aboutsummaryrefslogtreecommitdiffstats
path: root/tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb')
-rw-r--r--tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb644
1 files changed, 644 insertions, 0 deletions
diff --git a/tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb b/tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb
new file mode 100644
index 00000000..10c59d84
--- /dev/null
+++ b/tools/lma/metrics/jupyter-notebooks/Analysis-Monitoring-K8S.ipynb
@@ -0,0 +1,644 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Metrics Analysis Notebook (k8s)\n",
+ "\n",
+ "#### Used to analyse / visualize the metrics, data fetched from prometheus (monitoring cluster)\n",
+ "\n",
+ "### Contributor: Aditya Srivastava <adityasrivastava301199@gmail.com>\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.dates as mdates\n",
+ "import numpy as np\n",
+ "\n",
+ "import datetime\n",
+ "import time\n",
+ "import requests\n",
+ "\n",
+ "from pprint import pprint\n",
+ "import json\n",
+ "from datetime import datetime"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "PROMETHEUS = 'http://10.10.120.211:30902/' #do not change, unless sure"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Helper Functions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#function to make DF out of query json\n",
+ "\n",
+ "def convert_to_df(res_json):\n",
+ "\n",
+ " data_list = res_json['data']['result']\n",
+ " res_df = pd.DataFrame()\n",
+ " if not data_list:\n",
+ " return res_df\n",
+ "\n",
+ " # making colums\n",
+ " headers = data_list[0]\n",
+ " for data in data_list:\n",
+ " metrics = data['metric']\n",
+ " for metric in metrics.keys():\n",
+ " res_df[metric] = np.nan\n",
+ " res_df['value'] = 0\n",
+ " \n",
+ " # filling the df\n",
+ " for data in data_list:\n",
+ " metrics = data['metric']\n",
+ " metrics['value'] = data['value'][-1]\n",
+ " res_df = res_df.append(metrics, ignore_index=True) \n",
+ "\n",
+ " return res_df\n",
+ "\n",
+ "def convert_to_df_range(res_json):\n",
+ "\n",
+ " data_list = res_json['data']['result']\n",
+ " res_df = pd.DataFrame()\n",
+ " if not data_list:\n",
+ " return res_df\n",
+ "\n",
+ " # filling the df\n",
+ " for data in data_list:\n",
+ " metrics = data['metric']\n",
+ " values = np.array(data['values'])\n",
+ " for time, value in values:\n",
+ " metrics['timestamp'] = time\n",
+ " metrics['value'] = value\n",
+ " res_df = res_df.append(metrics, ignore_index=True) \n",
+ "\n",
+ " return res_df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# functions to query\n",
+ "\n",
+ "def convert_to_timestamp(s):\n",
+ " return time.mktime(datetime.strptime(s, \"%Y-%m-%d %H:%M:%S\").timetuple())\n",
+ "\n",
+ "def query_current(params={}):\n",
+ " # input: params\n",
+ " # type: dict\n",
+ " # Example: {'query': 'container_cpu_user_seconds_total'}\n",
+ " \n",
+ " # Output: dict, loaded json response of the query\n",
+ "\n",
+ " res = requests.get(PROMETHEUS + '/api/v1/query', \n",
+ " params=params)\n",
+ " return json.loads(res.text)\n",
+ "\n",
+ "\n",
+ "def query_range(start, end, params={}, steps = '30s'):\n",
+ " # input: params\n",
+ " # type: dict\n",
+ " # Example: {'query': 'container_cpu_user_seconds_total'}\n",
+ " \n",
+ " # Output: dict, loaded json response of the query\n",
+ " params[\"start\"] = convert_to_timestamp(start)\n",
+ " params[\"end\"] = convert_to_timestamp(end)\n",
+ " params[\"step\"] = steps\n",
+ "\n",
+ " print(params)\n",
+ " \n",
+ " res = requests.get(PROMETHEUS + '/api/v1/query_range', \n",
+ " params=params,\n",
+ " )\n",
+ "\n",
+ " return json.loads(res.text)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Analysis Function"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### CPU"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# CPU Unused Cores\n",
+ "def unused_cores(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " return df\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_cpu_percent{exported_instance='\" + node + \"'}\"}\n",
+ "\n",
+ " target_cpu_usage_range = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(target_cpu_usage_range)\n",
+ "\n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " groups = df.groupby(['cpu'])\n",
+ " if verbose: print(\"Unused Cores :\")\n",
+ " unused_cores = []\n",
+ " for key, item in groups:\n",
+ " curr_df = item\n",
+ " idle_row = curr_df.loc[curr_df['type'] == 'idle']\n",
+ " if idle_row['value'].iloc[0] == '100':\n",
+ " if verbose: print(\"Core: \",key)\n",
+ " unused_cores.append(int(key))\n",
+ "\n",
+ " print(\"Number of unused cores: \", len(unused_cores))\n",
+ " return unused_cores\n",
+ "\n",
+ "\n",
+ "#CPU fully used cores\n",
+ "def fully_used_cores(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " return df\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_cpu_percent{exported_instance='\" + node + \"'}\"}\n",
+ "\n",
+ " target_cpu_usage_range = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(target_cpu_usage_range)\n",
+ "\n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " groups = df.groupby(['cpu'])\n",
+ " if verbose: print(\"Fully Used Cores :\")\n",
+ " fully_used_cores = []\n",
+ " for key, item in groups:\n",
+ " curr_df = item\n",
+ " idle_row = curr_df.loc[curr_df['type'] == 'idle']\n",
+ " if idle_row['value'].iloc[0] == '0':\n",
+ " if verbose: print(\"Core: \",key)\n",
+ " fully_used_cores.append(int(key))\n",
+ " print(\"Number of fully used cores: \", len(fully_used_cores))\n",
+ " return fully_used_cores\n",
+ "\n",
+ "\n",
+ "# CPU used cores plots\n",
+ "def plot_used_cores(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " \n",
+ " # \n",
+ " df['rate'] = df['value'].diff()\n",
+ "\n",
+ " fig = plt.figure(figsize=(24,6), facecolor='oldlace', edgecolor='red')\n",
+ " ax1 = fig.add_subplot(111)\n",
+ " ax1.title.set_text('CPU usage')\n",
+ " ax1.plot(df['epoch'], df['rate'])\n",
+ " return df\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ "\n",
+ " params = {'query' : \"collectd_cpu_percent{exported_instance='\" + node + \"'}\"}\n",
+ "\n",
+ " target_cpu_usage_range = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(target_cpu_usage_range)\n",
+ " \n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " groups = df.groupby(['cpu'])\n",
+ " used_cores = []\n",
+ "\n",
+ " for key, item in groups:\n",
+ " curr_df = item\n",
+ " idle_row = curr_df.loc[curr_df['type'] == 'idle']\n",
+ "\n",
+ " if idle_row['value'].iloc[0] != '100':\n",
+ " used_cores.append(key)\n",
+ " type_grps = curr_df.groupby('type')\n",
+ " fig = plt.figure(figsize=(24,6), facecolor='oldlace', edgecolor='red')\n",
+ "\n",
+ " for type_key, new_item in type_grps:\n",
+ "\n",
+ " if type_key == 'system':\n",
+ " ax1 = fig.add_subplot(131)\n",
+ " ax1.title.set_text(type_key)\n",
+ " ax1.plot(new_item['timestamp'], new_item['value'])\n",
+ " elif type_key == 'user':\n",
+ " ax2 = fig.add_subplot(132)\n",
+ " ax2.title.set_text(type_key)\n",
+ " ax2.plot(new_item['timestamp'], new_item['value'])\n",
+ " elif type_key == 'wait':\n",
+ " ax3 = fig.add_subplot(133)\n",
+ " ax3.title.set_text(type_key)\n",
+ " ax3.plot(new_item['timestamp'], new_item['value'])\n",
+ "\n",
+ " plt.suptitle('Used CPU Core {}'.format(key), fontsize=14)\n",
+ " plt.show()\n",
+ " print(\"Number of used cores: \", len(used_cores))\n",
+ " return used_cores"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Interface"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Interface Dropped (both type 1 and 2, i.e rx and tx)\n",
+ "#TODO: Change this to separate functions later\n",
+ "def interface_dropped(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " df_0 = df #TODO: Change this\n",
+ " df_1 = df #TODO: Change this\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_interface_if_dropped_0_total{exported_instance='\" + node + \"'}\"}\n",
+ "\n",
+ " interface_dropped_0 = query_range(start, end, params, steps)\n",
+ " df_0 = convert_to_df_range(interface_dropped_0)\n",
+ " \n",
+ " params = {'query' : \"collectd_interface_if_dropped_1_total{exported_instance='\" + node + \"'}\"}\n",
+ " interface_dropped_1 = query_range(start, end, params, steps)\n",
+ " df_1 = convert_to_df_range(interface_dropped_1)\n",
+ "\n",
+ " \n",
+ " #df_0 : interfaces_dropped_0_df\n",
+ " df_0 = df_0.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ "\n",
+ " #df_1 : interfaces_dropped_1_df\n",
+ " df_1 = df_1.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ "\n",
+ " groups_0 = df_0.groupby(['interface'])\n",
+ " groups_1 = df_1.groupby(['interface'])\n",
+ "\n",
+ " groups = [groups_0, groups_1]\n",
+ " dropped_interfaces= []\n",
+ " drop_type = 0\n",
+ " color = ['oldlace', 'mistyrose']\n",
+ " plot_iter = 111\n",
+ " for group in groups:\n",
+ " dropped = []\n",
+ "\n",
+ " for key, item in group:\n",
+ " curr_df = item\n",
+ " if np.any(curr_df['value'] == '1'):\n",
+ " dropped_row = curr_df.loc[curr_df['value'] == '1']\n",
+ " dropped.append([key, dropped_row['timestamp'].iloc[0]])\n",
+ " fig = plt.figure(figsize=(24,6), facecolor=color[drop_type], edgecolor='red')\n",
+ " ax = fig.add_subplot(plot_iter)\n",
+ " ax.title.set_text(\"Interface: {}\".format(key))\n",
+ " ax.plot(item['timestamp'], item['value'])\n",
+ " dropped_interfaces.append(dropped)\n",
+ " plt.suptitle('Interfaces Drop type {}'.format(drop_type), fontsize=14)\n",
+ " plt.show()\n",
+ " drop_type += 1\n",
+ " return dropped_interfaces\n",
+ "\n",
+ "\n",
+ "# Interface Errors (both type 1 and 2, i.e rx and tx)\n",
+ "#TODO: Change this to separate functions later\n",
+ "def interface_errors(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " df_0 = df #TODO: Change this\n",
+ " df_1 = df #TODO: Change this\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_interface_if_errors_0_total{exported_instance='\" + node + \"'}\"}\n",
+ " interfaces_errors_0 = query_range(start, end, params, steps)\n",
+ " df_0 = convert_to_df_range(interfaces_errors_0)\n",
+ " \n",
+ " params = {'query' : \"collectd_interface_if_errors_1_total{exported_instance='\" + node + \"'}\"}\n",
+ " interface_errors_1 = query_range(start, end, params, steps)\n",
+ " df_1 = convert_to_df_range(interface_errors_1)\n",
+ "\n",
+ " \n",
+ " #df_0 : interfaces_errors_0_df\n",
+ " df_0 = df_0.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ "\n",
+ " #df_1 : interfaces_dropped_1_df\n",
+ " df_1 = df_1.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ "\n",
+ " groups_0 = df_0.groupby(['interface'])\n",
+ " groups_1 = df_1.groupby(['interface'])\n",
+ "\n",
+ " groups = [groups_0, groups_1]\n",
+ " err_interfaces= []\n",
+ " err_type = 0\n",
+ " color = ['oldlace', 'mistyrose']\n",
+ " for group in groups:\n",
+ " errors = []\n",
+ "\n",
+ " for key, item in group:\n",
+ " curr_df = item\n",
+ "\n",
+ " if np.any(curr_df['value'] == '1'):\n",
+ " err_row = curr_df.loc[curr_df['value'] == '1']\n",
+ " erros.append([key, err_row['timestamp'].iloc[0]])\n",
+ "\n",
+ " fig = plt.figure(figsize=(24,6), facecolor=color[err_type], edgecolor='red')\n",
+ " ax = fig.add_subplot(111)\n",
+ " ax.title.set_text(\"Interface: {}\".format(key))\n",
+ " ax.plot(item['timestamp'], item['value'])\n",
+ "\n",
+ " err_interfaces.append(errors)\n",
+ " plt.suptitle('Interfaces Error type {}'.format(err_type), fontsize=14)\n",
+ " plt.show()\n",
+ " err_type += 1\n",
+ "\n",
+ " return err_interfaces"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### RDT "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# L3 cache bytes\n",
+ "def plot_rdt_bytes(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ "\n",
+ " params = {'query' : \"collectd_intel_rdt_bytes{exported_instance='\" + node + \"'}\"}\n",
+ " intel_rdt_bytes = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(intel_rdt_bytes)\n",
+ "\n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " groups = df.groupby(['intel_rdt'])\n",
+ " for key, item in groups:\n",
+ " curr_df = item\n",
+ " fig = plt.figure(figsize=(24,6), facecolor='oldlace', edgecolor='red')\n",
+ " ax1 = fig.add_subplot(111)\n",
+ " ax1.title.set_text(\"Intel RDT Number: {}\".format(key))\n",
+ " ax1.plot(item['timestamp'], item['value'])\n",
+ " plt.show()\n",
+ " return\n",
+ "\n",
+ "\n",
+ "# L3 IPC values\n",
+ "def plot_rdt_ipc(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_intel_rdt_ipc{exported_instance='\" + node + \"'}\"}\n",
+ " intel_rdt_ipc = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(intel_rdt_ipc)\n",
+ "\n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " groups = df.groupby(['intel_rdt'])\n",
+ " for key, item in groups:\n",
+ " curr_df = item\n",
+ " fig = plt.figure(figsize=(24,6), facecolor='oldlace', edgecolor='red')\n",
+ " ax1 = fig.add_subplot(111)\n",
+ " ax1.title.set_text(\"Intel RDT Number: {}, IPC value\".format(key))\n",
+ " ax1.plot(item['timestamp'], item['value'])\n",
+ " plt.show()\n",
+ " return\n",
+ "\n",
+ "\n",
+ "# memeory bandwidtdh\n",
+ "def get_rdt_memory_bandwidth(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " else:\n",
+ "\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_intel_rdt_memory_bandwidth_total{exported_instance='\" + node + \"'}\"}\n",
+ " intel_rdt_mem_bw = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(intel_rdt_mem_bw)\n",
+ "\n",
+ " df = df.drop(['__name__', 'instance', 'job'], axis = 1)\n",
+ " \n",
+ " return df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Memory"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "def get_memory_usage(start=None, end=None, node=None, steps='15s', csv=None, verbose=False):\n",
+ " \n",
+ " if csv is not None:\n",
+ " df = pd.read_csv(csv)\n",
+ " else:\n",
+ " if start is None or end is None or node is None:\n",
+ " return \"Start, end and Node name required when fetching from prometheus\"\n",
+ " \n",
+ " params = {'query' : \"collectd_memory{exported_instance='\" + node + \"'} / (1024*1024*1024) \"} \n",
+ " target_memory_usage_range = query_range(start, end, params, steps)\n",
+ " df = convert_to_df_range(target_memory_usage_range)\n",
+ "\n",
+ " df = df.drop(['instance', 'job'], axis = 1)\n",
+ " return df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Testing Zone"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": false
+ },
+ "outputs": [],
+ "source": [
+ "# prom fetch\n",
+ "cores = unused_cores('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "print(cores)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Usage / Examples\n",
+ "\n",
+ "\n",
+ "##### CPU \n",
+ "\n",
+ "- For calling cpu unsued cores\n",
+ "\n",
+ "```py\n",
+ "# Fetching from prometheus\n",
+ "cores = unused_cores('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "\n",
+ "```\n",
+ "\n",
+ "- For finding fully used cores\n",
+ "\n",
+ "```py\n",
+ "# Fetching from prometheus\n",
+ "fully_used = fully_used_cores('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "\n",
+ "```\n",
+ "\n",
+ "- Similarly for plotting used cores\n",
+ "\n",
+ "```py\n",
+ "# Fetching\n",
+ "plot_used_cores('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "\n",
+ "#csv\n",
+ "# use Analysis-Monitoring-Local Notebook for correct analysis \n",
+ "plot_used_cores(csv='metrics_data/cpu-0/cpu-user-2020-06-02')\n",
+ "\n",
+ "```\n",
+ "\n",
+ "\n",
+ "##### Interface\n",
+ "\n",
+ "- Interface Dropped \n",
+ "\n",
+ "```py\n",
+ "# Fetching from prom\n",
+ "dropped_interfaces = interface_dropped('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "\n",
+ "```\n",
+ "\n",
+ "- Interface Errors\n",
+ "\n",
+ "```py\n",
+ "# Fetching from prom\n",
+ "interface_errors('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "```\n",
+ "\n",
+ "##### RDT\n",
+ "\n",
+ "- Plot bytes\n",
+ "\n",
+ "```py\n",
+ "# fetch\n",
+ "plot_rdt_bytes('2020-07-31 08:00:12', '2020-07-31 08:01:12','pod12-node4')\n",
+ "```\n",
+ "\n",
+ "- Plot ipc values\n",
+ "\n",
+ "```py\n",
+ "#fetch\n",
+ "plot_rdt_ipc('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "```\n",
+ "\n",
+ "- Memory bandwidth\n",
+ "\n",
+ "```py\n",
+ "#fetch\n",
+ "get_rdt_memory_bandwidth('2020-07-31 08:00:12', '2020-07-31 08:01:12', 'pod12-node4')\n",
+ "```"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}