1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
|
.. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. http://creativecommons.org/licenses/by/4.0
.. (c) OPNFV, Intel Corporation, AT&T and others.
.. _step-driven-tests:
Step driven tests
=================
In general, test scenarios are defined by a ``deployment`` used in the particular
test case definition. The chosen deployment scenario will take care of the vSwitch
configuration, deployment of VNFs and it can also affect configuration of a traffic
generator. In order to allow a more flexible way of testcase scripting, VSPERF supports
a detailed step driven testcase definition. It can be used to configure and
program vSwitch, deploy and terminate VNFs, execute a traffic generator,
modify a VSPERF configuration, execute external commands, etc.
Execution of step driven tests is done on a step by step work flow starting
with step 0 as defined inside the test case. Each step of the test increments
the step number by one which is indicated in the log.
.. code-block:: console
(testcases.integration) - Step 0 'vswitch add_vport ['br0']' start
Test steps are defined as a list of steps within a ``TestSteps`` item of test
case definition. Each step is a list with following structure:
.. code-block:: python
'[' [ optional-alias ',' ] test-object ',' test-function [ ',' optional-function-params ] '],'
Step driven tests can be used for both performance and integration testing.
In case of integration test, each step in the test case is validated. If a step
does not pass validation the test will fail and terminate. The test will continue
until a failure is detected or all steps pass. A csv report file is generated after
a test completes with an OK or FAIL result.
**NOTE**: It is possible to suppress validation process of given step by prefixing
it by ``!`` (exclamation mark).
In following example test execution won't fail if all traffic is dropped:
.. code-block:: python
['!trafficgen', 'send_traffic', {}]
In case of performance test, the validation of steps is not performed and
standard output files with results from traffic generator and underlying OS
details are generated by vsperf.
Step driven testcases can be used in two different ways:
# description of full testcase - in this case ``clean`` deployment is used
to indicate that vsperf should neither configure vSwitch nor deploy any VNF.
Test shall perform all required vSwitch configuration and programming and
deploy required number of VNFs.
# modification of existing deployment - in this case, any of supported
deployments can be used to perform initial vSwitch configuration and
deployment of VNFs. Additional actions defined by TestSteps can be used
to alter vSwitch configuration or deploy additional VNFs. After the last
step is processed, the test execution will continue with traffic execution.
Test objects and their functions
--------------------------------
Every test step can call a function of one of the supported test objects. In general
any existing function of supported test object can be called by test step. In case
that step validation is required (valid for integration test steps, which are not
suppressed), then appropriate ``validate_`` method must be implemented.
The list of supported objects and their most common functions is listed below. Please
check implementation of test objects for full list of implemented functions and their
parameters.
* ``vswitch`` - provides functions for vSwitch configuration
List of supported functions:
* ``add_switch br_name`` - creates a new switch (bridge) with given ``br_name``
* ``del_switch br_name`` - deletes switch (bridge) with given ``br_name``
* ``add_phy_port br_name`` - adds a physical port into bridge specified by ``br_name``
* ``add_vport br_name`` - adds a virtual port into bridge specified by ``br_name``
* ``del_port br_name port_name`` - removes physical or virtual port specified by
``port_name`` from bridge ``br_name``
* ``add_flow br_name flow`` - adds flow specified by ``flow`` dictionary into
the bridge ``br_name``; Content of flow dictionary will be passed to the vSwitch.
In case of Open vSwitch it will be passed to the ``ovs-ofctl add-flow`` command.
Please see Open vSwitch documentation for the list of supported flow parameters.
* ``del_flow br_name [flow]`` - deletes flow specified by ``flow`` dictionary from
bridge ``br_name``; In case that optional parameter ``flow`` is not specified
or set to an empty dictionary ``{}``, then all flows from bridge ``br_name``
will be deleted.
* ``dump_flows br_name`` - dumps all flows from bridge specified by ``br_name``
* ``enable_stp br_name`` - enables Spanning Tree Protocol for bridge ``br_name``
* ``disable_stp br_name`` - disables Spanning Tree Protocol for bridge ``br_name``
* ``enable_rstp br_name`` - enables Rapid Spanning Tree Protocol for bridge ``br_name``
* ``disable_rstp br_name`` - disables Rapid Spanning Tree Protocol for bridge ``br_name``
* ``restart`` - restarts switch, which is useful for failover testcases
Examples:
.. code-block:: python
['vswitch', 'add_switch', 'int_br0']
['vswitch', 'del_switch', 'int_br0']
['vswitch', 'add_phy_port', 'int_br0']
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]']
['vswitch', 'add_flow', 'int_br0', {'in_port': '1', 'actions': ['output:2'],
'idle_timeout': '0'}],
['vswitch', 'enable_rstp', 'int_br0']
* ``vnf[ID]`` - provides functions for deployment and termination of VNFs; Optional
alfanumerical ``ID`` is used for VNF identification in case that testcase
deploys multiple VNFs.
List of supported functions:
* ``start`` - starts a VNF based on VSPERF configuration
* ``stop`` - gracefully terminates given VNF
* ``execute command [delay]`` - executes command `cmd` inside VNF; Optional
delay defines number of seconds to wait before next step is executed. Method
returns command output as a string.
* ``execute_and_wait command [timeout] [prompt]`` - executes command `cmd` inside
VNF; Optional timeout defines number of seconds to wait until ``prompt`` is detected.
Optional ``prompt`` defines a string, which is used as detection of successful command
execution. In case that prompt is not defined, then content of ``GUEST_PROMPT_LOGIN``
parameter will be used. Method returns command output as a string.
Examples:
.. code-block:: python
['vnf1', 'start'],
['vnf2', 'start'],
['vnf1', 'execute_and_wait', 'ifconfig eth0 5.5.5.1/24 up'],
['vnf2', 'execute_and_wait', 'ifconfig eth0 5.5.5.2/24 up', 120, 'root.*#'],
['vnf2', 'execute_and_wait', 'ping -c1 5.5.5.1'],
['vnf2', 'stop'],
['vnf1', 'stop'],
* ``VNF[ID]`` - provides access to VNFs deployed automatically by testcase deployment
scenario. For Example ``pvvp`` deployment automatically starts two VNFs before any
TestStep is executed. It is possible to access these VNFs by VNF0 and VNF1 labels.
List of supported functions is identical to ``vnf[ID]`` option above except functions
``start`` and ``stop``.
Examples:
.. code-block:: python
['VNF0', 'execute_and_wait', 'ifconfig eth2 5.5.5.1/24 up'],
['VNF1', 'execute_and_wait', 'ifconfig eth2 5.5.5.2/24 up', 120, 'root.*#'],
['VNF2', 'execute_and_wait', 'ping -c1 5.5.5.1'],
* ``trafficgen`` - triggers traffic generation
List of supported functions:
* ``send_traffic traffic`` - starts a traffic based on the vsperf configuration
and given ``traffic`` dictionary. More details about ``traffic`` dictionary
and its possible values are available at :ref:`Traffic Generator Integration Guide
<step-5-supported-traffic-types>`
* ``get_results`` - returns dictionary with results collected from previous execution
of ``send_traffic``
Examples:
.. code-block:: python
['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_throughput'}]
['trafficgen', 'send_traffic', {'traffic_type' : 'rfc2544_back2back', 'bidir' : 'True'}],
['trafficgen', 'get_results'],
['tools', 'assert', '#STEP[-1][0]["frame_loss_percent"] < 0.05'],
.. _step-driven-tests-variable-usage:
* ``settings`` - reads or modifies VSPERF configuration
List of supported functions:
* ``getValue param`` - returns value of given ``param``
* ``setValue param value`` - sets value of ``param`` to given ``value``
* ``resetValue param`` - if ``param`` was overridden by ``TEST_PARAMS`` (e.g. by "Parameters"
section of the test case definition), then it will be set to its original value.
Examples:
.. code-block:: python
['settings', 'getValue', 'TOOLS']
['settings', 'setValue', 'GUEST_USERNAME', ['root']]
['settings', 'resetValue', 'WHITELIST_NICS'],
It is possible and more convenient to access any VSPERF configuration option directly
via ``$NAME`` notation. Option evaluation is done during runtime and vsperf will
automatically translate it to the appropriate call of ``settings.getValue``.
If the referred parameter does not exist, then vsperf will keep ``$NAME``
string untouched and it will continue with testcase execution. The reason is to
avoid test execution failure in case that ``$`` sign has been used from different
reason than vsperf parameter evaluation.
**NOTE:** It is recommended to use ``${NAME}`` notation for any shell parameters
used within ``Exec_Shell`` call to avoid a clash with configuration parameter
evaluation.
**NOTE:** It is possible to refer to vsperf parameter value by ``#PARAM()`` macro
(see :ref:`overriding-parameters-documentation`. However ``#PARAM()`` macro is
evaluated at the beginning of vsperf execution and it will not reflect any changes
made to the vsperf configuration during runtime. On the other hand ``$NAME``
notation is evaluated during test execution and thus it contains any modifications
to the configuration parameter made by vsperf (e.g. ``TOOLS`` and ``NICS``
dictionaries) or by testcase definition (e.g. ``TRAFFIC`` dictionary).
Examples:
.. code-block:: python
['tools', 'exec_shell', "$TOOLS['ovs-vsctl'] show"]
['settings', 'setValue', 'TRAFFICGEN_IXIA_PORT2', '$TRAFFICGEN_IXIA_PORT1'],
['vswitch', 'add_flow', 'int_br0',
{'in_port': '#STEP[1][1]',
'dl_type': '0x800',
'nw_proto': '17',
'nw_dst': '$TRAFFIC["l3"]["dstip"]/8',
'actions': ['output:#STEP[2][1]']
}
]
* ``namespace`` - creates or modifies network namespaces
List of supported functions:
* ``create_namespace name`` - creates new namespace with given ``name``
* ``delete_namespace name`` - deletes namespace specified by its ``name``
* ``assign_port_to_namespace port name [port_up]`` - assigns NIC specified by ``port``
into given namespace ``name``; If optional parameter ``port_up`` is set to ``True``,
then port will be brought up.
* ``add_ip_to_namespace_eth port name addr cidr`` - assigns an IP address ``addr``/``cidr``
to the NIC specified by ``port`` within namespace ``name``
* ``reset_port_to_root port name`` - returns given ``port`` from namespace ``name`` back
to the root namespace
Examples:
.. code-block:: python
['namespace', 'create_namespace', 'testns']
['namespace', 'assign_port_to_namespace', 'eth0', 'testns']
* ``veth`` - manipulates with eth and veth devices
List of supported functions:
* ``add_veth_port port peer_port`` - adds a pair of veth ports named ``port`` and
``peer_port``
* ``del_veth_port port peer_port`` - deletes a veth port pair specified by ``port``
and ``peer_port``
* ``bring_up_eth_port eth_port [namespace]`` - brings up ``eth_port`` in (optional)
``namespace``
Examples:
.. code-block:: python
['veth', 'add_veth_port', 'veth', 'veth1']
['veth', 'bring_up_eth_port', 'eth1']
* ``tools`` - provides a set of helper functions
List of supported functions:
* ``Assert condition`` - evaluates given ``condition`` and raises ``AssertionError``
in case that condition is not ``True``
* ``Eval expression`` - evaluates given expression as a python code and returns
its result
* ``Exec_Shell command`` - executes a shell command and wait until it finishes
* ``Exec_Shell_Background command`` - executes a shell command at background;
Command will be automatically terminated at the end of testcase execution.
* ``Exec_Python code`` - executes a python code
Examples:
.. code-block:: python
['tools', 'exec_shell', 'numactl -H', 'available: ([0-9]+)']
['tools', 'assert', '#STEP[-1][0]>1']
* ``wait`` - is used for test case interruption. This object doesn't have
any functions. Once reached, vsperf will pause test execution and waits
for press of ``Enter key``. It can be used during testcase design
for debugging purposes.
Examples:
.. code-block:: python
['wait']
* ``sleep`` - is used to pause testcase execution for defined number of seconds.
Examples:
.. code-block:: python
['sleep', '60']
* ``log level message`` - is used to log ``message`` of given ``level`` into vsperf output.
Level is one of info, debug, warning or error.
Examples:
.. code-block:: python
['log', 'error', 'tools $TOOLS']
* ``pdb`` - executes python debugger
Examples:
.. code-block:: python
['pdb']
Test Macros
-----------
Test profiles can include macros as part of the test step. Each step in the
profile may return a value such as a port name. Recall macros use #STEP to
indicate the recalled value inside the return structure. If the method the
test step calls returns a value it can be later recalled, for example:
.. code-block:: python
{
"Name": "vswitch_add_del_vport",
"Deployment": "clean",
"Description": "vSwitch - add and delete virtual port",
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_vport', 'int_br0'], # STEP 1
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'], # STEP 2
['vswitch', 'del_switch', 'int_br0'], # STEP 3
]
}
This test profile uses the vswitch add_vport method which returns a string
value of the port added. This is later called by the del_port method using the
name from step 1.
It is also possible to use negative indexes in step macros. In that case
``#STEP[-1]`` will refer to the result from previous step, ``#STEP[-2]``
will refer to result of step called before previous step, etc. It means,
that you could change ``STEP 2`` from previous example to achieve the same
functionality:
.. code-block:: python
['vswitch', 'del_port', 'int_br0', '#STEP[-1][0]'], # STEP 2
Another option to refer to previous values, is to define an alias for given step
by its first argument with '#' prefix. Alias must be unique and it can't be a number.
Example of step alias usage:
.. code-block:: python
['#port1', 'vswitch', 'add_vport', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[port1][0]'],
Also commonly used steps can be created as a separate profile.
.. code-block:: python
STEP_VSWITCH_PVP_INIT = [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_vport', 'int_br0'], # STEP 3
['vswitch', 'add_vport', 'int_br0'], # STEP 4
]
This profile can then be used inside other testcases
.. code-block:: python
{
"Name": "vswitch_pvp",
"Deployment": "clean",
"Description": "vSwitch - configure switch and one vnf",
"TestSteps": STEP_VSWITCH_PVP_INIT +
[
['vnf', 'start'],
['vnf', 'stop'],
] +
STEP_VSWITCH_PVP_FINIT
}
It is possible to refer to vsperf configuration parameters within step macros. Please
see :ref:`step-driven-tests-variable-usage` for more details.
In case that step returns a string or list of strings, then it is possible to
filter such output by regular expression. This optional filter can be specified
as a last step parameter with prefix '|'. Output will be split into separate lines
and only matching records will be returned. It is also possible to return a specified
group of characters from the matching lines, e.g. by regex ``|ID (\d+)``.
Examples:
.. code-block:: python
['tools', 'exec_shell', "sudo $TOOLS['ovs-appctl'] dpif-netdev/pmd-rxq-show",
'|dpdkvhostuser0\s+queue-id: \d'],
['tools', 'assert', 'len(#STEP[-1])==1'],
['vnf', 'execute_and_wait', 'ethtool -L eth0 combined 2'],
['vnf', 'execute_and_wait', 'ethtool -l eth0', '|Combined:\s+2'],
['tools', 'assert', 'len(#STEP[-1])==2']
HelloWorld and other basic Testcases
------------------------------------
The following examples are for demonstration purposes.
You can run them by copying and pasting into the
conf/integration/01_testcases.conf file.
A command-line instruction is shown at the end of each
example.
HelloWorld
^^^^^^^^^^
The first example is a HelloWorld testcase.
It simply creates a bridge with 2 physical ports, then sets up a flow to drop
incoming packets from the port that was instantiated at the STEP #1.
There's no interaction with the traffic generator.
Then the flow, the 2 ports and the bridge are deleted.
'add_phy_port' method creates a 'dpdk' type interface that will manage the
physical port. The string value returned is the port name that will be referred
by 'del_port' later on.
.. code-block:: python
{
"Name": "HelloWorld",
"Description": "My first testcase",
"Deployment": "clean",
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'actions': ['drop'], 'idle_timeout': '0'}],
['vswitch', 'del_flow', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
To run HelloWorld test:
.. code-block:: console
./vsperf --conf-file user_settings.py --integration HelloWorld
Specify a Flow by the IP address
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The next example shows how to explicitly set up a flow by specifying a
destination IP address.
All packets received from the port created at STEP #1 that have a destination
IP address = 90.90.90.90 will be forwarded to the port created at the STEP #2.
.. code-block:: python
{
"Name": "p2p_rule_l3da",
"Description": "Phy2Phy with rule on L3 Dest Addr",
"Deployment": "clean",
"biDirectional": "False",
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['trafficgen', 'send_traffic', \
{'traffic_type' : 'rfc2544_continuous'}],
['vswitch', 'dump_flows', 'int_br0'], # STEP 5
['vswitch', 'del_flow', 'int_br0'], # STEP 7 == del-flows
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py --integration p2p_rule_l3da
Multistream feature
^^^^^^^^^^^^^^^^^^^
The next testcase uses the multistream feature.
The traffic generator will send packets with different UDP ports.
That is accomplished by using "Stream Type" and "MultiStream" keywords.
4 different flows are set to forward all incoming packets.
.. code-block:: python
{
"Name": "multistream_l4",
"Description": "Multistream on UDP ports",
"Deployment": "clean",
"Parameters": {
'TRAFFIC' : {
"multistream": 4,
"stream_type": "L4",
},
},
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
# Setup Flows
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '2', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '3', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
# Send mono-dir traffic
['trafficgen', 'send_traffic', \
{'traffic_type' : 'rfc2544_continuous', \
'bidir' : 'False'}],
# Clean up
['vswitch', 'del_flow', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py --integration multistream_l4
PVP with a VM Replacement
^^^^^^^^^^^^^^^^^^^^^^^^^
This example launches a 1st VM in a PVP topology, then the VM is replaced
by another VM.
When VNF setup parameter in ./conf/04_vnf.conf is "QemuDpdkVhostUser"
'add_vport' method creates a 'dpdkvhostuser' type port to connect a VM.
.. code-block:: python
{
"Name": "ex_replace_vm",
"Description": "PVP with VM replacement",
"Deployment": "clean",
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
['vswitch', 'add_vport', 'int_br0'], # STEP 4
# Setup Flows
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[2][1]', \
'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[3][1]', \
'actions': ['output:#STEP[1][1]'], 'idle_timeout': '0'}],
# Start VM 1
['vnf1', 'start'],
# Now we want to replace VM 1 with another VM
['vnf1', 'stop'],
['vswitch', 'add_vport', 'int_br0'], # STEP 11 vm2
['vswitch', 'add_vport', 'int_br0'], # STEP 12
['vswitch', 'del_flow', 'int_br0'],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'actions': ['output:#STEP[11][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[12][1]', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
# Start VM 2
['vnf2', 'start'],
['vnf2', 'stop'],
['vswitch', 'dump_flows', 'int_br0'],
# Clean up
['vswitch', 'del_flow', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1
['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[11][0]'], # vm2
['vswitch', 'del_port', 'int_br0', '#STEP[12][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py --integration ex_replace_vm
VM with a Linux bridge
^^^^^^^^^^^^^^^^^^^^^^
This example setups a PVP topology and routes traffic to the VM based on
the destination IP address. A command-line parameter is used to select a Linux
bridge as a guest loopback application. It is also possible to select a guest
loopback application by a configuration option ``GUEST_LOOPBACK``.
.. code-block:: python
{
"Name": "ex_pvp_rule_l3da",
"Description": "PVP with flow on L3 Dest Addr",
"Deployment": "clean",
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
['vswitch', 'add_vport', 'int_br0'], # STEP 4
# Setup Flows
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_dst': '90.90.90.90', \
'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
# Each pkt from the VM is forwarded to the 2nd dpdk port
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
# Start VMs
['vnf1', 'start'],
['trafficgen', 'send_traffic', \
{'traffic_type' : 'rfc2544_continuous', \
'bidir' : 'False'}],
['vnf1', 'stop'],
# Clean up
['vswitch', 'dump_flows', 'int_br0'], # STEP 10
['vswitch', 'del_flow', 'int_br0'], # STEP 11
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports
['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py --test-params \
"GUEST_LOOPBACK=['linux_bridge']" --integration ex_pvp_rule_l3da
Forward packets based on UDP port
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This examples launches 2 VMs connected in parallel.
Incoming packets will be forwarded to one specific VM depending on the
destination UDP port.
.. code-block:: python
{
"Name": "ex_2pvp_rule_l4dp",
"Description": "2 PVP with flows on L4 Dest Port",
"Deployment": "clean",
"Parameters": {
'TRAFFIC' : {
"multistream": 2,
"stream_type": "L4",
},
},
"TestSteps": [
['vswitch', 'add_switch', 'int_br0'], # STEP 0
['vswitch', 'add_phy_port', 'int_br0'], # STEP 1
['vswitch', 'add_phy_port', 'int_br0'], # STEP 2
['vswitch', 'add_vport', 'int_br0'], # STEP 3 vm1
['vswitch', 'add_vport', 'int_br0'], # STEP 4
['vswitch', 'add_vport', 'int_br0'], # STEP 5 vm2
['vswitch', 'add_vport', 'int_br0'], # STEP 6
# Setup Flows to reply ICMPv6 and similar packets, so to
# avoid flooding internal port with their re-transmissions
['vswitch', 'add_flow', 'int_br0', \
{'priority': '1', 'dl_src': '00:00:00:00:00:01', \
'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', \
{'priority': '1', 'dl_src': '00:00:00:00:00:02', \
'actions': ['output:#STEP[4][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', \
{'priority': '1', 'dl_src': '00:00:00:00:00:03', \
'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', \
{'priority': '1', 'dl_src': '00:00:00:00:00:04', \
'actions': ['output:#STEP[6][1]'], 'idle_timeout': '0'}],
# Forward UDP packets depending on dest port
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '0', \
'actions': ['output:#STEP[3][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[1][1]', \
'dl_type': '0x0800', 'nw_proto': '17', 'udp_dst': '1', \
'actions': ['output:#STEP[5][1]'], 'idle_timeout': '0'}],
# Send VM output to phy port #2
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[4][1]', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
['vswitch', 'add_flow', 'int_br0', {'in_port': '#STEP[6][1]', \
'actions': ['output:#STEP[2][1]'], 'idle_timeout': '0'}],
# Start VMs
['vnf1', 'start'], # STEP 16
['vnf2', 'start'], # STEP 17
['trafficgen', 'send_traffic', \
{'traffic_type' : 'rfc2544_continuous', \
'bidir' : 'False'}],
['vnf1', 'stop'],
['vnf2', 'stop'],
['vswitch', 'dump_flows', 'int_br0'],
# Clean up
['vswitch', 'del_flow', 'int_br0'],
['vswitch', 'del_port', 'int_br0', '#STEP[1][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[2][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[3][0]'], # vm1 ports
['vswitch', 'del_port', 'int_br0', '#STEP[4][0]'],
['vswitch', 'del_port', 'int_br0', '#STEP[5][0]'], # vm2 ports
['vswitch', 'del_port', 'int_br0', '#STEP[6][0]'],
['vswitch', 'del_switch', 'int_br0'],
]
},
The same test can be written in a shorter form using "Deployment" : "pvpv".
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py --integration ex_2pvp_rule_l4dp
Modification of existing PVVP deployment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This is an example of modification of a standard deployment scenario with additional TestSteps.
Standard PVVP scenario is used to configure a vSwitch and to deploy two VNFs connected
in series. Additional TestSteps will deploy a 3rd VNF and connect it in parallel to
already configured VNFs. Traffic generator is instructed (by Multistream feature) to send
two separate traffic streams. One stream will be sent to the standalone VNF and second
to two chained VNFs.
In case, that test is defined as a performance test, then traffic results will be collected
and available in both csv and rst report files.
.. code-block:: python
{
"Name": "pvvp_pvp_cont",
"Deployment": "pvvp",
"Description": "PVVP and PVP in parallel with Continuous Stream",
"Parameters" : {
"TRAFFIC" : {
"traffic_type" : "rfc2544_continuous",
"multistream": 2,
},
},
"TestSteps": [
['vswitch', 'add_vport', 'br0'],
['vswitch', 'add_vport', 'br0'],
# priority must be higher than default 32768, otherwise flows won't match
['vswitch', 'add_flow', 'br0',
{'in_port': '1', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800',
'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}],
['vswitch', 'add_flow', 'br0',
{'in_port': '2', 'actions': ['output:#STEP[-2][1]'], 'idle_timeout': '0', 'dl_type':'0x0800',
'nw_proto':'17', 'tp_dst':'0', 'priority': '33000'}],
['vswitch', 'add_flow', 'br0', {'in_port': '#STEP[-4][1]', 'actions': ['output:1'],
'idle_timeout': '0'}],
['vswitch', 'add_flow', 'br0', {'in_port': '#STEP[-4][1]', 'actions': ['output:2'],
'idle_timeout': '0'}],
['vswitch', 'dump_flows', 'br0'],
['vnf1', 'start'],
]
},
To run the test:
.. code-block:: console
./vsperf --conf-file user_settings.py pvvp_pvp_cont
|