summaryrefslogtreecommitdiffstats
path: root/docs/design
diff options
context:
space:
mode:
Diffstat (limited to 'docs/design')
-rw-r--r--docs/design/factory_and_loader.pngbin0 -> 25586 bytes
-rwxr-xr-xdocs/design/index.rst10
-rw-r--r--docs/design/traffic_controller.pngbin0 -> 57868 bytes
-rw-r--r--docs/design/vsperf.pngbin0 -> 93029 bytes
-rwxr-xr-xdocs/design/vswitchperf_design.rst156
5 files changed, 106 insertions, 60 deletions
diff --git a/docs/design/factory_and_loader.png b/docs/design/factory_and_loader.png
new file mode 100644
index 00000000..290c0af6
--- /dev/null
+++ b/docs/design/factory_and_loader.png
Binary files differ
diff --git a/docs/design/index.rst b/docs/design/index.rst
index c93d6719..bb189cb0 100755
--- a/docs/design/index.rst
+++ b/docs/design/index.rst
@@ -1,13 +1,9 @@
-=============
+**************
VSPERF Design
-=============
+**************
.. toctree::
:numbered:
- :maxdepth: 4
+ :maxdepth: 3
vswitchperf_design.rst
-
-Revision: _sha1_
-
-Build date: |today|
diff --git a/docs/design/traffic_controller.png b/docs/design/traffic_controller.png
new file mode 100644
index 00000000..598296ec
--- /dev/null
+++ b/docs/design/traffic_controller.png
Binary files differ
diff --git a/docs/design/vsperf.png b/docs/design/vsperf.png
new file mode 100644
index 00000000..4af2ac62
--- /dev/null
+++ b/docs/design/vsperf.png
Binary files differ
diff --git a/docs/design/vswitchperf_design.rst b/docs/design/vswitchperf_design.rst
index d7fa67c3..3096b1a6 100755
--- a/docs/design/vswitchperf_design.rst
+++ b/docs/design/vswitchperf_design.rst
@@ -1,7 +1,13 @@
+======================
+VSPERF Design Document
+======================
+
Intended Audience
=================
-This document is intended to aid those who want to modify the vsperf code. Or to extend it - for example to add support for new traffic generators, deployment scenarios and so on.
+This document is intended to aid those who want to modify the vsperf code. Or
+to extend it - for example to add support for new traffic generators,
+deployment scenarios and so on.
Usage
=====
@@ -21,13 +27,16 @@ Run all tests that have ``tput`` in their name - ``p2p_tput``, ``pvp_tput`` etc.
$ ./vsperf --tests 'tput'
-As above but override default configuration with settings in 'my_settings.py'. This is useful as modifying configuration directly in the configuration files in ``conf/NN_*.py`` shows up as changes under git source control:
+As above but override default configuration with settings in 'my_settings.py'.
+This is useful as modifying configuration directly in the configuration files
+in ``conf/NN_*.py`` shows up as changes under git source control:
.. code-block:: console
$ ./vsperf --conf-file my_settings.py --tests 'tput'
-Override specific test parameters. Useful for shortening the duration of tests for development purposes:
+Override specific test parameters. Useful for shortening the duration of tests
+for development purposes:
.. code-block:: console
@@ -38,15 +47,18 @@ Typical Test Sequence
This is a typical flow of control for a test.
-.. image:: ../images/vsperf.png
+.. image:: vsperf.png
Configuration
=============
-The conf package contains the configuration files (``*.conf``) for all system components, it also provides a ``settings`` object that exposes all of these settings.
+The conf package contains the configuration files (``*.conf``) for all system
+components, it also provides a ``settings`` object that exposes all of these
+settings.
-Settings are not passed from component to component. Rather they are available globally to all components once they import the conf package.
+Settings are not passed from component to component. Rather they are available
+globally to all components once they import the conf package.
.. code-block:: python
@@ -54,7 +66,8 @@ Settings are not passed from component to component. Rather they are available g
...
log_file = settings.getValue('LOG_FILE_DEFAULT')
-Settings files (``*.conf``) are valid python code so can be set to complex types such as lists and dictionaries as well as scalar types:
+Settings files (``*.conf``) are valid python code so can be set to complex
+types such as lists and dictionaries as well as scalar types:
.. code-block:: python
@@ -63,9 +76,16 @@ Settings files (``*.conf``) are valid python code so can be set to complex types
Configuration Procedure and Precedence
--------------------------------------
-Configuration files follow a strict naming convention that allows them to be processed in a specific order. All the .conf files are named ``NN_name.conf``, where NN is a decimal digit. The files are processed in order from 00_name.conf to 99_name.conf so that if the name setting is given in both a lower and higher numbered conf file then the higher numbered file is the effective setting as it is processed after the setting in the lower numbered file.
+Configuration files follow a strict naming convention that allows them to be
+processed in a specific order. All the .conf files are named ``NN_name.conf``,
+where NN is a decimal number. The files are processed in order from 00_name.conf
+to 99_name.conf so that if the name setting is given in both a lower and higher
+numbered conf file then the higher numbered file is the effective setting as it
+is processed after the setting in the lower numbered file.
-The values in the file specified by ``--conf-file`` takes precedence over all the other configuration files and does not have to follow the naming convention.
+The values in the file specified by ``--conf-file`` takes precedence over all
+the other configuration files and does not have to follow the naming
+convention.
Other Configuration
@@ -76,13 +96,16 @@ Other Configuration
VM, vSwitch, Traffic Generator Independence
===========================================
-VSPERF supports different vSwithes, Traffic Generators and VNFs by using standard object-oriented polymorphism:
+VSPERF supports different vSwithes, Traffic Generators and VNFs by using
+standard object-oriented polymorphism:
* Support for vSwitches is implemented by a class inheriting from IVSwitch.
- * Support for Traffic Generators is implemented by a class inheriting from ITrafficGenerator.
+ * Support for Traffic Generators is implemented by a class inheriting from
+ ITrafficGenerator.
* Support for VNF is implemented by a class inheriting from IVNF.
-By dealing only with the abstract interfaces the core framework can support many implementations of different vSwitches, Traffic Generators and VNFs.
+By dealing only with the abstract interfaces the core framework can support
+many implementations of different vSwitches, Traffic Generators and VNFs.
IVSwitch
--------
@@ -143,62 +166,89 @@ IVnf
Controllers
-----------
-Controllers are used in conjunction with abstract interfaces as way of decoupling the control of vSwtiches, VNFs and TrafficGenerators from other components.
+Controllers are used in conjunction with abstract interfaces as way of
+decoupling the control of vSwtiches, VNFs and TrafficGenerators from other
+components.
-The controlled classes provide basic primitive operations. The Controllers sequence and co-ordinate these primitive operation in to useful actions. For instance the vswitch_controller_PVP can be used to bring any vSwitch (that implements the primitives defined in IVSwitch) into the configuration required by the Phy-to-Phy Deployment Scenario.
+The controlled classes provide basic primitive operations. The Controllers
+sequence and co-ordinate these primitive operation in to useful actions. For
+instance the vswitch_controller_PVP can be used to bring any vSwitch (that
+implements the primitives defined in IVSwitch) into the configuration required
+by the Phy-to-Phy Deployment Scenario.
-In order to support a new vSwitch only a new implementation of IVSwitch needs be created for the new vSwitch to be capable of fulfilling all the Deployment Scenarios provided for by existing or future vSwitch Controllers.
+In order to support a new vSwitch only a new implementation of IVSwitch needs
+be created for the new vSwitch to be capable of fulfilling all the Deployment
+Scenarios provided for by existing or future vSwitch Controllers.
-Similarly if a new Deployment Scenario is required it only needs to be written once as a new vSwitch Controller and it will immediately be capable of controlling all existing and future vSwitches in to that Deployment Scenario.
+Similarly if a new Deployment Scenario is required it only needs to be written
+once as a new vSwitch Controller and it will immediately be capable of
+controlling all existing and future vSwitches in to that Deployment Scenario.
-Similarly the Traffic Controllers can be used to co-ordinate basic operations provided by implementers of ITrafficGenerator to provide useful tests. Though traffic generators generally already implement full test cases i.e. they both generate suitable traffic and analyse returned traffic in order to implement a test which has typically been predefined in an RFC document. However the Traffic Controller class allows for the possibility of further enhancement - such as iterating over tests for various packet sizes or creating new tests.
+Similarly the Traffic Controllers can be used to co-ordinate basic operations
+provided by implementers of ITrafficGenerator to provide useful tests. Though
+traffic generators generally already implement full test cases i.e. they both
+generate suitable traffic and analyse returned traffic in order to implement a
+test which has typically been predefined in an RFC document. However the
+Traffic Controller class allows for the possibility of further enhancement -
+such as iterating over tests for various packet sizes or creating new tests.
Traffic Controller's Role
-------------------------
-.. image:: ../images/traffic_controller.png
+.. image:: traffic_controller.png
Loader & Component Factory
--------------------------
-The working of the Loader package (which is responsible for *finding* arbitrary classes based on configuration data) and the Component Factory which is responsible for *choosing* the correct class for a particular situation - e.g. Deployment Scenario can be seen in this diagram.
+The working of the Loader package (which is responsible for *finding* arbitrary
+classes based on configuration data) and the Component Factory which is
+responsible for *choosing* the correct class for a particular situation - e.g.
+Deployment Scenario can be seen in this diagram.
-.. image:: ../images/factory_and_loader.png
+.. image:: factory_and_loader.png
Routing Tables
==============
-Vsperf uses a standard set of routing tables in order to allow tests to easily mix and match Deployment Scenarios (PVP, P2P topology), Tuple Matching and Frame Modification requirements.
-
-::
-
- +--------------+
- | |
- | Table 0 | table#0 - Match table. Flows designed to force 5 & 10 tuple matches go here.
- | |
- +--------------+
- |
- |
- v
- +--------------+ table#1 - Routing table. Flows to route packets between ports goes here.
- | | The chosen port is communicated to subsequent tables by setting the
- | Table 1 | metadata value to the egress port number. Generally this table
- | | is set-up by by the vSwitchController.
- +--------------+
- |
- |
- v
- +--------------+ table#2 - Frame modification table. Frame modification flow rules are
- | | isolated in this table so that they can be turned on or off
- | Table 2 | without affecting the routing or tuple-matching flow rules.
- | | This allows the frame modification and tuple matching required by the
- +--------------+ tests in the VSWITCH PERFORMANCE FOR TELCO NFV test specification
- | to be independent of the Deployment Scenario set up by the vSwitchController.
- |
- v
- +--------------+
- | |
- | Table 3 | table#3 - Egress table. Egress packets on the ports setup in Table 1.
- | |
- +--------------+
+Vsperf uses a standard set of routing tables in order to allow tests to easily
+mix and match Deployment Scenarios (PVP, P2P topology), Tuple Matching and
+Frame Modification requirements.
+
+.. code-block:: console
+
+ +--------------+
+ | |
+ | Table 0 | table#0 - Match table. Flows designed to force 5 & 10
+ | | tuple matches go here.
+ | |
+ +--------------+
+ |
+ |
+ v
+ +--------------+ table#1 - Routing table. Flows to route packets between
+ | | ports goes here.
+ | Table 1 | The chosen port is communicated to subsequent tables by
+ | | setting the metadata value to the egress port number.
+ | | Generally this table is set-up by by the
+ +--------------+ vSwitchController.
+ |
+ |
+ v
+ +--------------+ table#2 - Frame modification table. Frame modification
+ | | flow rules are isolated in this table so that they can
+ | Table 2 | be turned on or off without affecting the routing or
+ | | tuple-matching flow rules. This allows the frame
+ | | modification and tuple matching required by the tests
+ | | in the VSWITCH PERFORMANCE FOR TELCO NFV test
+ +--------------+ specification to be independent of the Deployment
+ | Scenario set up by the vSwitchController.
+ |
+ v
+ +--------------+
+ | |
+ | Table 3 | table#3 - Egress table. Egress packets on the ports
+ | | setup in Table 1.
+ +--------------+
+
+