summaryrefslogtreecommitdiffstats
path: root/tests/utilities_tests/math_range_test.py
diff options
context:
space:
mode:
authorTim Rault <tim.rault@cengn.ca>2016-07-15 16:32:51 -0400
committerTim Rault <tim.rault@cengn.ca>2016-07-15 16:41:16 -0400
commitaa20b986cebf031489f4280988b4574a9acbc647 (patch)
tree354c6b521d83735a1be29183b447d3b35bf320ac /tests/utilities_tests/math_range_test.py
parent2227414bd57f4b7f5f275d915fa8f6a2aa21f8f7 (diff)
Add Steady State Detection module
Added a Steady State Detection module containing a steady_state(data_series) function that is able to return a boolean indicating wether or not steady state is reached with the data_series being passed. This module requires a data_treatment(data_series) and an average(data_series) modules that have been added in this commit as well. The data treatment function aims at formatting the data series that is passed to the high level steady_state function to reach the requirement of each sub-module (slope, average and range). Modified the Slope and Range functions so they return None when passed an empty data series instead of 0 which was wrong. Modified the corresponding test cases. Modified the math_range_test.py file to fix a bug in the 2 last tests. Change-Id: I9c3854cb0a21cc37b0787b8afca0821eefaa203d JIRA: STORPERF-60 JIRA: STORPERF-59 JIRA: STORPERF-61 JIRA: STORPERF-62 Signed-off-by: Tim Rault <tim.rault@cengn.ca>
Diffstat (limited to 'tests/utilities_tests/math_range_test.py')
-rw-r--r--tests/utilities_tests/math_range_test.py48
1 files changed, 24 insertions, 24 deletions
diff --git a/tests/utilities_tests/math_range_test.py b/tests/utilities_tests/math_range_test.py
index 6484752..90519e7 100644
--- a/tests/utilities_tests/math_range_test.py
+++ b/tests/utilities_tests/math_range_test.py
@@ -9,7 +9,7 @@
from random import uniform, randrange
import unittest
-from storperf.utilities import math as math
+from storperf.utilities import math as Range
class MathRangeTest(unittest.TestCase):
@@ -18,56 +18,56 @@ class MathRangeTest(unittest.TestCase):
unittest.TestCase.setUp(self)
def test_empty_series(self):
- expected = 0
+ expected = None
data_series = []
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_integer_series(self):
expected = 11946
data_series = [5, 351, 847, 2, 1985, 18,
96, 389, 687, 1, 11947, 758, 155]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_1_decimal(self):
expected = 778595.5
data_series = [736.4, 9856.4, 684.2, 0.3, 0.9, 778595.8]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_2_decimals(self):
expected = 5693.47
data_series = [51.36, 78.40, 1158.24, 5.50, 0.98, 5694.45]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_3_decimals(self):
expected = 992.181
data_series = [4.562, 12.582, 689.452,
135.162, 996.743, 65.549, 36.785]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_4_decimals(self):
expected = 122985.3241
data_series = [39.4785, 896.7845, 11956.3654,
44.2398, 6589.7134, 0.3671, 122985.6912]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_5_decimals(self):
expected = 8956208.84494
data_series = [12.78496, 55.91275, 668.94378,
550396.5671, 512374.9999, 8956221.6299]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_series_10_decimals(self):
expected = 5984.507397972699
data_series = [1.1253914785, 5985.6327894512,
256.1875693287, 995.8497623415]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_mix(self):
@@ -75,46 +75,46 @@ class MathRangeTest(unittest.TestCase):
data_series = [60785.9962, 899.4, 78.66, 69.58, 4.93795,
587.195486, 96.7694536, 5.13755964,
33.333333334, 60786.5624872199]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_float_integer_mix(self):
expected = 460781.05825
data_series = [460785.9962, 845.634, 24.1, 69.58, 89, 4.93795]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_negative_values(self):
expected = 596.78163
data_series = [-4.655, -33.3334, -596.78422, -0.00259, -66.785]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_negative_positive_mix(self):
expected = 58.859500000000004
data_series = [6.85698, -2.8945, 0, -0.15, 55.965]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_single_element(self):
expected = 0
data_series = [2.265]
- actual = math.range_value(data_series)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_10000_values_processing(self):
expected = 28001.068
- data_series = [uniform(-10000, 10000) for i in xrange(10000)]
- data_series.insert(randrange(len(data_series) + 1), 15000.569)
- data_series.insert(randrange(len(data_series) + 1), -13000.499)
- actual = math.range_value(data_series)
+ data_series = [uniform(-10000, 10000) for _ in range(10000)]
+ data_series.insert(randrange(len(data_series)), 15000.569)
+ data_series.insert(randrange(len(data_series)), -13000.499)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)
def test_processing_100_values_100_times(self):
expected = 35911.3134
- for index in range(1, 100):
- data_series = [uniform(-10000, 10000) for i in xrange(100)]
- data_series.insert(randrange(len(data_series) + 1), 16956.3334)
- data_series.insert(randrange(len(data_series) + 1), -18954.98)
- actual = math.range_value(data_series)
+ for _ in range(1, 100):
+ data_series = [uniform(-10000, 10000) for _ in range(100)]
+ data_series.insert(randrange(len(data_series)), 16956.3334)
+ data_series.insert(randrange(len(data_series)), -18954.98)
+ actual = Range.range_value(data_series)
self.assertEqual(expected, actual)