diff options
author | Tim Rault <tim.rault@cengn.ca> | 2016-07-15 16:32:51 -0400 |
---|---|---|
committer | Tim Rault <tim.rault@cengn.ca> | 2016-07-15 16:41:16 -0400 |
commit | aa20b986cebf031489f4280988b4574a9acbc647 (patch) | |
tree | 354c6b521d83735a1be29183b447d3b35bf320ac /tests/utilities_tests/math_range_test.py | |
parent | 2227414bd57f4b7f5f275d915fa8f6a2aa21f8f7 (diff) |
Add Steady State Detection module
Added a Steady State Detection module containing a steady_state(data_series)
function that is able to return a boolean indicating wether or not steady
state is reached with the data_series being passed.
This module requires a data_treatment(data_series) and an average(data_series)
modules that have been added in this commit as well. The data treatment function
aims at formatting the data series that is passed to the high level steady_state
function to reach the requirement of each sub-module (slope, average and range).
Modified the Slope and Range functions so they return None when passed an empty
data series instead of 0 which was wrong. Modified the corresponding test cases.
Modified the math_range_test.py file to fix a bug in the 2 last tests.
Change-Id: I9c3854cb0a21cc37b0787b8afca0821eefaa203d
JIRA: STORPERF-60
JIRA: STORPERF-59
JIRA: STORPERF-61
JIRA: STORPERF-62
Signed-off-by: Tim Rault <tim.rault@cengn.ca>
Diffstat (limited to 'tests/utilities_tests/math_range_test.py')
-rw-r--r-- | tests/utilities_tests/math_range_test.py | 48 |
1 files changed, 24 insertions, 24 deletions
diff --git a/tests/utilities_tests/math_range_test.py b/tests/utilities_tests/math_range_test.py index 6484752..90519e7 100644 --- a/tests/utilities_tests/math_range_test.py +++ b/tests/utilities_tests/math_range_test.py @@ -9,7 +9,7 @@ from random import uniform, randrange import unittest -from storperf.utilities import math as math +from storperf.utilities import math as Range class MathRangeTest(unittest.TestCase): @@ -18,56 +18,56 @@ class MathRangeTest(unittest.TestCase): unittest.TestCase.setUp(self) def test_empty_series(self): - expected = 0 + expected = None data_series = [] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_integer_series(self): expected = 11946 data_series = [5, 351, 847, 2, 1985, 18, 96, 389, 687, 1, 11947, 758, 155] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_1_decimal(self): expected = 778595.5 data_series = [736.4, 9856.4, 684.2, 0.3, 0.9, 778595.8] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_2_decimals(self): expected = 5693.47 data_series = [51.36, 78.40, 1158.24, 5.50, 0.98, 5694.45] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_3_decimals(self): expected = 992.181 data_series = [4.562, 12.582, 689.452, 135.162, 996.743, 65.549, 36.785] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_4_decimals(self): expected = 122985.3241 data_series = [39.4785, 896.7845, 11956.3654, 44.2398, 6589.7134, 0.3671, 122985.6912] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_5_decimals(self): expected = 8956208.84494 data_series = [12.78496, 55.91275, 668.94378, 550396.5671, 512374.9999, 8956221.6299] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_series_10_decimals(self): expected = 5984.507397972699 data_series = [1.1253914785, 5985.6327894512, 256.1875693287, 995.8497623415] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_mix(self): @@ -75,46 +75,46 @@ class MathRangeTest(unittest.TestCase): data_series = [60785.9962, 899.4, 78.66, 69.58, 4.93795, 587.195486, 96.7694536, 5.13755964, 33.333333334, 60786.5624872199] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_float_integer_mix(self): expected = 460781.05825 data_series = [460785.9962, 845.634, 24.1, 69.58, 89, 4.93795] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_negative_values(self): expected = 596.78163 data_series = [-4.655, -33.3334, -596.78422, -0.00259, -66.785] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_negative_positive_mix(self): expected = 58.859500000000004 data_series = [6.85698, -2.8945, 0, -0.15, 55.965] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_single_element(self): expected = 0 data_series = [2.265] - actual = math.range_value(data_series) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_10000_values_processing(self): expected = 28001.068 - data_series = [uniform(-10000, 10000) for i in xrange(10000)] - data_series.insert(randrange(len(data_series) + 1), 15000.569) - data_series.insert(randrange(len(data_series) + 1), -13000.499) - actual = math.range_value(data_series) + data_series = [uniform(-10000, 10000) for _ in range(10000)] + data_series.insert(randrange(len(data_series)), 15000.569) + data_series.insert(randrange(len(data_series)), -13000.499) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) def test_processing_100_values_100_times(self): expected = 35911.3134 - for index in range(1, 100): - data_series = [uniform(-10000, 10000) for i in xrange(100)] - data_series.insert(randrange(len(data_series) + 1), 16956.3334) - data_series.insert(randrange(len(data_series) + 1), -18954.98) - actual = math.range_value(data_series) + for _ in range(1, 100): + data_series = [uniform(-10000, 10000) for _ in range(100)] + data_series.insert(randrange(len(data_series)), 16956.3334) + data_series.insert(randrange(len(data_series)), -18954.98) + actual = Range.range_value(data_series) self.assertEqual(expected, actual) |