diff options
-rw-r--r-- | storperf/tests/utilities/math.py | 66 | ||||
-rw-r--r-- | storperf/utilities/math.py | 52 |
2 files changed, 118 insertions, 0 deletions
diff --git a/storperf/tests/utilities/math.py b/storperf/tests/utilities/math.py new file mode 100644 index 0000000..c78538d --- /dev/null +++ b/storperf/tests/utilities/math.py @@ -0,0 +1,66 @@ +############################################################################## +# Copyright (c) 2016 CENGN and others. +# +# All rights reserved. This program and the accompanying materials +# are made available under the terms of the Apache License, Version 2.0 +# which accompanies this distribution, and is available at +# http://www.apache.org/licenses/LICENSE-2.0 +############################################################################## +import unittest +from storperf.utilities.math import math + +class MathTest(unittest.TestCase): + + def setUp(self): + unittest.TestCase.setUp(self) + pass + + def test_slope_empty_series(self): + expected = 0 + actual = math.slope([]) + self.assertEqual(expected, actual) + + def test_slope_integer_series(self): + expected = 1.4 + actual = math.slope([[1,6], [2,5], [3,7], [4,10]]) + self.assertEqual(expected, actual) + + def test_slope_decimal_series(self): + expected = 1.4 + actual = math.slope([[1.0,6.0], [2.0,5.0], [3.0,7.0], [4.0,10.0]]) + self.assertEqual(expected, actual) + + def test_slope_decimal_integer_mix(self): + expected = 1.4 + actual = math.slope([[1.0,6], [2,5.0], [3,7], [4.0,10]]) + self.assertEqual(expected, actual) + + def test_slope_negative_y_series(self): + expected = 2 + actual = math.slope([[1.0,-2], [2,2], [3,2]]) + self.assertEqual(expected, actual) + + def test_slope_negative_x_series(self): + expected = 1.4 + actual = math.slope([[-24,6.0], [-23,5], [-22,7.0], [-21,10]]) + self.assertEqual(expected, actual) + + def test_slope_out_of_order_series(self): + expected = 1.4 + actual = math.slope([[2,5.0], [4,10], [3.0,7], [1,6]]) + self.assertEqual(expected, actual) + + def test_slope_0_in_y(self): + expected = -0.5 + actual = math.slope([[15.5,1], [16.5,0], [17.5,0]]) + self.assertEqual(expected, actual) + + def test_slope_0_in_x(self): + expected = 1.4 + actual = math.slope([[0,6.0], [1,5], [2,7], [3,10]]) + self.assertEqual(expected, actual) + + def test_slope_0_in_x_and_y(self): + expected = 1.5 + actual = math.slope([[0.0,0], [1,1], [2,3]]) + self.assertEqual(expected, actual) diff --git a/storperf/utilities/math.py b/storperf/utilities/math.py new file mode 100644 index 0000000..3b124cd --- /dev/null +++ b/storperf/utilities/math.py @@ -0,0 +1,52 @@ +############################################################################## +# Copyright (c) 2016 CENGN and others. +# +# All rights reserved. This program and the accompanying materials +# are made available under the terms of the Apache License, Version 2.0 +# which accompanies this distribution, and is available at +# http://www.apache.org/licenses/LICENSE-2.0 +############################################################################## + +class math(object): + + @staticmethod + def slope(data_series): + """ + This function implements the linear least squares algorithm described in the following wikipedia article + https://en.wikipedia.org/wiki/Linear_least_squares_(mathematics) + in the case of m equations (provided by m data points) and 2 unknown variables (x and + y, which represent the time and the Volume performance variable being + tested e.g. IOPS, latency...) + """ + + if len(data_series)==0: #In the particular case of an empty data series + beta2 = 0 + + else: #The general case + m = len(data_series) #given a [[x1,y1], [x2,y2], ..., [xm,ym]] data series + data_series[0][0] = float(data_series[0][0]) #To make sure at least one element is a float number so the result of the algorithm be a float number + + """ + It consists in solving the normal equations system (2 equations, 2 unknowns) + by calculating the value of beta2 (slope). The formula of beta1 (the y-intercept) + is given as a comment in case it is needed later. + """ + sum_xi = 0 + sum_xi_sq = 0 + sum_yi_xi = 0 + sum_yi = 0 + for i in range(0, m): + xi = data_series[i][0] + yi = data_series[i][1] + + sum_xi += xi + sum_xi_sq += xi**2 + sum_yi_xi += xi*yi + sum_yi += yi + + beta2 = (sum_yi*sum_xi - m*sum_yi_xi)/(sum_xi**2 - m*sum_xi_sq) #The slope + #beta1 = (sum_yi_xi - beta2*sum_xi_sq)/sum_xi #The y-intercept if needed + + return beta2 + + |