aboutsummaryrefslogtreecommitdiffstats
path: root/docs/testing/user/configguide/trafficgen.rst
diff options
context:
space:
mode:
authorTrevor Cooper <trevor.cooper@intel.com>2017-03-22 00:49:18 +0000
committerGerrit Code Review <gerrit@opnfv.org>2017-03-22 00:49:18 +0000
commitf56bcee58ec3710b02a0f7639f13d7a8ed903ebf (patch)
treee90758d0f0ad0df6698a144c3052b9f8f0308375 /docs/testing/user/configguide/trafficgen.rst
parenta224f56b6750062078b881606092003eaa9e81eb (diff)
parentf4a955b25a59af2984b0910e5f2cb10a0d1150e5 (diff)
Merge "Revert "Moved doc files to testing document structure"
Diffstat (limited to 'docs/testing/user/configguide/trafficgen.rst')
-rw-r--r--docs/testing/user/configguide/trafficgen.rst671
1 files changed, 0 insertions, 671 deletions
diff --git a/docs/testing/user/configguide/trafficgen.rst b/docs/testing/user/configguide/trafficgen.rst
deleted file mode 100644
index 4e42b2be..00000000
--- a/docs/testing/user/configguide/trafficgen.rst
+++ /dev/null
@@ -1,671 +0,0 @@
-.. This work is licensed under a Creative Commons Attribution 4.0 International License.
-.. http://creativecommons.org/licenses/by/4.0
-.. (c) OPNFV, Intel Corporation, AT&T and others.
-
-.. _trafficgen-installation:
-
-===========================
-'vsperf' Traffic Gen Guide
-===========================
-
-Overview
---------
-
-VSPERF supports the following traffic generators:
-
- * Dummy_ (DEFAULT)
- * Ixia_
- * `Spirent TestCenter`_
- * `Xena Networks`_
- * MoonGen_
-
-To see the list of traffic gens from the cli:
-
-.. code-block:: console
-
- $ ./vsperf --list-trafficgens
-
-This guide provides the details of how to install
-and configure the various traffic generators.
-
-Background Information
-----------------------
-The traffic default configuration can be found in **conf/03_traffic.conf**,
-and is configured as follows:
-
-.. code-block:: console
-
- TRAFFIC = {
- 'traffic_type' : 'rfc2544_throughput',
- 'frame_rate' : 100,
- 'bidir' : 'True', # will be passed as string in title format to tgen
- 'multistream' : 0,
- 'stream_type' : 'L4',
- 'pre_installed_flows' : 'No', # used by vswitch implementation
- 'flow_type' : 'port', # used by vswitch implementation
-
- 'l2': {
- 'framesize': 64,
- 'srcmac': '00:00:00:00:00:00',
- 'dstmac': '00:00:00:00:00:00',
- },
- 'l3': {
- 'proto': 'udp',
- 'srcip': '1.1.1.1',
- 'dstip': '90.90.90.90',
- },
- 'l4': {
- 'srcport': 3000,
- 'dstport': 3001,
- },
- 'vlan': {
- 'enabled': False,
- 'id': 0,
- 'priority': 0,
- 'cfi': 0,
- },
- }
-
-The framesize parameter can be overridden from the configuration
-files by adding the following to your custom configuration file
-``10_custom.conf``:
-
-.. code-block:: console
-
- TRAFFICGEN_PKT_SIZES = (64, 128,)
-
-OR from the commandline:
-
-.. code-block:: console
-
- $ ./vsperf --test-params "TRAFFICGEN_PKT_SIZES=(x,y)" $TESTNAME
-
-You can also modify the traffic transmission duration and the number
-of tests run by the traffic generator by extending the example
-commandline above to:
-
-.. code-block:: console
-
- $ ./vsperf --test-params "TRAFFICGEN_PKT_SIZES=(x,y);TRAFFICGEN_DURATION=10;" \
- "TRAFFICGEN_RFC2544_TESTS=1" $TESTNAME
-
-.. _trafficgen-dummy:
-
-Dummy
------
-
-The Dummy traffic generator can be used to test VSPERF installation or
-to demonstrate VSPERF functionality at DUT without connection
-to a real traffic generator.
-
-You could also use the Dummy generator in case, that your external
-traffic generator is not supported by VSPERF. In such case you could
-use VSPERF to setup your test scenario and then transmit the traffic.
-After the transmission is completed you could specify values for all
-collected metrics and VSPERF will use them to generate final reports.
-
-Setup
-~~~~~
-
-To select the Dummy generator please add the following to your
-custom configuration file ``10_custom.conf``.
-
-.. code-block:: console
-
- TRAFFICGEN = 'Dummy'
-
-OR run ``vsperf`` with the ``--trafficgen`` argument
-
-.. code-block:: console
-
- $ ./vsperf --trafficgen Dummy $TESTNAME
-
-Where $TESTNAME is the name of the vsperf test you would like to run.
-This will setup the vSwitch and the VNF (if one is part of your test)
-print the traffic configuration and prompt you to transmit traffic
-when the setup is complete.
-
-.. code-block:: console
-
- Please send 'continuous' traffic with the following stream config:
- 30mS, 90mpps, multistream False
- and the following flow config:
- {
- "flow_type": "port",
- "l3": {
- "srcip": "1.1.1.1",
- "proto": "tcp",
- "dstip": "90.90.90.90"
- },
- "traffic_type": "rfc2544_continuous",
- "multistream": 0,
- "bidir": "True",
- "vlan": {
- "cfi": 0,
- "priority": 0,
- "id": 0,
- "enabled": false
- },
- "frame_rate": 90,
- "l2": {
- "dstport": 3001,
- "srcport": 3000,
- "dstmac": "00:00:00:00:00:00",
- "srcmac": "00:00:00:00:00:00",
- "framesize": 64
- }
- }
- What was the result for 'frames tx'?
-
-When your traffic generator has completed traffic transmission and provided
-the results please input these at the VSPERF prompt. VSPERF will try
-to verify the input:
-
-.. code-block:: console
-
- Is '$input_value' correct?
-
-Please answer with y OR n.
-
-VSPERF will ask you to provide a value for every of collected metrics. The list
-of metrics can be found at traffic-type-metrics_.
-Finally vsperf will print out the results for your test and generate the
-appropriate logs and report files.
-
-.. _traffic-type-metrics:
-
-Metrics collected for supported traffic types
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Below you could find a list of metrics collected by VSPERF for each of supported
-traffic types.
-
-RFC2544 Throughput and Continuous:
-
- * frames tx
- * frames rx
- * min latency
- * max latency
- * avg latency
- * frameloss
-
-RFC2544 Back2back:
-
- * b2b frames
- * b2b frame loss %
-
-Dummy result pre-configuration
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-In case of a Dummy traffic generator it is possible to pre-configure the test
-results. This is useful for creation of demo testcases, which do not require
-a real traffic generator. Such testcase can be run by any user and it will still
-generate all reports and result files.
-
-Result values can be specified within ``TRAFFICGEN_DUMMY_RESULTS`` dictionary,
-where every of collected metrics must be properly defined. Please check the list
-of traffic-type-metrics_.
-
-Dictionary with dummy results can be passed by CLI argument ``--test-params``
-or specified in ``Parameters`` section of testcase definition.
-
-Example of testcase execution with dummy results defined by CLI argument:
-
-.. code-block:: console
-
- $ ./vsperf back2back --trafficgen Dummy --test-params \
- "TRAFFICGEN_DUMMY_RESULTS={'b2b frames':'3000','b2b frame loss %':'0.0'}"
-
-Example of testcase definition with pre-configured dummy results:
-
-.. code-block:: python
-
- {
- "Name": "back2back",
- "Traffic Type": "rfc2544_back2back",
- "Deployment": "p2p",
- "biDirectional": "True",
- "Description": "LTD.Throughput.RFC2544.BackToBackFrames",
- "Parameters" : {
- 'TRAFFICGEN_DUMMY_RESULTS' : {'b2b frames':'3000','b2b frame loss %':'0.0'}
- },
- },
-
-**NOTE:** Pre-configured results for the Dummy traffic generator will be used only
-in case, that the Dummy traffic generator is used. Otherwise the option
-``TRAFFICGEN_DUMMY_RESULTS`` will be ignored.
-
-.. _Ixia:
-
-Ixia
-----
-
-VSPERF can use both IxNetwork and IxExplorer TCL servers to control Ixia chassis.
-However usage of IxNetwork TCL server is a preferred option. Following sections
-will describe installation and configuration of IxNetwork components used by VSPERF.
-
-Installation
-~~~~~~~~~~~~
-
-On the system under the test you need to install IxNetworkTclClient$(VER\_NUM)Linux.bin.tgz.
-
-On the IXIA client software system you need to install IxNetwork TCL server. After its
-installation you should configure it as follows:
-
- 1. Find the IxNetwork TCL server app (start -> All Programs -> IXIA ->
- IxNetwork -> IxNetwork\_$(VER\_NUM) -> IxNetwork TCL Server)
- 2. Right click on IxNetwork TCL Server, select properties - Under shortcut tab in
- the Target dialogue box make sure there is the argument "-tclport xxxx"
- where xxxx is your port number (take note of this port number as you will
- need it for the 10\_custom.conf file).
-
- .. image:: TCLServerProperties.png
-
- 3. Hit Ok and start the TCL server application
-
-VSPERF configuration
-~~~~~~~~~~~~~~~~~~~~
-
-There are several configuration options specific to the IxNetwork traffic generator
-from IXIA. It is essential to set them correctly, before the VSPERF is executed
-for the first time.
-
-Detailed description of options follows:
-
- * ``TRAFFICGEN_IXNET_MACHINE`` - IP address of server, where IxNetwork TCL Server is running
- * ``TRAFFICGEN_IXNET_PORT`` - PORT, where IxNetwork TCL Server is accepting connections from
- TCL clients
- * ``TRAFFICGEN_IXNET_USER`` - username, which will be used during communication with IxNetwork
- TCL Server and IXIA chassis
- * ``TRAFFICGEN_IXIA_HOST`` - IP address of IXIA traffic generator chassis
- * ``TRAFFICGEN_IXIA_CARD`` - identification of card with dedicated ports at IXIA chassis
- * ``TRAFFICGEN_IXIA_PORT1`` - identification of the first dedicated port at ``TRAFFICGEN_IXIA_CARD``
- at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
- unidirectional traffic, it is essential to correctly connect 1st IXIA port to the 1st NIC
- at DUT, i.e. to the first PCI handle from ``WHITELIST_NICS`` list. Otherwise traffic may not
- be able to pass through the vSwitch.
- * ``TRAFFICGEN_IXIA_PORT2`` - identification of the second dedicated port at ``TRAFFICGEN_IXIA_CARD``
- at IXIA chassis; VSPERF uses two separated ports for traffic generation. In case of
- unidirectional traffic, it is essential to correctly connect 2nd IXIA port to the 2nd NIC
- at DUT, i.e. to the second PCI handle from ``WHITELIST_NICS`` list. Otherwise traffic may not
- be able to pass through the vSwitch.
- * ``TRAFFICGEN_IXNET_LIB_PATH`` - path to the DUT specific installation of IxNetwork TCL API
- * ``TRAFFICGEN_IXNET_TCL_SCRIPT`` - name of the TCL script, which VSPERF will use for
- communication with IXIA TCL server
- * ``TRAFFICGEN_IXNET_TESTER_RESULT_DIR`` - folder accessible from IxNetwork TCL server,
- where test results are stored, e.g. ``c:/ixia_results``; see test-results-share_
- * ``TRAFFICGEN_IXNET_DUT_RESULT_DIR`` - directory accessible from the DUT, where test
- results from IxNetwork TCL server are stored, e.g. ``/mnt/ixia_results``; see
- test-results-share_
-
-.. _test-results-share:
-
-Test results share
-~~~~~~~~~~~~~~~~~~
-
-VSPERF is not able to retrieve test results via TCL API directly. Instead, all test
-results are stored at IxNetwork TCL server. Results are stored at folder defined by
-``TRAFFICGEN_IXNET_TESTER_RESULT_DIR`` configuration parameter. Content of this
-folder must be shared (e.g. via samba protocol) between TCL Server and DUT, where
-VSPERF is executed. VSPERF expects, that test results will be available at directory
-configured by ``TRAFFICGEN_IXNET_DUT_RESULT_DIR`` configuration parameter.
-
-Example of sharing configuration:
-
- * Create a new folder at IxNetwork TCL server machine, e.g. ``c:\ixia_results``
- * Modify sharing options of ``ixia_results`` folder to share it with everybody
- * Create a new directory at DUT, where shared directory with results
- will be mounted, e.g. ``/mnt/ixia_results``
- * Update your custom VSPERF configuration file as follows:
-
- .. code-block:: python
-
- TRAFFICGEN_IXNET_TESTER_RESULT_DIR = 'c:/ixia_results'
- TRAFFICGEN_IXNET_DUT_RESULT_DIR = '/mnt/ixia_results'
-
- **NOTE:** It is essential to use slashes '/' also in path
- configured by ``TRAFFICGEN_IXNET_TESTER_RESULT_DIR`` parameter.
- * Install cifs-utils package.
-
- e.g. at rpm based Linux distribution:
-
- .. code-block:: console
-
- yum install cifs-utils
-
- * Mount shared directory, so VSPERF can access test results.
-
- e.g. by adding new record into ``/etc/fstab``
-
- .. code-block:: console
-
- mount -t cifs //_TCL_SERVER_IP_OR_FQDN_/ixia_results /mnt/ixia_results
- -o file_mode=0777,dir_mode=0777,nounix
-
-It is recommended to verify, that any new file inserted into ``c:/ixia_results`` folder
-is visible at DUT inside ``/mnt/ixia_results`` directory.
-
-.. _`Spirent TestCenter`:
-
-Spirent Setup
--------------
-
-Spirent installation files and instructions are available on the
-Spirent support website at:
-
-http://support.spirent.com
-
-Select a version of Spirent TestCenter software to utilize. This example
-will use Spirent TestCenter v4.57 as an example. Substitute the appropriate
-version in place of 'v4.57' in the examples, below.
-
-On the CentOS 7 System
-~~~~~~~~~~~~~~~~~~~~~~
-
-Download and install the following:
-
-Spirent TestCenter Application, v4.57 for 64-bit Linux Client
-
-Spirent Virtual Deployment Service (VDS)
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Spirent VDS is required for both TestCenter hardware and virtual
-chassis in the vsperf environment. For installation, select the version
-that matches the Spirent TestCenter Application version. For v4.57,
-the matching VDS version is 1.0.55. Download either the ova (VMware)
-or qcow2 (QEMU) image and create a VM with it. Initialize the VM
-according to Spirent installation instructions.
-
-Using Spirent TestCenter Virtual (STCv)
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-STCv is available in both ova (VMware) and qcow2 (QEMU) formats. For
-VMware, download:
-
-Spirent TestCenter Virtual Machine for VMware, v4.57 for Hypervisor - VMware ESX.ESXi
-
-Virtual test port performance is affected by the hypervisor configuration. For
-best practice results in deploying STCv, the following is suggested:
-
-- Create a single VM with two test ports rather than two VMs with one port each
-- Set STCv in DPDK mode
-- Give STCv 2*n + 1 cores, where n = the number of ports. For vsperf, cores = 5.
-- Turning off hyperthreading and pinning these cores will improve performance
-- Give STCv 2 GB of RAM
-
-To get the highest performance and accuracy, Spirent TestCenter hardware is
-recommended. vsperf can run with either stype test ports.
-
-Using STC REST Client
-~~~~~~~~~~~~~~~~~~~~~
-The stcrestclient package provides the stchttp.py ReST API wrapper module.
-This allows simple function calls, nearly identical to those provided by
-StcPython.py, to be used to access TestCenter server sessions via the
-STC ReST API. Basic ReST functionality is provided by the resthttp module,
-and may be used for writing ReST clients independent of STC.
-
-- Project page: <https://github.com/Spirent/py-stcrestclient>
-- Package download: <http://pypi.python.org/pypi/stcrestclient>
-
-To use REST interface, follow the instructions in the Project page to
-install the package. Once installed, the scripts named with 'rest' keyword
-can be used. For example: testcenter-rfc2544-rest.py can be used to run
-RFC 2544 tests using the REST interface.
-
-Configuration:
-~~~~~~~~~~~~~~
-
-1. The Labserver and license server addresses. These parameters applies to
- all the tests, and are mandatory for all tests.
-
-.. code-block:: console
-
- TRAFFICGEN_STC_LAB_SERVER_ADDR = " "
- TRAFFICGEN_STC_LICENSE_SERVER_ADDR = " "
- TRAFFICGEN_STC_PYTHON2_PATH = " "
- TRAFFICGEN_STC_TESTCENTER_PATH = " "
- TRAFFICGEN_STC_TEST_SESSION_NAME = " "
- TRAFFICGEN_STC_CSV_RESULTS_FILE_PREFIX = " "
-
-2. For RFC2544 tests, the following parameters are mandatory
-
-.. code-block:: console
-
- TRAFFICGEN_STC_EAST_CHASSIS_ADDR = " "
- TRAFFICGEN_STC_EAST_SLOT_NUM = " "
- TRAFFICGEN_STC_EAST_PORT_NUM = " "
- TRAFFICGEN_STC_EAST_INTF_ADDR = " "
- TRAFFICGEN_STC_EAST_INTF_GATEWAY_ADDR = " "
- TRAFFICGEN_STC_WEST_CHASSIS_ADDR = ""
- TRAFFICGEN_STC_WEST_SLOT_NUM = " "
- TRAFFICGEN_STC_WEST_PORT_NUM = " "
- TRAFFICGEN_STC_WEST_INTF_ADDR = " "
- TRAFFICGEN_STC_WEST_INTF_GATEWAY_ADDR = " "
- TRAFFICGEN_STC_RFC2544_TPUT_TEST_FILE_NAME
-
-3. RFC2889 tests: Currently, the forwarding, address-caching, and
- address-learning-rate tests of RFC2889 are supported.
- The testcenter-rfc2889-rest.py script implements the rfc2889 tests.
- The configuration for RFC2889 involves test-case definition, and parameter
- definition, as described below. New results-constants, as shown below, are
- added to support these tests.
-
-Example of testcase definition for RFC2889 tests:
-
-.. code-block:: python
-
- {
- "Name": "phy2phy_forwarding",
- "Deployment": "p2p",
- "Description": "LTD.Forwarding.RFC2889.MaxForwardingRate",
- "Parameters" : {
- "TRAFFIC" : {
- "traffic_type" : "rfc2889_forwarding",
- },
- },
- }
-
-For RFC2889 tests, specifying the locations for the monitoring ports is mandatory.
-Necessary parameters are:
-
-.. code-block:: console
-
- TRAFFICGEN_STC_RFC2889_TEST_FILE_NAME
- TRAFFICGEN_STC_EAST_CHASSIS_ADDR = " "
- TRAFFICGEN_STC_EAST_SLOT_NUM = " "
- TRAFFICGEN_STC_EAST_PORT_NUM = " "
- TRAFFICGEN_STC_EAST_INTF_ADDR = " "
- TRAFFICGEN_STC_EAST_INTF_GATEWAY_ADDR = " "
- TRAFFICGEN_STC_WEST_CHASSIS_ADDR = ""
- TRAFFICGEN_STC_WEST_SLOT_NUM = " "
- TRAFFICGEN_STC_WEST_PORT_NUM = " "
- TRAFFICGEN_STC_WEST_INTF_ADDR = " "
- TRAFFICGEN_STC_WEST_INTF_GATEWAY_ADDR = " "
- TRAFFICGEN_STC_VERBOSE = "True"
- TRAFFICGEN_STC_RFC2889_LOCATIONS="//10.1.1.1/1/1,//10.1.1.1/2/2"
-
-Other Configurations are :
-
-.. code-block:: console
-
- TRAFFICGEN_STC_RFC2889_MIN_LR = 1488
- TRAFFICGEN_STC_RFC2889_MAX_LR = 14880
- TRAFFICGEN_STC_RFC2889_MIN_ADDRS = 1000
- TRAFFICGEN_STC_RFC2889_MAX_ADDRS = 65536
- TRAFFICGEN_STC_RFC2889_AC_LR = 1000
-
-The first 2 values are for address-learning test where as other 3 values are
-for the Address caching capacity test. LR: Learning Rate. AC: Address Caching.
-Maximum value for address is 16777216. Whereas, maximum for LR is 4294967295.
-
-Results for RFC2889 Tests: Forwarding tests outputs following values:
-
-.. code-block:: console
-
- TX_RATE_FPS : "Transmission Rate in Frames/sec"
- THROUGHPUT_RX_FPS: "Received Throughput Frames/sec"
- TX_RATE_MBPS : " Transmission rate in MBPS"
- THROUGHPUT_RX_MBPS: "Received Throughput in MBPS"
- TX_RATE_PERCENT: "Transmission Rate in Percentage"
- FRAME_LOSS_PERCENT: "Frame loss in Percentage"
- FORWARDING_RATE_FPS: " Maximum Forwarding Rate in FPS"
-
-
-Whereas, the address caching test outputs following values,
-
-.. code-block:: console
-
- CACHING_CAPACITY_ADDRS = 'Number of address it can cache'
- ADDR_LEARNED_PERCENT = 'Percentage of address successfully learned'
-
-and address learning test outputs just a single value:
-
-.. code-block:: console
-
- OPTIMAL_LEARNING_RATE_FPS = 'Optimal learning rate in fps'
-
-Note that 'FORWARDING_RATE_FPS', 'CACHING_CAPACITY_ADDRS',
-'ADDR_LEARNED_PERCENT' and 'OPTIMAL_LEARNING_RATE_FPS' are the new
-result-constants added to support RFC2889 tests.
-
-.. _`Xena Networks`:
-
-Xena Networks
--------------
-
-Installation
-~~~~~~~~~~~~
-
-Xena Networks traffic generator requires specific files and packages to be
-installed. It is assumed the user has access to the Xena2544.exe file which
-must be placed in VSPerf installation location under the tools/pkt_gen/xena
-folder. Contact Xena Networks for the latest version of this file. The user
-can also visit www.xenanetworks/downloads to obtain the file with a valid
-support contract.
-
-**Note** VSPerf has been fully tested with version v2.43 of Xena2544.exe
-
-To execute the Xena2544.exe file under Linux distributions the mono-complete
-package must be installed. To install this package follow the instructions
-below. Further information can be obtained from
-http://www.mono-project.com/docs/getting-started/install/linux/
-
-.. code-block:: console
-
- rpm --import "http://keyserver.ubuntu.com/pks/lookup?op=get&search=0x3FA7E0328081BFF6A14DA29AA6A19B38D3D831EF"
- yum-config-manager --add-repo http://download.mono-project.com/repo/centos/
- yum -y install mono-complete
-
-To prevent gpg errors on future yum installation of packages the mono-project
-repo should be disabled once installed.
-
-.. code-block:: console
-
- yum-config-manager --disable download.mono-project.com_repo_centos_
-
-Configuration
-~~~~~~~~~~~~~
-
-Connection information for your Xena Chassis must be supplied inside the
-``10_custom.conf`` or ``03_custom.conf`` file. The following parameters must be
-set to allow for proper connections to the chassis.
-
-.. code-block:: console
-
- TRAFFICGEN_XENA_IP = ''
- TRAFFICGEN_XENA_PORT1 = ''
- TRAFFICGEN_XENA_PORT2 = ''
- TRAFFICGEN_XENA_USER = ''
- TRAFFICGEN_XENA_PASSWORD = ''
- TRAFFICGEN_XENA_MODULE1 = ''
- TRAFFICGEN_XENA_MODULE2 = ''
-
-RFC2544 Throughput Testing
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Xena traffic generator testing for rfc2544 throughput can be modified for
-different behaviors if needed. The default options for the following are
-optimized for best results.
-
-.. code-block:: console
-
- TRAFFICGEN_XENA_2544_TPUT_INIT_VALUE = '10.0'
- TRAFFICGEN_XENA_2544_TPUT_MIN_VALUE = '0.1'
- TRAFFICGEN_XENA_2544_TPUT_MAX_VALUE = '100.0'
- TRAFFICGEN_XENA_2544_TPUT_VALUE_RESOLUTION = '0.5'
- TRAFFICGEN_XENA_2544_TPUT_USEPASS_THRESHHOLD = 'false'
- TRAFFICGEN_XENA_2544_TPUT_PASS_THRESHHOLD = '0.0'
-
-Each value modifies the behavior of rfc 2544 throughput testing. Refer to your
-Xena documentation to understand the behavior changes in modifying these
-values.
-
-Continuous Traffic Testing
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-
-Xena continuous traffic by default does a 3 second learning preemption to allow
-the DUT to receive learning packets before a continuous test is performed. If
-a custom test case requires this learning be disabled, you can disable the option
-or modify the length of the learning by modifying the following settings.
-
-.. code-block:: console
-
- TRAFFICGEN_XENA_CONT_PORT_LEARNING_ENABLED = False
- TRAFFICGEN_XENA_CONT_PORT_LEARNING_DURATION = 3
-
-MoonGen
--------
-
-Installation
-~~~~~~~~~~~~
-
-MoonGen architecture overview and general installation instructions
-can be found here:
-
-https://github.com/emmericp/MoonGen
-
-* Note: Today, MoonGen with VSPERF only supports 10Gbps line speeds.
-
-For VSPERF use, MoonGen should be cloned from here (as opposed to the
-previously mentioned GitHub):
-
-git clone https://github.com/atheurer/lua-trafficgen
-
-and use the master branch:
-
-git checkout master
-
-VSPERF uses a particular Lua script with the MoonGen project:
-
-trafficgen.lua
-
-Follow MoonGen set up and execution instructions here:
-
-https://github.com/atheurer/lua-trafficgen/blob/master/README.md
-
-Note one will need to set up ssh login to not use passwords between the server
-running MoonGen and the device under test (running the VSPERF test
-infrastructure). This is because VSPERF on one server uses 'ssh' to
-configure and run MoonGen upon the other server.
-
-One can set up this ssh access by doing the following on both servers:
-
-.. code-block:: console
-
- ssh-keygen -b 2048 -t rsa
- ssh-copy-id <other server>
-
-Configuration
-~~~~~~~~~~~~~
-
-Connection information for MoonGen must be supplied inside the
-``10_custom.conf`` or ``03_custom.conf`` file. The following parameters must be
-set to allow for proper connections to the host with MoonGen.
-
-.. code-block:: console
-
- TRAFFICGEN_MOONGEN_HOST_IP_ADDR = ""
- TRAFFICGEN_MOONGEN_USER = ""
- TRAFFICGEN_MOONGEN_BASE_DIR = ""
- TRAFFICGEN_MOONGEN_PORTS = ""
- TRAFFICGEN_MOONGEN_LINE_SPEED_GBPS = ""