diff options
author | Jing Lu <lvjing5@huawei.com> | 2018-05-15 06:56:01 +0000 |
---|---|---|
committer | Gerrit Code Review <gerrit@opnfv.org> | 2018-05-15 06:56:01 +0000 |
commit | 4fe8e4e120afcd7585d1e81320d0e84d3a18f85d (patch) | |
tree | 746f85f78bea01ffe9da928a2b5d9c2bafe707c2 /docs/release/results/os-nosdn-nofeature-ha.rst | |
parent | cfa19758e3c81c3e59a100ed53d62147e5ea026b (diff) | |
parent | 4c20fb57684bc21e7ae0461341088100e518307d (diff) |
Merge "Document for Euphrates test case results"
Diffstat (limited to 'docs/release/results/os-nosdn-nofeature-ha.rst')
-rw-r--r-- | docs/release/results/os-nosdn-nofeature-ha.rst | 492 |
1 files changed, 0 insertions, 492 deletions
diff --git a/docs/release/results/os-nosdn-nofeature-ha.rst b/docs/release/results/os-nosdn-nofeature-ha.rst deleted file mode 100644 index 9e52731d5..000000000 --- a/docs/release/results/os-nosdn-nofeature-ha.rst +++ /dev/null @@ -1,492 +0,0 @@ -.. This work is licensed under a Creative Commons Attribution 4.0 International -.. License. -.. http://creativecommons.org/licenses/by/4.0 - - -====================================== -Test Results for os-nosdn-nofeature-ha -====================================== - -.. toctree:: - :maxdepth: 2 - - -apex -==== - -.. _Grafana: http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main -.. _POD1: https://wiki.opnfv.org/pharos?&#community_test_labs - - -Overview of test results ------------------------- - -See Grafana_ for viewing test result metrics for each respective test case. It -is possible to chose which specific scenarios to look at, and then to zoom in -on the details of each run test scenario as well. - -All of the test case results below are based on 4 scenario test -runs, each run on the LF POD1_ between August 25 and 28 in -2016. - -TC002 ------ -The round-trip-time (RTT) between 2 VMs on different blades is measured using -ping. Most test run measurements result on average between 0.74 and 1.08 ms. -A few runs start with a 0.99 - 1.07 ms RTT spike (This could be because of -normal ARP handling). One test run has a greater RTT spike of 1.35 ms. -To be able to draw conclusions more runs should be made. SLA set to 10 ms. -The SLA value is used as a reference, it has not been defined by OPNFV. - -TC005 ------ -The IO read bandwidth looks similar between different dates, with an -average between approx. 128 and 136 MB/s. Within each test run the results -vary, with a minimum 5 MB/s and maximum 446 MB/s on the totality. Most runs -have a minimum BW of 5 MB/s (one run at 6 MB/s). The maximum BW varies more in -absolute numbers between the dates, between 416 and 446 MB/s. -SLA set to 400 MB/s. The SLA value is used as a reference, it has not been -defined by OPNFV. - -TC010 ------ -The measurements for memory latency are similar between test dates and result -in approx. 1.09 ns. The variations within each test run are similar, between -1.0860 and 1.0880 ns. -SLA set to 30 ns. The SLA value is used as a reference, it has not been defined -by OPNFV. - -TC011 ------ -Packet delay variation between 2 VMs on different blades is measured using -Iperf3. The reported packet delay variation varies between 0.0025 and 0.0148 ms, -with an average delay variation between 0.0056 ms and 0.0157 ms. - -TC012 ------ -Between test dates, the average measurements for memory bandwidth result in -approx. 19.70 GB/s. Within each test run the results vary more, with a minimal -BW of 18.16 GB/s and maximum of 20.13 GB/s on the totality. -SLA set to 15 GB/s. The SLA value is used as a reference, it has not been -defined by OPNFV. - -TC014 ------ -The Unixbench processor test run results vary between scores 3224.4 and 3842.8, -one result each date. The average score on the total is 3659.5. -No SLA set. - -TC037 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The RTT results are similar throughout the different test dates and runs at -approx. 15 ms. Some test runs show an increase with many flows, in the range -towards 16 to 17 ms. One exception standing out is Feb. 15 where the average -RTT is stable at approx. 13 ms. The PPS results are not as consistent as the -RTT results. -In some test runs when running with less than approx. 10000 flows the PPS -throughput is normally flatter compared to when running with more flows, after -which the PPS throughput decreases. Around 20 percent decrease in the worst -case. For the other test runs there is however no significant change to the PPS -throughput when the number of flows are increased. In some test runs the PPS -is also greater with 1000000 flows compared to other test runs where the PPS -result is less with only 2 flows. - -The average PPS throughput in the different runs varies between 414000 and -452000 PPS. The total amount of packets in each test run is approx. 7500000 to -8200000 packets. One test run Feb. 15 sticks out with a PPS average of -558000 and approx. 1100000 packets in total (same as the on mentioned earlier -for RTT results). - -There are lost packets reported in most of the test runs. There is no observed -correlation between the amount of flows and the amount of lost packets. -The lost amount of packets normally range between 100 and 1000 per test run, -but there are spikes in the range of 10000 lost packets as well, and even -more in a rare cases. - -CPU utilization statistics are collected during UDP flows sent between the VMs -using pktgen as packet generator tool. The average measurements for CPU -utilization ratio vary between 1% to 2%. The peak of CPU utilization ratio -appears around 7%. - -TC069 ------ -Between test dates, the average measurements for memory bandwidth vary between -22.6 and 29.1 GB/s. Within each test run the results vary more, with a minimal -BW of 20.0 GB/s and maximum of 29.5 GB/s on the totality. -SLA set to 6 GB/s. The SLA value is used as a reference, it has not been -defined by OPNFV. - -TC070 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The RTT results are similar throughout the different test dates and runs at -approx. 15 ms. Some test runs show an increase with many flows, in the range -towards 16 to 17 ms. One exception standing out is Feb. 15 where the average -RTT is stable at approx. 13 ms. The PPS results are not as consistent as the -RTT results. -In some test runs when running with less than approx. 10000 flows the PPS -throughput is normally flatter compared to when running with more flows, after -which the PPS throughput decreases. Around 20 percent decrease in the worst -case. For the other test runs there is however no significant change to the PPS -throughput when the number of flows are increased. In some test runs the PPS -is also greater with 1000000 flows compared to other test runs where the PPS -result is less with only 2 flows. - -The average PPS throughput in the different runs varies between 414000 and -452000 PPS. The total amount of packets in each test run is approx. 7500000 to -8200000 packets. One test run Feb. 15 sticks out with a PPS average of -558000 and approx. 1100000 packets in total (same as the on mentioned earlier -for RTT results). - -There are lost packets reported in most of the test runs. There is no observed -correlation between the amount of flows and the amount of lost packets. -The lost amount of packets normally range between 100 and 1000 per test run, -but there are spikes in the range of 10000 lost packets as well, and even -more in a rare cases. - -Memory utilization statistics are collected during UDP flows sent between the -VMs using pktgen as packet generator tool. The average measurements for memory -utilization vary between 225MB to 246MB. The peak of memory utilization appears -around 340MB. - -TC071 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The RTT results are similar throughout the different test dates and runs at -approx. 15 ms. Some test runs show an increase with many flows, in the range -towards 16 to 17 ms. One exception standing out is Feb. 15 where the average -RTT is stable at approx. 13 ms. The PPS results are not as consistent as the -RTT results. -In some test runs when running with less than approx. 10000 flows the PPS -throughput is normally flatter compared to when running with more flows, after -which the PPS throughput decreases. Around 20 percent decrease in the worst -case. For the other test runs there is however no significant change to the PPS -throughput when the number of flows are increased. In some test runs the PPS -is also greater with 1000000 flows compared to other test runs where the PPS -result is less with only 2 flows. - -The average PPS throughput in the different runs varies between 414000 and -452000 PPS. The total amount of packets in each test run is approx. 7500000 to -8200000 packets. One test run Feb. 15 sticks out with a PPS average of -558000 and approx. 1100000 packets in total (same as the on mentioned earlier -for RTT results). - -There are lost packets reported in most of the test runs. There is no observed -correlation between the amount of flows and the amount of lost packets. -The lost amount of packets normally range between 100 and 1000 per test run, -but there are spikes in the range of 10000 lost packets as well, and even -more in a rare cases. - -Cache utilization statistics are collected during UDP flows sent between the -VMs using pktgen as packet generator tool. The average measurements for cache -utilization vary between 205MB to 212MB. - -TC072 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The RTT results are similar throughout the different test dates and runs at -approx. 15 ms. Some test runs show an increase with many flows, in the range -towards 16 to 17 ms. One exception standing out is Feb. 15 where the average -RTT is stable at approx. 13 ms. The PPS results are not as consistent as the -RTT results. -In some test runs when running with less than approx. 10000 flows the PPS -throughput is normally flatter compared to when running with more flows, after -which the PPS throughput decreases. Around 20 percent decrease in the worst -case. For the other test runs there is however no significant change to the PPS -throughput when the number of flows are increased. In some test runs the PPS -is also greater with 1000000 flows compared to other test runs where the PPS -result is less with only 2 flows. - -The average PPS throughput in the different runs varies between 414000 and -452000 PPS. The total amount of packets in each test run is approx. 7500000 to -8200000 packets. One test run Feb. 15 sticks out with a PPS average of -558000 and approx. 1100000 packets in total (same as the on mentioned earlier -for RTT results). - -There are lost packets reported in most of the test runs. There is no observed -correlation between the amount of flows and the amount of lost packets. -The lost amount of packets normally range between 100 and 1000 per test run, -but there are spikes in the range of 10000 lost packets as well, and even -more in a rare cases. - -Network utilization statistics are collected during UDP flows sent between the -VMs using pktgen as packet generator tool. Total number of packets received per -second was average on 200 kpps and total number of packets transmitted per -second was average on 600 kpps. - -Detailed test results ---------------------- -The scenario was run on LF POD1_ with: -Apex -OpenStack Mitaka -OpenVirtualSwitch 2.5.90 -OpenDayLight Beryllium - -Rationale for decisions ------------------------ -Pass - -Tests were successfully executed and metrics collected. -No SLA was verified. To be decided on in next release of OPNFV. - - -Joid -==== - -.. _Grafana: http://testresults.opnfv.org/grafana/dashboard/db/yardstick-main -.. _POD5: https://wiki.opnfv.org/pharos?&#community_test_labs - - -Overview of test results ------------------------- - -See Grafana_ for viewing test result metrics for each respective test case. It -is possible to chose which specific scenarios to look at, and then to zoom in -on the details of each run test scenario as well. - -All of the test case results below are based on 4 scenario test runs, each run -on the Intel POD5_ between September 11 and 14 in 2016. - -TC002 ------ -The round-trip-time (RTT) between 2 VMs on different blades is measured using -ping. Most test run measurements result on average between 1.59 and 1.70 ms. -Two test runs have reached the same greater RTT spike of 3.06 ms, which are -1.66 and 1.70 ms average, but only one has the lower RTT of 1.35 ms. The other -two runs have no similar spike at all. To be able to draw conclusions more runs -should be made. SLA set to be 10 ms. The SLA value is used as a reference, it -has not been defined by OPNFV. - -TC005 ------ -The IO read bandwidth actually refers to the storage throughput and the -greatest IO read bandwidth of the four runs is 173.3 MB/s. The IO read -bandwidth of the four runs looks similar on different four days, with an -average between 32.7 and 60.4 MB/s. One of the runs has a minimum BW of 429 -KM/s and other has a maximum BW of 173.3 MB/s. The SLA of read bandwidth sets -to be 400 MB/s, which is used as a reference, and it has not been defined by -OPNFV. - -TC010 ------ -The tool we use to measure memory read latency is lmbench, which is a series of -micro benchmarks intended to measure basic operating system and hardware system -metrics. The memory read latency of the four runs is 1.1 ns on average. The -variations within each test run are different, some vary from a large range and -others have a small change. For example, the largest change is on September 14, -the memory read latency of which is ranging from 1.12 ns to 1.22 ns. However, -the results on September 12 change very little, which range from 1.14 ns to -1.17 ns. The SLA sets to be 30 ns. The SLA value is used as a reference, it has -not been defined by OPNFV. - -TC011 ------ -Iperf3 is a tool for evaluating the pocket delay variation between 2 VMs on -different blades. The reported pocket delay variations of the four test runs -differ from each other. The results on September 13 within the date look -similar and the values are between 0.0087 and 0.0190 ms, which is 0.0126 ms on -average. However, on the fourth day, the pocket delay variation has a large -wide change within the date, which ranges from 0.0032 ms to 0.0121 ms and has -the minimum average value. The pocket delay variations of other two test runs -look relatively similar, which are 0.0076 ms and 0.0152 ms on average. The SLA -value sets to be 10 ms. The SLA value is used as a reference, it has not been -defined by OPNFV. - -TC012 ------ -Lmbench is also used to measure the memory read and write bandwidth, in which -we use bw_mem to obtain the results. Among the four test runs, the memory -bandwidth within the second day almost keep stable, which is 11.58 GB/s on -average. And the memory bandwidth of the fourth day look similar as that of the -second day, both of which remain stable. The other two test runs relatively -change from a large wide range, in which the minimum memory bandwidth is 11.22 -GB/s and the maximum bandwidth is 16.65 GB/s with an average bandwidth of about -12.20 GB/s. Here SLA set to be 15 GB/s. The SLA value is used as a reference, -it has not been defined by OPNFV. - -TC014 ------ -The Unixbench is used to measure processing speed, that is instructions per -second. It can be seen from the dashboard that the processing test results -vary from scores 3272 to 3444, and there is only one result one date. The -overall average score is 3371. No SLA set. - -TC037 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The mean packet throughput of the four test runs is 119.85, 128.02, 121.40 and -126.08 kpps, of which the result of the second is the highest. The RTT results -of all the test runs keep flat at approx. 37 ms. It is obvious that the PPS -results are not as consistent as the RTT results. - -The No. flows of the four test runs are 240 k on average and the PPS results -look a little waved since the largest packet throughput is 184 kpps and the -minimum throughput is 49 K respectively. - -There are no errors of packets received in the four runs, but there are still -lost packets in all the test runs. The RTT values obtained by ping of the four -runs have the similar average vaue, that is 38 ms, of which the worest RTT is -93 ms on Sep. 14th. - -CPU load of the four test runs have a large change, since the minimum value and -the peak of CPU load is 0 percent and 51 percent respectively. And the best -result is obtained on Sep. 14th. - -TC069 ------ -With the block size changing from 1 kb to 512 kb, the memory write bandwidth -tends to become larger first and then smaller within every run test, which -rangs from 22.3 GB/s to 26.8 GB/s and then to 18.5 GB/s on average. Since the -test id is one, it is that only the INT memory write bandwidth is tested. On -the whole, when the block size is 8 kb and 16 kb, the memory write bandwidth -look similar with a minimal BW of 22.5 GB/s and peak value of 28.7 GB/s. SLA -sets to be 7 GB/s. The SLA value is used as a a reference, it has not been -defined by OPNFV. - -TC070 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The network latency is measured by ping, and the results of the four test runs -look similar with each other. Within each test run, the maximum RTT can reach -more than 80 ms and the average RTT is usually approx. 38 ms. On the whole, the -average RTTs of the four runs keep flat. - -Memory utilization is measured by free, which can display amount of free and -used memory in the system. The largest amount of used memory is 268 MiB on Sep -14, which also has the largest minimum memory. Besides, the rest three test -runs have the similar used memory. On the other hand, the free memory of the -four runs have the same smallest minimum value, that is about 223 MiB, and the -maximum free memory of three runs have the similar result, that is 337 MiB, -except that on Sep. 14th, whose maximum free memory is 254 MiB. On the whole, -all the test runs have similar average free memory. - -Network throughput and packet loss can be measured by pktgen, which is a tool -in the network for generating traffic loads for network experiments. The mean -network throughput of the four test runs seem quite different, ranging from -119.85 kpps to 128.02 kpps. The average number of flows in these tests is -24000, and each run has a minimum number of flows of 2 and a maximum number -of flows of 1.001 Mil. At the same time, the corresponding packet throughput -differ between 49.4k and 193.3k with an average packet throughput of approx. -125k. On the whole, the PPS results seem consistent. Within each test run of -the four runs, when number of flows becomes larger, the packet throughput seems -not larger in the meantime. - -TC071 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The network latency is measured by ping, and the results of the four test runs -look similar with each other. Within each test run, the maximum RTT can reach -more than 94 ms and the average RTT is usually approx. 35 ms. On the whole, the -average RTTs of the four runs keep flat. - -Cache utilization is measured by cachestat, which can display size of cache and -buffer in the system. Cache utilization statistics are collected during UDP -flows sent between the VMs using pktgen as packet generator tool.The largest -cache size is 212 MiB in the four runs, and the smallest cache size is 75 MiB. -On the whole, the average cache size of the four runs is approx. 208 MiB. -Meanwhile, the tread of the buffer size looks similar with each other. - -Packet throughput can be measured by pktgen, which is a tool in the network for -generating traffic loads for network experiments. The mean packet throughput of -the four test runs seem quite different, ranging from 119.85 kpps to 128.02 -kpps. The average number of flows in these tests is 239.7k, and each run has a -minimum number of flows of 2 and a maximum number of flows of 1.001 Mil. At the -same time, the corresponding packet throughput differ between 49.4k and 193.3k -with an average packet throughput of approx. 125k. On the whole, the PPS results -seem consistent. Within each test run of the four runs, when number of flows -becomes larger, the packet throughput seems not larger in the meantime. - -TC072 ------ -The amount of packets per second (PPS) and round trip times (RTT) between 2 VMs -on different blades are measured when increasing the amount of UDP flows sent -between the VMs using pktgen as packet generator tool. - -Round trip times and packet throughput between VMs can typically be affected by -the amount of flows set up and result in higher RTT and less PPS throughput. - -The RTT results are similar throughout the different test dates and runs at -approx. 32 ms. The PPS results are not as consistent as the RTT results. - -Network utilization is measured by sar, that is system activity reporter, which -can display the average statistics for the time since the system was started. -Network utilization statistics are collected during UDP flows sent between the -VMs using pktgen as packet generator tool. The largest total number of packets -transmitted per second differs from each other, in which the smallest number of -packets transmitted per second is 6 pps on Sep. 12ed and the largest of that is -210.8 kpps. Meanwhile, the largest total number of packets received per second -differs from each other, in which the smallest number of packets received per -second is 2 pps on Sep. 13rd and the largest of that is 250.2 kpps. - -In some test runs when running with less than approx. 90000 flows the PPS -throughput is normally flatter compared to when running with more flows, after -which the PPS throughput decreases. For the other test runs there is however no -significant change to the PPS throughput when the number of flows are -increased. In some test runs the PPS is also greater with 1000000 flows -compared to other test runs where the PPS result is less with only 2 flows. - -There are lost packets reported in most of the test runs. There is no observed -correlation between the amount of flows and the amount of lost packets. -The lost amount of packets normally differs a lot per test run. - -Detailed test results ---------------------- -The scenario was run on Intel POD5_ with: -Joid -OpenStack Mitaka -OpenVirtualSwitch 2.5.90 -OpenDayLight Beryllium - -Rationale for decisions ------------------------ -Pass - -Conclusions and recommendations -------------------------------- -Tests were successfully executed and metrics collected. -No SLA was verified. To be decided on in next release of OPNFV. - - |