of
+performed network functionality. The part of the data model is a set of the
+configuration parameters, number of connection points used and flavor including
+core and memory amount.
+
+The ETSI defines a Network Service as a set of configurable VNFs working in
+some NFV Infrastructure connecting each other using Virtual Links available
+through Connection Points. The ETSI MANO specification defines a set of
+management entities called Network Service Descriptors (NSD) and
+VNF Descriptors (VNFD) that define real Network Service. The picture below
+makes an example how the real Network Operator use-case can map into ETSI
+Network service definition
+
+Network Service framework performs the necessary test steps. It may involve
+
+ - Interacting with traffic generator and providing the inputs on traffic
+ type / packet structure to generate the required traffic as per the
+ test case. Traffic profiles will be used for this.
+
+ - Executing the commands required for the test procedure and analyses the
+ command output for confirming whether the command got executed correctly
+ or not. E.g. As per the test case, run the traffic for the given
+ time period / wait for the necessary time delay
+
+ - Verify the test result.
+
+ - Validate the traffic flow from SUT
+
+ - Fetch the table / data from SUT and verify the value as per the test case
+
+ - Upload the logs from SUT onto the Test Harness server
+
+ - Read the KPI's provided by particular VNF
+
+Components of Network Service
+-----------------------------
+
+ * *Models for Network Service benchmarking*: The Network Service benchmarking
+ requires the proper modelling approach. The NSB provides models using Python
+ files and defining of NSDs and VNFDs.
+
+ The benchmark control application being a part of OPNFV yardstick can call
+ that python models to instantiate and configure the VNFs. Depending on
+ infrastructure type (bare-metal or fully virtualized) that calls could be
+ made directly or using MANO system.
+
+ * *Traffic generators in NSB*: Any benchmark application requires a set of
+ traffic generator and traffic profiles defining the method in which traffic
+ is generated.
+
+ The Network Service benchmarking model extends the Network Service
+ definition with a set of Traffic Generators (TG) that are treated
+ same way as other VNFs being a part of benchmarked network service.
+ Same as other VNFs the traffic generator are instantiated and terminated.
+
+ Every traffic generator has own configuration defined as a traffic profile
+ and a set of KPIs supported. The python models for TG is extended by
+ specific calls to listen and generate traffic.
+
+ * *The stateless TREX traffic generator*: The main traffic generator used as
+ Network Service stimulus is open source TREX tool.
+
+ The TREX tool can generate any kind of stateless traffic.
+
+ .. code-block:: console
+
+ +--------+ +-------+ +--------+
+ | | | | | |
+ | Trex | ---> | VNF | ---> | Trex |
+ | | | | | |
+ +--------+ +-------+ +--------+
+
+ Supported testcases scenarios:
+
+ - Correlated UDP traffic using TREX traffic generator and replay VNF.
+
+ - using different IMIX configuration like pure voice, pure video traffic etc
+
+ - using different number IP flows like 1 flow, 1K, 16K, 64K, 256K, 1M flows
+
+ - Using different number of rules configured like 1 rule, 1K, 10K rules
+
+ For UDP correlated traffic following Key Performance Indicators are collected
+ for every combination of test case parameters:
+
+ - RFC2544 throughput for various loss rate defined (1% is a default)
+
+Graphical Overview
+==================
+
+NSB Testing with yardstick framework facilitate performance testing of various
+VNFs provided.
+
+.. code-block:: console
+
+ +-----------+
+ | | +-----------+
+ | vPE | ->|TGen Port 0|
+ | TestCase | | +-----------+
+ | | |
+ +-----------+ +------------------+ +-------+ |
+ | | -- API --> | VNF | <--->
+ +-----------+ | Yardstick | +-------+ |
+ | Test Case | --> | NSB Testing | |
+ +-----------+ | | |
+ | | | |
+ | +------------------+ |
+ +-----------+ | +-----------+
+ | Traffic | ->|TGen Port 1|
+ | patterns | +-----------+
+ +-----------+
+
+ Figure 1: Network Service - 2 server configuration
+
+VNFs supported for chracterization:
+-----------------------------------
+
+1. CGNAPT - Carrier Grade Network Address and port Translation
+2. vFW - Virtual Firewall
+3. vACL - Access Control List
+4. Prox - Packet pROcessing eXecution engine:
+ - VNF can act as Drop, Basic Forwarding (no touch),
+ L2 Forwarding (change MAC), GRE encap/decap, Load balance based on
+ packet fields, Symmetric load balancing
+ - QinQ encap/decap IPv4/IPv6, ARP, QoS, Routing, Unmpls, Policing, ACL
+5. UDP_Replay