summaryrefslogtreecommitdiffstats
path: root/src/ceph/doc/dev/osd_internals
diff options
context:
space:
mode:
Diffstat (limited to 'src/ceph/doc/dev/osd_internals')
-rw-r--r--src/ceph/doc/dev/osd_internals/backfill_reservation.rst38
-rw-r--r--src/ceph/doc/dev/osd_internals/erasure_coding.rst82
-rw-r--r--src/ceph/doc/dev/osd_internals/erasure_coding/developer_notes.rst223
-rw-r--r--src/ceph/doc/dev/osd_internals/erasure_coding/ecbackend.rst207
-rw-r--r--src/ceph/doc/dev/osd_internals/erasure_coding/jerasure.rst33
-rw-r--r--src/ceph/doc/dev/osd_internals/erasure_coding/proposals.rst385
-rw-r--r--src/ceph/doc/dev/osd_internals/index.rst10
-rw-r--r--src/ceph/doc/dev/osd_internals/last_epoch_started.rst60
-rw-r--r--src/ceph/doc/dev/osd_internals/log_based_pg.rst206
-rw-r--r--src/ceph/doc/dev/osd_internals/map_message_handling.rst131
-rw-r--r--src/ceph/doc/dev/osd_internals/osd_overview.rst106
-rw-r--r--src/ceph/doc/dev/osd_internals/osd_throttles.rst93
-rw-r--r--src/ceph/doc/dev/osd_internals/osd_throttles.txt21
-rw-r--r--src/ceph/doc/dev/osd_internals/pg.rst31
-rw-r--r--src/ceph/doc/dev/osd_internals/pg_removal.rst56
-rw-r--r--src/ceph/doc/dev/osd_internals/pgpool.rst22
-rw-r--r--src/ceph/doc/dev/osd_internals/recovery_reservation.rst75
-rw-r--r--src/ceph/doc/dev/osd_internals/scrub.rst30
-rw-r--r--src/ceph/doc/dev/osd_internals/snaps.rst128
-rw-r--r--src/ceph/doc/dev/osd_internals/watch_notify.rst81
-rw-r--r--src/ceph/doc/dev/osd_internals/wbthrottle.rst28
21 files changed, 2046 insertions, 0 deletions
diff --git a/src/ceph/doc/dev/osd_internals/backfill_reservation.rst b/src/ceph/doc/dev/osd_internals/backfill_reservation.rst
new file mode 100644
index 0000000..cf9dab4
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/backfill_reservation.rst
@@ -0,0 +1,38 @@
+====================
+Backfill Reservation
+====================
+
+When a new osd joins a cluster, all pgs containing it must eventually backfill
+to it. If all of these backfills happen simultaneously, it would put excessive
+load on the osd. osd_max_backfills limits the number of outgoing or
+incoming backfills on a single node. The maximum number of outgoing backfills is
+osd_max_backfills. The maximum number of incoming backfills is
+osd_max_backfills. Therefore there can be a maximum of osd_max_backfills * 2
+simultaneous backfills on one osd.
+
+Each OSDService now has two AsyncReserver instances: one for backfills going
+from the osd (local_reserver) and one for backfills going to the osd
+(remote_reserver). An AsyncReserver (common/AsyncReserver.h) manages a queue
+by priority of waiting items and a set of current reservation holders. When a
+slot frees up, the AsyncReserver queues the Context* associated with the next
+item on the highest priority queue in the finisher provided to the constructor.
+
+For a primary to initiate a backfill, it must first obtain a reservation from
+its own local_reserver. Then, it must obtain a reservation from the backfill
+target's remote_reserver via a MBackfillReserve message. This process is
+managed by substates of Active and ReplicaActive (see the substates of Active
+in PG.h). The reservations are dropped either on the Backfilled event, which
+is sent on the primary before calling recovery_complete and on the replica on
+receipt of the BackfillComplete progress message), or upon leaving Active or
+ReplicaActive.
+
+It's important that we always grab the local reservation before the remote
+reservation in order to prevent a circular dependency.
+
+We want to minimize the risk of data loss by prioritizing the order in
+which PGs are recovered. The highest priority is log based recovery
+(OSD_RECOVERY_PRIORITY_MAX) since this must always complete before
+backfill can start. The next priority is backfill of degraded PGs and
+is a function of the degradation. A backfill for a PG missing two
+replicas will have a priority higher than a backfill for a PG missing
+one replica. The lowest priority is backfill of non-degraded PGs.
diff --git a/src/ceph/doc/dev/osd_internals/erasure_coding.rst b/src/ceph/doc/dev/osd_internals/erasure_coding.rst
new file mode 100644
index 0000000..7263cc3
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/erasure_coding.rst
@@ -0,0 +1,82 @@
+==============================
+Erasure Coded Placement Groups
+==============================
+
+Glossary
+--------
+
+*chunk*
+ when the encoding function is called, it returns chunks of the same
+ size. Data chunks which can be concatenated to reconstruct the original
+ object and coding chunks which can be used to rebuild a lost chunk.
+
+*chunk rank*
+ the index of a chunk when returned by the encoding function. The
+ rank of the first chunk is 0, the rank of the second chunk is 1
+ etc.
+
+*stripe*
+ when an object is too large to be encoded with a single call,
+ each set of chunks created by a call to the encoding function is
+ called a stripe.
+
+*shard|strip*
+ an ordered sequence of chunks of the same rank from the same
+ object. For a given placement group, each OSD contains shards of
+ the same rank. When dealing with objects that are encoded with a
+ single operation, *chunk* is sometime used instead of *shard*
+ because the shard is made of a single chunk. The *chunks* in a
+ *shard* are ordered according to the rank of the stripe they belong
+ to.
+
+*K*
+ the number of data *chunks*, i.e. the number of *chunks* in which the
+ original object is divided. For instance if *K* = 2 a 10KB object
+ will be divided into *K* objects of 5KB each.
+
+*M*
+ the number of coding *chunks*, i.e. the number of additional *chunks*
+ computed by the encoding functions. If there are 2 coding *chunks*,
+ it means 2 OSDs can be out without losing data.
+
+*N*
+ the number of data *chunks* plus the number of coding *chunks*,
+ i.e. *K+M*.
+
+*rate*
+ the proportion of the *chunks* that contains useful information, i.e. *K/N*.
+ For instance, for *K* = 9 and *M* = 3 (i.e. *K+M* = *N* = 12) the rate is
+ *K* = 9 / *N* = 12 = 0.75, i.e. 75% of the chunks contain useful information.
+
+The definitions are illustrated as follows (PG stands for placement group):
+::
+
+ OSD 40 OSD 33
+ +-------------------------+ +-------------------------+
+ | shard 0 - PG 10 | | shard 1 - PG 10 |
+ |+------ object O -------+| |+------ object O -------+|
+ ||+---------------------+|| ||+---------------------+||
+ stripe||| chunk 0 ||| ||| chunk 1 ||| ...
+ 0 ||| stripe 0 ||| ||| stripe 0 |||
+ ||+---------------------+|| ||+---------------------+||
+ ||+---------------------+|| ||+---------------------+||
+ stripe||| chunk 0 ||| ||| chunk 1 ||| ...
+ 1 ||| stripe 1 ||| ||| stripe 1 |||
+ ||+---------------------+|| ||+---------------------+||
+ ||+---------------------+|| ||+---------------------+||
+ stripe||| chunk 0 ||| ||| chunk 1 ||| ...
+ 2 ||| stripe 2 ||| ||| stripe 2 |||
+ ||+---------------------+|| ||+---------------------+||
+ |+-----------------------+| |+-----------------------+|
+ | ... | | ... |
+ +-------------------------+ +-------------------------+
+
+Table of content
+----------------
+
+.. toctree::
+ :maxdepth: 1
+
+ Developer notes <erasure_coding/developer_notes>
+ Jerasure plugin <erasure_coding/jerasure>
+ High level design document <erasure_coding/ecbackend>
diff --git a/src/ceph/doc/dev/osd_internals/erasure_coding/developer_notes.rst b/src/ceph/doc/dev/osd_internals/erasure_coding/developer_notes.rst
new file mode 100644
index 0000000..770ff4a
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/erasure_coding/developer_notes.rst
@@ -0,0 +1,223 @@
+============================
+Erasure Code developer notes
+============================
+
+Introduction
+------------
+
+Each chapter of this document explains an aspect of the implementation
+of the erasure code within Ceph. It is mostly based on examples being
+explained to demonstrate how things work.
+
+Reading and writing encoded chunks from and to OSDs
+---------------------------------------------------
+
+An erasure coded pool stores each object as K+M chunks. It is divided
+into K data chunks and M coding chunks. The pool is configured to have
+a size of K+M so that each chunk is stored in an OSD in the acting
+set. The rank of the chunk is stored as an attribute of the object.
+
+Let's say an erasure coded pool is created to use five OSDs ( K+M =
+5 ) and sustain the loss of two of them ( M = 2 ).
+
+When the object *NYAN* containing *ABCDEFGHI* is written to it, the
+erasure encoding function splits the content in three data chunks,
+simply by dividing the content in three : the first contains *ABC*,
+the second *DEF* and the last *GHI*. The content will be padded if the
+content length is not a multiple of K. The function also creates two
+coding chunks : the fourth with *YXY* and the fifth with *GQC*. Each
+chunk is stored in an OSD in the acting set. The chunks are stored in
+objects that have the same name ( *NYAN* ) but reside on different
+OSDs. The order in which the chunks were created must be preserved and
+is stored as an attribute of the object ( shard_t ), in addition to its
+name. Chunk *1* contains *ABC* and is stored on *OSD5* while chunk *4*
+contains *YXY* and is stored on *OSD3*.
+
+::
+
+ +-------------------+
+ name | NYAN |
+ +-------------------+
+ content | ABCDEFGHI |
+ +--------+----------+
+ |
+ |
+ v
+ +------+------+
+ +---------------+ encode(3,2) +-----------+
+ | +--+--+---+---+ |
+ | | | | |
+ | +-------+ | +-----+ |
+ | | | | |
+ +--v---+ +--v---+ +--v---+ +--v---+ +--v---+
+ name | NYAN | | NYAN | | NYAN | | NYAN | | NYAN |
+ +------+ +------+ +------+ +------+ +------+
+ shard | 1 | | 2 | | 3 | | 4 | | 5 |
+ +------+ +------+ +------+ +------+ +------+
+ content | ABC | | DEF | | GHI | | YXY | | QGC |
+ +--+---+ +--+---+ +--+---+ +--+---+ +--+---+
+ | | | | |
+ | | | | |
+ | | +--+---+ | |
+ | | | OSD1 | | |
+ | | +------+ | |
+ | | +------+ | |
+ | +------>| OSD2 | | |
+ | +------+ | |
+ | +------+ | |
+ | | OSD3 |<----+ |
+ | +------+ |
+ | +------+ |
+ | | OSD4 |<--------------+
+ | +------+
+ | +------+
+ +----------------->| OSD5 |
+ +------+
+
+
+
+
+When the object *NYAN* is read from the erasure coded pool, the
+decoding function reads three chunks : chunk *1* containing *ABC*,
+chunk *3* containing *GHI* and chunk *4* containing *YXY* and rebuild
+the original content of the object *ABCDEFGHI*. The decoding function
+is informed that the chunks *2* and *5* are missing ( they are called
+*erasures* ). The chunk *5* could not be read because the *OSD4* is
+*out*.
+
+The decoding function could be called as soon as three chunks are
+read : *OSD2* was the slowest and its chunk does not need to be taken into
+account. This optimization is not implemented in Firefly.
+
+::
+
+ +-------------------+
+ name | NYAN |
+ +-------------------+
+ content | ABCDEFGHI |
+ +--------+----------+
+ ^
+ |
+ |
+ +------+------+
+ | decode(3,2) |
+ | erasures 2,5|
+ +-------------->| |
+ | +-------------+
+ | ^ ^
+ | | +-----+
+ | | |
+ +--+---+ +------+ +--+---+ +--+---+
+ name | NYAN | | NYAN | | NYAN | | NYAN |
+ +------+ +------+ +------+ +------+
+ shard | 1 | | 2 | | 3 | | 4 |
+ +------+ +------+ +------+ +------+
+ content | ABC | | DEF | | GHI | | YXY |
+ +--+---+ +--+---+ +--+---+ +--+---+
+ ^ . ^ ^
+ | TOO . | |
+ | SLOW . +--+---+ |
+ | ^ | OSD1 | |
+ | | +------+ |
+ | | +------+ |
+ | +-------| OSD2 | |
+ | +------+ |
+ | +------+ |
+ | | OSD3 |-----+
+ | +------+
+ | +------+
+ | | OSD4 | OUT
+ | +------+
+ | +------+
+ +------------------| OSD5 |
+ +------+
+
+
+Erasure code library
+--------------------
+
+Using `Reed-Solomon <https://en.wikipedia.org/wiki/Reed_Solomon>`_,
+with parameters K+M, object O is encoded by dividing it into chunks O1,
+O2, ... OM and computing coding chunks P1, P2, ... PK. Any K chunks
+out of the available K+M chunks can be used to obtain the original
+object. If data chunk O2 or coding chunk P2 are lost, they can be
+repaired using any K chunks out of the K+M chunks. If more than M
+chunks are lost, it is not possible to recover the object.
+
+Reading the original content of object O can be a simple
+concatenation of O1, O2, ... OM, because the plugins are using
+`systematic codes
+<http://en.wikipedia.org/wiki/Systematic_code>`_. Otherwise the chunks
+must be given to the erasure code library *decode* method to retrieve
+the content of the object.
+
+Performance depend on the parameters to the encoding functions and
+is also influenced by the packet sizes used when calling the encoding
+functions ( for Cauchy or Liberation for instance ): smaller packets
+means more calls and more overhead.
+
+Although Reed-Solomon is provided as a default, Ceph uses it via an
+`abstract API <https://github.com/ceph/ceph/blob/v0.78/src/erasure-code/ErasureCodeInterface.h>`_ designed to
+allow each pool to choose the plugin that implements it using
+key=value pairs stored in an `erasure code profile`_.
+
+.. _erasure code profile: ../../../erasure-coded-pool
+
+::
+
+ $ ceph osd erasure-code-profile set myprofile \
+ crush-failure-domain=osd
+ $ ceph osd erasure-code-profile get myprofile
+ directory=/usr/lib/ceph/erasure-code
+ k=2
+ m=1
+ plugin=jerasure
+ technique=reed_sol_van
+ crush-failure-domain=osd
+ $ ceph osd pool create ecpool 12 12 erasure myprofile
+
+The *plugin* is dynamically loaded from *directory* and expected to
+implement the *int __erasure_code_init(char *plugin_name, char *directory)* function
+which is responsible for registering an object derived from *ErasureCodePlugin*
+in the registry. The `ErasureCodePluginExample <https://github.com/ceph/ceph/blob/v0.78/src/test/erasure-code/ErasureCodePluginExample.cc>`_ plugin reads:
+
+::
+
+ ErasureCodePluginRegistry &instance =
+ ErasureCodePluginRegistry::instance();
+ instance.add(plugin_name, new ErasureCodePluginExample());
+
+The *ErasureCodePlugin* derived object must provide a factory method
+from which the concrete implementation of the *ErasureCodeInterface*
+object can be generated. The `ErasureCodePluginExample plugin <https://github.com/ceph/ceph/blob/v0.78/src/test/erasure-code/ErasureCodePluginExample.cc>`_ reads:
+
+::
+
+ virtual int factory(const map<std::string,std::string> &parameters,
+ ErasureCodeInterfaceRef *erasure_code) {
+ *erasure_code = ErasureCodeInterfaceRef(new ErasureCodeExample(parameters));
+ return 0;
+ }
+
+The *parameters* argument is the list of *key=value* pairs that were
+set in the erasure code profile, before the pool was created.
+
+::
+
+ ceph osd erasure-code-profile set myprofile \
+ directory=<dir> \ # mandatory
+ plugin=jerasure \ # mandatory
+ m=10 \ # optional and plugin dependant
+ k=3 \ # optional and plugin dependant
+ technique=reed_sol_van \ # optional and plugin dependant
+
+Notes
+-----
+
+If the objects are large, it may be impractical to encode and decode
+them in memory. However, when using *RBD* a 1TB device is divided in
+many individual 4MB objects and *RGW* does the same.
+
+Encoding and decoding is implemented in the OSD. Although it could be
+implemented client side for read write, the OSD must be able to encode
+and decode on its own when scrubbing.
diff --git a/src/ceph/doc/dev/osd_internals/erasure_coding/ecbackend.rst b/src/ceph/doc/dev/osd_internals/erasure_coding/ecbackend.rst
new file mode 100644
index 0000000..624ec21
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/erasure_coding/ecbackend.rst
@@ -0,0 +1,207 @@
+=================================
+ECBackend Implementation Strategy
+=================================
+
+Misc initial design notes
+=========================
+
+The initial (and still true for ec pools without the hacky ec
+overwrites debug flag enabled) design for ec pools restricted
+EC pools to operations which can be easily rolled back:
+
+- CEPH_OSD_OP_APPEND: We can roll back an append locally by
+ including the previous object size as part of the PG log event.
+- CEPH_OSD_OP_DELETE: The possibility of rolling back a delete
+ requires that we retain the deleted object until all replicas have
+ persisted the deletion event. ErasureCoded backend will therefore
+ need to store objects with the version at which they were created
+ included in the key provided to the filestore. Old versions of an
+ object can be pruned when all replicas have committed up to the log
+ event deleting the object.
+- CEPH_OSD_OP_(SET|RM)ATTR: If we include the prior value of the attr
+ to be set or removed, we can roll back these operations locally.
+
+Log entries contain a structure explaining how to locally undo the
+operation represented by the operation
+(see osd_types.h:TransactionInfo::LocalRollBack).
+
+PGTemp and Crush
+----------------
+
+Primaries are able to request a temp acting set mapping in order to
+allow an up-to-date OSD to serve requests while a new primary is
+backfilled (and for other reasons). An erasure coded pg needs to be
+able to designate a primary for these reasons without putting it in
+the first position of the acting set. It also needs to be able to
+leave holes in the requested acting set.
+
+Core Changes:
+
+- OSDMap::pg_to_*_osds needs to separately return a primary. For most
+ cases, this can continue to be acting[0].
+- MOSDPGTemp (and related OSD structures) needs to be able to specify
+ a primary as well as an acting set.
+- Much of the existing code base assumes that acting[0] is the primary
+ and that all elements of acting are valid. This needs to be cleaned
+ up since the acting set may contain holes.
+
+Distinguished acting set positions
+----------------------------------
+
+With the replicated strategy, all replicas of a PG are
+interchangeable. With erasure coding, different positions in the
+acting set have different pieces of the erasure coding scheme and are
+not interchangeable. Worse, crush might cause chunk 2 to be written
+to an OSD which happens already to contain an (old) copy of chunk 4.
+This means that the OSD and PG messages need to work in terms of a
+type like pair<shard_t, pg_t> in order to distinguish different pg
+chunks on a single OSD.
+
+Because the mapping of object name to object in the filestore must
+be 1-to-1, we must ensure that the objects in chunk 2 and the objects
+in chunk 4 have different names. To that end, the objectstore must
+include the chunk id in the object key.
+
+Core changes:
+
+- The objectstore `ghobject_t needs to also include a chunk id
+ <https://github.com/ceph/ceph/blob/firefly/src/common/hobject.h#L241>`_ making it more like
+ tuple<hobject_t, gen_t, shard_t>.
+- coll_t needs to include a shard_t.
+- The OSD pg_map and similar pg mappings need to work in terms of a
+ spg_t (essentially
+ pair<pg_t, shard_t>). Similarly, pg->pg messages need to include
+ a shard_t
+- For client->PG messages, the OSD will need a way to know which PG
+ chunk should get the message since the OSD may contain both a
+ primary and non-primary chunk for the same pg
+
+Object Classes
+--------------
+
+Reads from object classes will return ENOTSUP on ec pools by invoking
+a special SYNC read.
+
+Scrub
+-----
+
+The main catch, however, for ec pools is that sending a crc32 of the
+stored chunk on a replica isn't particularly helpful since the chunks
+on different replicas presumably store different data. Because we
+don't support overwrites except via DELETE, however, we have the
+option of maintaining a crc32 on each chunk through each append.
+Thus, each replica instead simply computes a crc32 of its own stored
+chunk and compares it with the locally stored checksum. The replica
+then reports to the primary whether the checksums match.
+
+With overwrites, all scrubs are disabled for now until we work out
+what to do (see doc/dev/osd_internals/erasure_coding/proposals.rst).
+
+Crush
+-----
+
+If crush is unable to generate a replacement for a down member of an
+acting set, the acting set should have a hole at that position rather
+than shifting the other elements of the acting set out of position.
+
+=========
+ECBackend
+=========
+
+MAIN OPERATION OVERVIEW
+=======================
+
+A RADOS put operation can span
+multiple stripes of a single object. There must be code that
+tessellates the application level write into a set of per-stripe write
+operations -- some whole-stripes and up to two partial
+stripes. Without loss of generality, for the remainder of this
+document we will focus exclusively on writing a single stripe (whole
+or partial). We will use the symbol "W" to represent the number of
+blocks within a stripe that are being written, i.e., W <= K.
+
+There are three data flows for handling a write into an EC stripe. The
+choice of which of the three data flows to choose is based on the size
+of the write operation and the arithmetic properties of the selected
+parity-generation algorithm.
+
+(1) whole stripe is written/overwritten
+(2) a read-modify-write operation is performed.
+
+WHOLE STRIPE WRITE
+------------------
+
+This is the simple case, and is already performed in the existing code
+(for appends, that is). The primary receives all of the data for the
+stripe in the RADOS request, computes the appropriate parity blocks
+and send the data and parity blocks to their destination shards which
+write them. This is essentially the current EC code.
+
+READ-MODIFY-WRITE
+-----------------
+
+The primary determines which of the K-W blocks are to be unmodified,
+and reads them from the shards. Once all of the data is received it is
+combined with the received new data and new parity blocks are
+computed. The modified blocks are sent to their respective shards and
+written. The RADOS operation is acknowledged.
+
+OSD Object Write and Consistency
+--------------------------------
+
+Regardless of the algorithm chosen above, writing of the data is a two
+phase process: commit and rollforward. The primary sends the log
+entries with the operation described (see
+osd_types.h:TransactionInfo::(LocalRollForward|LocalRollBack).
+In all cases, the "commit" is performed in place, possibly leaving some
+information required for a rollback in a write-aside object. The
+rollforward phase occurs once all acting set replicas have committed
+the commit (sorry, overloaded term) and removes the rollback information.
+
+In the case of overwrites of exsting stripes, the rollback information
+has the form of a sparse object containing the old values of the
+overwritten extents populated using clone_range. This is essentially
+a place-holder implementation, in real life, bluestore will have an
+efficient primitive for this.
+
+The rollforward part can be delayed since we report the operation as
+committed once all replicas have committed. Currently, whenever we
+send a write, we also indicate that all previously committed
+operations should be rolled forward (see
+ECBackend::try_reads_to_commit). If there aren't any in the pipeline
+when we arrive at the waiting_rollforward queue, we start a dummy
+write to move things along (see the Pipeline section later on and
+ECBackend::try_finish_rmw).
+
+ExtentCache
+-----------
+
+It's pretty important to be able to pipeline writes on the same
+object. For this reason, there is a cache of extents written by
+cacheable operations. Each extent remains pinned until the operations
+referring to it are committed. The pipeline prevents rmw operations
+from running until uncacheable transactions (clones, etc) are flushed
+from the pipeline.
+
+See ExtentCache.h for a detailed explanation of how the cache
+states correspond to the higher level invariants about the conditions
+under which cuncurrent operations can refer to the same object.
+
+Pipeline
+--------
+
+Reading src/osd/ExtentCache.h should have given a good idea of how
+operations might overlap. There are several states involved in
+processing a write operation and an important invariant which
+isn't enforced by PrimaryLogPG at a higher level which need to be
+managed by ECBackend. The important invariant is that we can't
+have uncacheable and rmw operations running at the same time
+on the same object. For simplicity, we simply enforce that any
+operation which contains an rmw operation must wait until
+all in-progress uncacheable operations complete.
+
+There are improvements to be made here in the future.
+
+For more details, see ECBackend::waiting_* and
+ECBackend::try_<from>_to_<to>.
+
diff --git a/src/ceph/doc/dev/osd_internals/erasure_coding/jerasure.rst b/src/ceph/doc/dev/osd_internals/erasure_coding/jerasure.rst
new file mode 100644
index 0000000..27669a0
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/erasure_coding/jerasure.rst
@@ -0,0 +1,33 @@
+===============
+jerasure plugin
+===============
+
+Introduction
+------------
+
+The parameters interpreted by the jerasure plugin are:
+
+::
+
+ ceph osd erasure-code-profile set myprofile \
+ directory=<dir> \ # plugin directory absolute path
+ plugin=jerasure \ # plugin name (only jerasure)
+ k=<k> \ # data chunks (default 2)
+ m=<m> \ # coding chunks (default 2)
+ technique=<technique> \ # coding technique
+
+The coding techniques can be chosen among *reed_sol_van*,
+*reed_sol_r6_op*, *cauchy_orig*, *cauchy_good*, *liberation*,
+*blaum_roth* and *liber8tion*.
+
+The *src/erasure-code/jerasure* directory contains the
+implementation. It is a wrapper around the code found at
+`https://github.com/ceph/jerasure <https://github.com/ceph/jerasure>`_
+and `https://github.com/ceph/gf-complete
+<https://github.com/ceph/gf-complete>`_ , pinned to the latest stable
+version in *.gitmodules*. These repositories are copies of the
+upstream repositories `http://jerasure.org/jerasure/jerasure
+<http://jerasure.org/jerasure/jerasure>`_ and
+`http://jerasure.org/jerasure/gf-complete
+<http://jerasure.org/jerasure/gf-complete>`_ . The difference
+between the two, if any, should match pull requests against upstream.
diff --git a/src/ceph/doc/dev/osd_internals/erasure_coding/proposals.rst b/src/ceph/doc/dev/osd_internals/erasure_coding/proposals.rst
new file mode 100644
index 0000000..52f98e8
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/erasure_coding/proposals.rst
@@ -0,0 +1,385 @@
+:orphan:
+
+=================================
+Proposed Next Steps for ECBackend
+=================================
+
+PARITY-DELTA-WRITE
+------------------
+
+RMW operations current require 4 network hops (2 round trips). In
+principle, for some codes, we can reduce this to 3 by sending the
+update to the replicas holding the data blocks and having them
+compute a delta to forward onto the parity blocks.
+
+The primary reads the current values of the "W" blocks and then uses
+the new values of the "W" blocks to compute parity-deltas for each of
+the parity blocks. The W blocks and the parity delta-blocks are sent
+to their respective shards.
+
+The choice of whether to use a read-modify-write or a
+parity-delta-write is complex policy issue that is TBD in the details
+and is likely to be heavily dependant on the computational costs
+associated with a parity-delta vs. a regular parity-generation
+operation. However, it is believed that the parity-delta scheme is
+likely to be the preferred choice, when available.
+
+The internal interface to the erasure coding library plug-ins needs to
+be extended to support the ability to query if parity-delta
+computation is possible for a selected algorithm as well as an
+interface to the actual parity-delta computation algorithm when
+available.
+
+Stripe Cache
+------------
+
+It may be a good idea to extend the current ExtentCache usage to
+cache some data past when the pinning operation releases it.
+One application pattern that is important to optimize is the small
+block sequential write operation (think of the journal of a journaling
+file system or a database transaction log). Regardless of the chosen
+redundancy algorithm, it is advantageous for the primary to
+retain/buffer recently read/written portions of a stripe in order to
+reduce network traffic. The dynamic contents of this cache may be used
+in the determination of whether a read-modify-write or a
+parity-delta-write is performed. The sizing of this cache is TBD, but
+we should plan on allowing at least a few full stripes per active
+client. Limiting the cache occupancy on a per-client basis will reduce
+the noisy neighbor problem.
+
+Recovery and Rollback Details
+=============================
+
+Implementing a Rollback-able Prepare Operation
+----------------------------------------------
+
+The prepare operation is implemented at each OSD through a simulation
+of a versioning or copy-on-write capability for modifying a portion of
+an object.
+
+When a prepare operation is performed, the new data is written into a
+temporary object. The PG log for the
+operation will contain a reference to the temporary object so that it
+can be located for recovery purposes as well as a record of all of the
+shards which are involved in the operation.
+
+In order to avoid fragmentation (and hence, future read performance),
+creation of the temporary object needs special attention. The name of
+the temporary object affects its location within the KV store. Right
+now its unclear whether it's desirable for the name to locate near the
+base object or whether a separate subset of keyspace should be used
+for temporary objects. Sam believes that colocation with the base
+object is preferred (he suggests using the generation counter of the
+ghobject for temporaries). Whereas Allen believes that using a
+separate subset of keyspace is desirable since these keys are
+ephemeral and we don't want to actually colocate them with the base
+object keys. Perhaps some modeling here can help resolve this
+issue. The data of the temporary object wants to be located as close
+to the data of the base object as possible. This may be best performed
+by adding a new ObjectStore creation primitive that takes the base
+object as an addtional parameter that is a hint to the allocator.
+
+Sam: I think that the short lived thing may be a red herring. We'll
+be updating the donor and primary objects atomically, so it seems like
+we'd want them adjacent in the key space, regardless of the donor's
+lifecycle.
+
+The apply operation moves the data from the temporary object into the
+correct position within the base object and deletes the associated
+temporary object. This operation is done using a specialized
+ObjectStore primitive. In the current ObjectStore interface, this can
+be done using the clonerange function followed by a delete, but can be
+done more efficiently with a specialized move primitive.
+Implementation of the specialized primitive on FileStore can be done
+by copying the data. Some file systems have extensions that might also
+be able to implement this operation (like a defrag API that swaps
+chunks between files). It is expected that NewStore will be able to
+support this efficiently and natively (It has been noted that this
+sequence requires that temporary object allocations, which tend to be
+small, be efficiently converted into blocks for main objects and that
+blocks that were formerly inside of main objects must be reusable with
+minimal overhead)
+
+The prepare and apply operations can be separated arbitrarily in
+time. If a read operation accesses an object that has been altered by
+a prepare operation (but without a corresponding apply operation) it
+must return the data after the prepare operation. This is done by
+creating an in-memory database of objects which have had a prepare
+operation without a corresponding apply operation. All read operations
+must consult this in-memory data structure in order to get the correct
+data. It should explicitly recognized that it is likely that there
+will be multiple prepare operations against a single base object and
+the code must handle this case correctly. This code is implemented as
+a layer between ObjectStore and all existing readers. Annoyingly,
+we'll want to trash this state when the interval changes, so the first
+thing that needs to happen after activation is that the primary and
+replicas apply up to last_update so that the empty cache will be
+correct.
+
+During peering, it is now obvious that an unapplied prepare operation
+can easily be rolled back simply by deleting the associated temporary
+object and removing that entry from the in-memory data structure.
+
+Partial Application Peering/Recovery modifications
+--------------------------------------------------
+
+Some writes will be small enough to not require updating all of the
+shards holding data blocks. For write amplification minization
+reasons, it would be best to avoid writing to those shards at all,
+and delay even sending the log entries until the next write which
+actually hits that shard.
+
+The delaying (buffering) of the transmission of the prepare and apply
+operations for witnessing OSDs creates new situations that peering
+must handle. In particular the logic for determining the authoritative
+last_update value (and hence the selection of the OSD which has the
+authoritative log) must be modified to account for the valid but
+missing (i.e., delayed/buffered) pglog entries to which the
+authoritative OSD was only a witness to.
+
+Because a partial write might complete without persisting a log entry
+on every replica, we have to do a bit more work to determine an
+authoritative last_update. The constraint (as with a replicated PG)
+is that last_update >= the most recent log entry for which a commit
+was sent to the client (call this actual_last_update). Secondarily,
+we want last_update to be as small as possible since any log entry
+past actual_last_update (we do not apply a log entry until we have
+sent the commit to the client) must be able to be rolled back. Thus,
+the smaller a last_update we choose, the less recovery will need to
+happen (we can always roll back, but rolling a replica forward may
+require an object rebuild). Thus, we will set last_update to 1 before
+the oldest log entry we can prove cannot have been committed. In
+current master, this is simply the last_update of the shortest log
+from that interval (because that log did not persist any entry past
+that point -- a precondition for sending a commit to the client). For
+this design, we must consider the possibility that any log is missing
+at its head log entries in which it did not participate. Thus, we
+must determine the most recent interval in which we went active
+(essentially, this is what find_best_info currently does). We then
+pull the log from each live osd from that interval back to the minimum
+last_update among them. Then, we extend all logs from the
+authoritative interval until each hits an entry in which it should
+have participated, but did not record. The shortest of these extended
+logs must therefore contain any log entry for which we sent a commit
+to the client -- and the last entry gives us our last_update.
+
+Deep scrub support
+------------------
+
+The simple answer here is probably our best bet. EC pools can't use
+the omap namespace at all right now. The simplest solution would be
+to take a prefix of the omap space and pack N M byte L bit checksums
+into each key/value. The prefixing seems like a sensible precaution
+against eventually wanting to store something else in the omap space.
+It seems like any write will need to read at least the blocks
+containing the modified range. However, with a code able to compute
+parity deltas, we may not need to read a whole stripe. Even without
+that, we don't want to have to write to blocks not participating in
+the write. Thus, each shard should store checksums only for itself.
+It seems like you'd be able to store checksums for all shards on the
+parity blocks, but there may not be distinguished parity blocks which
+are modified on all writes (LRC or shec provide two examples). L
+should probably have a fixed number of options (16, 32, 64?) and be
+configurable per-pool at pool creation. N, M should be likewise be
+configurable at pool creation with sensible defaults.
+
+We need to handle online upgrade. I think the right answer is that
+the first overwrite to an object with an append only checksum
+removes the append only checksum and writes in whatever stripe
+checksums actually got written. The next deep scrub then writes
+out the full checksum omap entries.
+
+RADOS Client Acknowledgement Generation Optimization
+====================================================
+
+Now that the recovery scheme is understood, we can discuss the
+generation of of the RADOS operation acknowledgement (ACK) by the
+primary ("sufficient" from above). It is NOT required that the primary
+wait for all shards to complete their respective prepare
+operations. Using our example where the RADOS operations writes only
+"W" chunks of the stripe, the primary will generate and send W+M
+prepare operations (possibly including a send-to-self). The primary
+need only wait for enough shards to be written to ensure recovery of
+the data, Thus after writing W + M chunks you can afford the lost of M
+chunks. Hence the primary can generate the RADOS ACK after W+M-M => W
+of those prepare operations are completed.
+
+Inconsistent object_info_t versions
+===================================
+
+A natural consequence of only writing the blocks which actually
+changed is that we don't want to update the object_info_t of the
+objects which didn't. I actually think it would pose a problem to do
+so: pg ghobject namespaces are generally large, and unless the osd is
+seeing a bunch of overwrites on a small set of objects, I'd expect
+each write to be far enough apart in the backing ghobject_t->data
+mapping to each constitute a random metadata update. Thus, we have to
+accept that not every shard will have the current version in its
+object_info_t. We can't even bound how old the version on a
+particular shard will happen to be. In particular, the primary does
+not necessarily have the current version. One could argue that the
+parity shards would always have the current version, but not every
+code necessarily has designated parity shards which see every write
+(certainly LRC, iirc shec, and even with a more pedestrian code, it
+might be desirable to rotate the shards based on object hash). Even
+if you chose to designate a shard as witnessing all writes, the pg
+might be degraded with that particular shard missing. This is a bit
+tricky, currently reads and writes implicitely return the most recent
+version of the object written. On reads, we'd have to read K shards
+to answer that question. We can get around that by adding a "don't
+tell me the current version" flag. Writes are more problematic: we
+need an object_info from the most recent write in order to form the
+new object_info and log_entry.
+
+A truly terrifying option would be to eliminate version and
+prior_version entirely from the object_info_t. There are a few
+specific purposes it serves:
+
+#. On OSD startup, we prime the missing set by scanning backwards
+ from last_update to last_complete comparing the stored object's
+ object_info_t to the version of most recent log entry.
+#. During backfill, we compare versions between primary and target
+ to avoid some pushes. We use it elsewhere as well
+#. While pushing and pulling objects, we verify the version.
+#. We return it on reads and writes and allow the librados user to
+ assert it atomically on writesto allow the user to deal with write
+ races (used extensively by rbd).
+
+Case (3) isn't actually essential, just convenient. Oh well. (4)
+is more annoying. Writes are easy since we know the version. Reads
+are tricky because we may not need to read from all of the replicas.
+Simplest solution is to add a flag to rados operations to just not
+return the user version on read. We can also just not support the
+user version assert on ec for now (I think? Only user is rgw bucket
+indices iirc, and those will always be on replicated because they use
+omap).
+
+We can avoid (1) by maintaining the missing set explicitely. It's
+already possible for there to be a missing object without a
+corresponding log entry (Consider the case where the most recent write
+is to an object which has not been updated in weeks. If that write
+becomes divergent, the written object needs to be marked missing based
+on the prior_version which is not in the log.) THe PGLog already has
+a way of handling those edge cases (see divergent_priors). We'd
+simply expand that to contain the entire missing set and maintain it
+atomically with the log and the objects. This isn't really an
+unreasonable option, the addiitonal keys would be fewer than the
+existing log keys + divergent_priors and aren't updated in the fast
+write path anyway.
+
+The second case is a bit trickier. It's really an optimization for
+the case where a pg became not in the acting set long enough for the
+logs to no longer overlap but not long enough for the PG to have
+healed and removed the old copy. Unfortunately, this describes the
+case where a node was taken down for maintenance with noout set. It's
+probably not acceptable to re-backfill the whole OSD in such a case,
+so we need to be able to quickly determine whether a particular shard
+is up to date given a valid acting set of other shards.
+
+Let ordinary writes which do not change the object size not touch the
+object_info at all. That means that the object_info version won't
+match the pg log entry version. Include in the pg_log_entry_t the
+current object_info version as well as which shards participated (as
+mentioned above). In addition to the object_info_t attr, record on
+each shard s a vector recording for each other shard s' the most
+recent write which spanned both s and s'. Operationally, we maintain
+an attr on each shard containing that vector. A write touching S
+updates the version stamp entry for each shard in S on each shard in
+S's attribute (and leaves the rest alone). If we have a valid acting
+set during backfill, we must have a witness of every write which
+completed -- so taking the max of each entry over all of the acting
+set shards must give us the current version for each shard. During
+recovery, we set the attribute on the recovery target to that max
+vector (Question: with LRC, we may not need to touch much of the
+acting set to recover a particular shard -- can we just use the max of
+the shards we used to recovery, or do we need to grab the version
+vector from the rest of the acting set as well? I'm not sure, not a
+big deal anyway, I think).
+
+The above lets us perform blind writes without knowing the current
+object version (log entry version, that is) while still allowing us to
+avoid backfilling up to date objects. The only catch is that our
+backfill scans will can all replicas, not just the primary and the
+backfill targets.
+
+It would be worth adding into scrub the ability to check the
+consistency of the gathered version vectors -- probably by just
+taking 3 random valid subsets and verifying that they generate
+the same authoritative version vector.
+
+Implementation Strategy
+=======================
+
+It goes without saying that it would be unwise to attempt to do all of
+this in one massive PR. It's also not a good idea to merge code which
+isn't being tested. To that end, it's worth thinking a bit about
+which bits can be tested on their own (perhaps with a bit of temporary
+scaffolding).
+
+We can implement the overwrite friendly checksumming scheme easily
+enough with the current implementation. We'll want to enable it on a
+per-pool basis (probably using a flag which we'll later repurpose for
+actual overwrite support). We can enable it in some of the ec
+thrashing tests in the suite. We can also add a simple test
+validating the behavior of turning it on for an existing ec pool
+(later, we'll want to be able to convert append-only ec pools to
+overwrite ec pools, so that test will simply be expanded as we go).
+The flag should be gated by the experimental feature flag since we
+won't want to support this as a valid configuration -- testing only.
+We need to upgrade append only ones in place during deep scrub.
+
+Similarly, we can implement the unstable extent cache with the current
+implementation, it even lets us cut out the readable ack the replicas
+send to the primary after the commit which lets it release the lock.
+Same deal, implement, gate with experimental flag, add to some of the
+automated tests. I don't really see a reason not to use the same flag
+as above.
+
+We can certainly implement the move-range primitive with unit tests
+before there are any users. Adding coverage to the existing
+objectstore tests would suffice here.
+
+Explicit missing set can be implemented now, same deal as above --
+might as well even use the same feature bit.
+
+The TPC protocol outlined above can actually be implemented an append
+only EC pool. Same deal as above, can even use the same feature bit.
+
+The RADOS flag to suppress the read op user version return can be
+implemented immediately. Mostly just needs unit tests.
+
+The version vector problem is an interesting one. For append only EC
+pools, it would be pointless since all writes increase the size and
+therefore update the object_info. We could do it for replicated pools
+though. It's a bit silly since all "shards" see all writes, but it
+would still let us implement and partially test the augmented backfill
+code as well as the extra pg log entry fields -- this depends on the
+explicit pg log entry branch having already merged. It's not entirely
+clear to me that this one is worth doing seperately. It's enough code
+that I'd really prefer to get it done independently, but it's also a
+fair amount of scaffolding that will be later discarded.
+
+PGLog entries need to be able to record the participants and log
+comparison needs to be modified to extend logs with entries they
+wouldn't have witnessed. This logic should be abstracted behind
+PGLog so it can be unittested -- that would let us test it somewhat
+before the actual ec overwrites code merges.
+
+Whatever needs to happen to the ec plugin interface can probably be
+done independently of the rest of this (pending resolution of
+questions below).
+
+The actual nuts and bolts of performing the ec overwrite it seems to
+me can't be productively tested (and therefore implemented) until the
+above are complete, so best to get all of the supporting code in
+first.
+
+Open Questions
+==============
+
+Is there a code we should be using that would let us compute a parity
+delta without rereading and reencoding the full stripe? If so, is it
+the kind of thing we need to design for now, or can it be reasonably
+put off?
+
+What needs to happen to the EC plugin interface?
diff --git a/src/ceph/doc/dev/osd_internals/index.rst b/src/ceph/doc/dev/osd_internals/index.rst
new file mode 100644
index 0000000..7e82914
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/index.rst
@@ -0,0 +1,10 @@
+==============================
+OSD developer documentation
+==============================
+
+.. rubric:: Contents
+
+.. toctree::
+ :glob:
+
+ *
diff --git a/src/ceph/doc/dev/osd_internals/last_epoch_started.rst b/src/ceph/doc/dev/osd_internals/last_epoch_started.rst
new file mode 100644
index 0000000..9978bd3
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/last_epoch_started.rst
@@ -0,0 +1,60 @@
+======================
+last_epoch_started
+======================
+
+info.last_epoch_started records an activation epoch e for interval i
+such that all writes commited in i or earlier are reflected in the
+local info/log and no writes after i are reflected in the local
+info/log. Since no committed write is ever divergent, even if we
+get an authoritative log/info with an older info.last_epoch_started,
+we can leave our info.last_epoch_started alone since no writes could
+have commited in any intervening interval (See PG::proc_master_log).
+
+info.history.last_epoch_started records a lower bound on the most
+recent interval in which the pg as a whole went active and accepted
+writes. On a particular osd, it is also an upper bound on the
+activation epoch of intervals in which writes in the local pg log
+occurred (we update it before accepting writes). Because all
+committed writes are committed by all acting set osds, any
+non-divergent writes ensure that history.last_epoch_started was
+recorded by all acting set members in the interval. Once peering has
+queried one osd from each interval back to some seen
+history.last_epoch_started, it follows that no interval after the max
+history.last_epoch_started can have reported writes as committed
+(since we record it before recording client writes in an interval).
+Thus, the minimum last_update across all infos with
+info.last_epoch_started >= MAX(history.last_epoch_started) must be an
+upper bound on writes reported as committed to the client.
+
+We update info.last_epoch_started with the intial activation message,
+but we only update history.last_epoch_started after the new
+info.last_epoch_started is persisted (possibly along with the first
+write). This ensures that we do not require an osd with the most
+recent info.last_epoch_started until all acting set osds have recorded
+it.
+
+In find_best_info, we do include info.last_epoch_started values when
+calculating the max_last_epoch_started_found because we want to avoid
+designating a log entry divergent which in a prior interval would have
+been non-divergent since it might have been used to serve a read. In
+activate(), we use the peer's last_epoch_started value as a bound on
+how far back divergent log entries can be found.
+
+However, in a case like
+
+.. code::
+
+ calc_acting osd.0 1.4e( v 473'302 (292'200,473'302] local-les=473 n=4 ec=5 les/c 473/473 556/556/556
+ calc_acting osd.1 1.4e( v 473'302 (293'202,473'302] lb 0//0//-1 local-les=477 n=0 ec=5 les/c 473/473 556/556/556
+ calc_acting osd.4 1.4e( v 473'302 (120'121,473'302] local-les=473 n=4 ec=5 les/c 473/473 556/556/556
+ calc_acting osd.5 1.4e( empty local-les=0 n=0 ec=5 les/c 473/473 556/556/556
+
+since osd.1 is the only one which recorded info.les=477 while 4,0
+which were the acting set in that interval did not (4 restarted and 0
+did not get the message in time) the pg is marked incomplete when
+either 4 or 0 would have been valid choices. To avoid this, we do not
+consider info.les for incomplete peers when calculating
+min_last_epoch_started_found. It would not have been in the acting
+set, so we must have another osd from that interval anyway (if
+maybe_went_rw). If that osd does not remember that info.les, then we
+cannot have served reads.
diff --git a/src/ceph/doc/dev/osd_internals/log_based_pg.rst b/src/ceph/doc/dev/osd_internals/log_based_pg.rst
new file mode 100644
index 0000000..8b11012
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/log_based_pg.rst
@@ -0,0 +1,206 @@
+============
+Log Based PG
+============
+
+Background
+==========
+
+Why PrimaryLogPG?
+-----------------
+
+Currently, consistency for all ceph pool types is ensured by primary
+log-based replication. This goes for both erasure-coded and
+replicated pools.
+
+Primary log-based replication
+-----------------------------
+
+Reads must return data written by any write which completed (where the
+client could possibly have received a commit message). There are lots
+of ways to handle this, but ceph's architecture makes it easy for
+everyone at any map epoch to know who the primary is. Thus, the easy
+answer is to route all writes for a particular pg through a single
+ordering primary and then out to the replicas. Though we only
+actually need to serialize writes on a single object (and even then,
+the partial ordering only really needs to provide an ordering between
+writes on overlapping regions), we might as well serialize writes on
+the whole PG since it lets us represent the current state of the PG
+using two numbers: the epoch of the map on the primary in which the
+most recent write started (this is a bit stranger than it might seem
+since map distribution itself is asyncronous -- see Peering and the
+concept of interval changes) and an increasing per-pg version number
+-- this is referred to in the code with type eversion_t and stored as
+pg_info_t::last_update. Furthermore, we maintain a log of "recent"
+operations extending back at least far enough to include any
+*unstable* writes (writes which have been started but not committed)
+and objects which aren't uptodate locally (see recovery and
+backfill). In practice, the log will extend much further
+(osd_pg_min_log_entries when clean, osd_pg_max_log_entries when not
+clean) because it's handy for quickly performing recovery.
+
+Using this log, as long as we talk to a non-empty subset of the OSDs
+which must have accepted any completed writes from the most recent
+interval in which we accepted writes, we can determine a conservative
+log which must contain any write which has been reported to a client
+as committed. There is some freedom here, we can choose any log entry
+between the oldest head remembered by an element of that set (any
+newer cannot have completed without that log containing it) and the
+newest head remembered (clearly, all writes in the log were started,
+so it's fine for us to remember them) as the new head. This is the
+main point of divergence between replicated pools and ec pools in
+PG/PrimaryLogPG: replicated pools try to choose the newest valid
+option to avoid the client needing to replay those operations and
+instead recover the other copies. EC pools instead try to choose
+the *oldest* option available to them.
+
+The reason for this gets to the heart of the rest of the differences
+in implementation: one copy will not generally be enough to
+reconstruct an ec object. Indeed, there are encodings where some log
+combinations would leave unrecoverable objects (as with a 4+2 encoding
+where 3 of the replicas remember a write, but the other 3 do not -- we
+don't have 3 copies of either version). For this reason, log entries
+representing *unstable* writes (writes not yet committed to the
+client) must be rollbackable using only local information on ec pools.
+Log entries in general may therefore be rollbackable (and in that case,
+via a delayed application or via a set of instructions for rolling
+back an inplace update) or not. Replicated pool log entries are
+never able to be rolled back.
+
+For more details, see PGLog.h/cc, osd_types.h:pg_log_t,
+osd_types.h:pg_log_entry_t, and peering in general.
+
+ReplicatedBackend/ECBackend unification strategy
+================================================
+
+PGBackend
+---------
+
+So, the fundamental difference between replication and erasure coding
+is that replication can do destructive updates while erasure coding
+cannot. It would be really annoying if we needed to have two entire
+implementations of PrimaryLogPG, one for each of the two, if there
+are really only a few fundamental differences:
+
+#. How reads work -- async only, requires remote reads for ec
+#. How writes work -- either restricted to append, or must write aside and do a
+ tpc
+#. Whether we choose the oldest or newest possible head entry during peering
+#. A bit of extra information in the log entry to enable rollback
+
+and so many similarities
+
+#. All of the stats and metadata for objects
+#. The high level locking rules for mixing client IO with recovery and scrub
+#. The high level locking rules for mixing reads and writes without exposing
+ uncommitted state (which might be rolled back or forgotten later)
+#. The process, metadata, and protocol needed to determine the set of osds
+ which partcipated in the most recent interval in which we accepted writes
+#. etc.
+
+Instead, we choose a few abstractions (and a few kludges) to paper over the differences:
+
+#. PGBackend
+#. PGTransaction
+#. PG::choose_acting chooses between calc_replicated_acting and calc_ec_acting
+#. Various bits of the write pipeline disallow some operations based on pool
+ type -- like omap operations, class operation reads, and writes which are
+ not aligned appends (officially, so far) for ec
+#. Misc other kludges here and there
+
+PGBackend and PGTransaction enable abstraction of differences 1, 2,
+and the addition of 4 as needed to the log entries.
+
+The replicated implementation is in ReplicatedBackend.h/cc and doesn't
+require much explanation, I think. More detail on the ECBackend can be
+found in doc/dev/osd_internals/erasure_coding/ecbackend.rst.
+
+PGBackend Interface Explanation
+===============================
+
+Note: this is from a design document from before the original firefly
+and is probably out of date w.r.t. some of the method names.
+
+Readable vs Degraded
+--------------------
+
+For a replicated pool, an object is readable iff it is present on
+the primary (at the right version). For an ec pool, we need at least
+M shards present to do a read, and we need it on the primary. For
+this reason, PGBackend needs to include some interfaces for determing
+when recovery is required to serve a read vs a write. This also
+changes the rules for when peering has enough logs to prove that it
+
+Core Changes:
+
+- | PGBackend needs to be able to return IsPG(Recoverable|Readable)Predicate
+ | objects to allow the user to make these determinations.
+
+Client Reads
+------------
+
+Reads with the replicated strategy can always be satisfied
+synchronously out of the primary OSD. With an erasure coded strategy,
+the primary will need to request data from some number of replicas in
+order to satisfy a read. PGBackend will therefore need to provide
+seperate objects_read_sync and objects_read_async interfaces where
+the former won't be implemented by the ECBackend.
+
+PGBackend interfaces:
+
+- objects_read_sync
+- objects_read_async
+
+Scrub
+-----
+
+We currently have two scrub modes with different default frequencies:
+
+#. [shallow] scrub: compares the set of objects and metadata, but not
+ the contents
+#. deep scrub: compares the set of objects, metadata, and a crc32 of
+ the object contents (including omap)
+
+The primary requests a scrubmap from each replica for a particular
+range of objects. The replica fills out this scrubmap for the range
+of objects including, if the scrub is deep, a crc32 of the contents of
+each object. The primary gathers these scrubmaps from each replica
+and performs a comparison identifying inconsistent objects.
+
+Most of this can work essentially unchanged with erasure coded PG with
+the caveat that the PGBackend implementation must be in charge of
+actually doing the scan.
+
+
+PGBackend interfaces:
+
+- be_*
+
+Recovery
+--------
+
+The logic for recovering an object depends on the backend. With
+the current replicated strategy, we first pull the object replica
+to the primary and then concurrently push it out to the replicas.
+With the erasure coded strategy, we probably want to read the
+minimum number of replica chunks required to reconstruct the object
+and push out the replacement chunks concurrently.
+
+Another difference is that objects in erasure coded pg may be
+unrecoverable without being unfound. The "unfound" concept
+should probably then be renamed to unrecoverable. Also, the
+PGBackend implementation will have to be able to direct the search
+for pg replicas with unrecoverable object chunks and to be able
+to determine whether a particular object is recoverable.
+
+
+Core changes:
+
+- s/unfound/unrecoverable
+
+PGBackend interfaces:
+
+- `on_local_recover_start <https://github.com/ceph/ceph/blob/firefly/src/osd/PGBackend.h#L60>`_
+- `on_local_recover <https://github.com/ceph/ceph/blob/firefly/src/osd/PGBackend.h#L66>`_
+- `on_global_recover <https://github.com/ceph/ceph/blob/firefly/src/osd/PGBackend.h#L78>`_
+- `on_peer_recover <https://github.com/ceph/ceph/blob/firefly/src/osd/PGBackend.h#L83>`_
+- `begin_peer_recover <https://github.com/ceph/ceph/blob/firefly/src/osd/PGBackend.h#L90>`_
diff --git a/src/ceph/doc/dev/osd_internals/map_message_handling.rst b/src/ceph/doc/dev/osd_internals/map_message_handling.rst
new file mode 100644
index 0000000..a5013c2
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/map_message_handling.rst
@@ -0,0 +1,131 @@
+===========================
+Map and PG Message handling
+===========================
+
+Overview
+--------
+The OSD handles routing incoming messages to PGs, creating the PG if necessary
+in some cases.
+
+PG messages generally come in two varieties:
+
+ 1. Peering Messages
+ 2. Ops/SubOps
+
+There are several ways in which a message might be dropped or delayed. It is
+important that the message delaying does not result in a violation of certain
+message ordering requirements on the way to the relevant PG handling logic:
+
+ 1. Ops referring to the same object must not be reordered.
+ 2. Peering messages must not be reordered.
+ 3. Subops must not be reordered.
+
+MOSDMap
+-------
+MOSDMap messages may come from either monitors or other OSDs. Upon receipt, the
+OSD must perform several tasks:
+
+ 1. Persist the new maps to the filestore.
+ Several PG operations rely on having access to maps dating back to the last
+ time the PG was clean.
+ 2. Update and persist the superblock.
+ 3. Update OSD state related to the current map.
+ 4. Expose new maps to PG processes via *OSDService*.
+ 5. Remove PGs due to pool removal.
+ 6. Queue dummy events to trigger PG map catchup.
+
+Each PG asynchronously catches up to the currently published map during
+process_peering_events before processing the event. As a result, different
+PGs may have different views as to the "current" map.
+
+One consequence of this design is that messages containing submessages from
+multiple PGs (MOSDPGInfo, MOSDPGQuery, MOSDPGNotify) must tag each submessage
+with the PG's epoch as well as tagging the message as a whole with the OSD's
+current published epoch.
+
+MOSDPGOp/MOSDPGSubOp
+--------------------
+See OSD::dispatch_op, OSD::handle_op, OSD::handle_sub_op
+
+MOSDPGOps are used by clients to initiate rados operations. MOSDSubOps are used
+between OSDs to coordinate most non peering activities including replicating
+MOSDPGOp operations.
+
+OSD::require_same_or_newer map checks that the current OSDMap is at least
+as new as the map epoch indicated on the message. If not, the message is
+queued in OSD::waiting_for_osdmap via OSD::wait_for_new_map. Note, this
+cannot violate the above conditions since any two messages will be queued
+in order of receipt and if a message is received with epoch e0, a later message
+from the same source must be at epoch at least e0. Note that two PGs from
+the same OSD count for these purposes as different sources for single PG
+messages. That is, messages from different PGs may be reordered.
+
+
+MOSDPGOps follow the following process:
+
+ 1. OSD::handle_op: validates permissions and crush mapping.
+ discard the request if they are not connected and the client cannot get the reply ( See OSD::op_is_discardable )
+ See OSDService::handle_misdirected_op
+ See PG::op_has_sufficient_caps
+ See OSD::require_same_or_newer_map
+ 2. OSD::enqueue_op
+
+MOSDSubOps follow the following process:
+
+ 1. OSD::handle_sub_op checks that sender is an OSD
+ 2. OSD::enqueue_op
+
+OSD::enqueue_op calls PG::queue_op which checks waiting_for_map before calling OpWQ::queue which adds the op to the queue of the PG responsible for handling it.
+
+OSD::dequeue_op is then eventually called, with a lock on the PG. At
+this time, the op is passed to PG::do_request, which checks that:
+
+ 1. the PG map is new enough (PG::must_delay_op)
+ 2. the client requesting the op has enough permissions (PG::op_has_sufficient_caps)
+ 3. the op is not to be discarded (PG::can_discard_{request,op,subop,scan,backfill})
+ 4. the PG is active (PG::flushed boolean)
+ 5. the op is a CEPH_MSG_OSD_OP and the PG is in PG_STATE_ACTIVE state and not in PG_STATE_REPLAY
+
+If these conditions are not met, the op is either discarded or queued for later processing. If all conditions are met, the op is processed according to its type:
+
+ 1. CEPH_MSG_OSD_OP is handled by PG::do_op
+ 2. MSG_OSD_SUBOP is handled by PG::do_sub_op
+ 3. MSG_OSD_SUBOPREPLY is handled by PG::do_sub_op_reply
+ 4. MSG_OSD_PG_SCAN is handled by PG::do_scan
+ 5. MSG_OSD_PG_BACKFILL is handled by PG::do_backfill
+
+CEPH_MSG_OSD_OP processing
+--------------------------
+
+PrimaryLogPG::do_op handles CEPH_MSG_OSD_OP op and will queue it
+
+ 1. in wait_for_all_missing if it is a CEPH_OSD_OP_PGLS for a designated snapid and some object updates are still missing
+ 2. in waiting_for_active if the op may write but the scrubber is working
+ 3. in waiting_for_missing_object if the op requires an object or a snapdir or a specific snap that is still missing
+ 4. in waiting_for_degraded_object if the op may write an object or a snapdir that is degraded, or if another object blocks it ("blocked_by")
+ 5. in waiting_for_backfill_pos if the op requires an object that will be available after the backfill is complete
+ 6. in waiting_for_ack if an ack from another OSD is expected
+ 7. in waiting_for_ondisk if the op is waiting for a write to complete
+
+Peering Messages
+----------------
+See OSD::handle_pg_(notify|info|log|query)
+
+Peering messages are tagged with two epochs:
+
+ 1. epoch_sent: map epoch at which the message was sent
+ 2. query_epoch: map epoch at which the message triggering the message was sent
+
+These are the same in cases where there was no triggering message. We discard
+a peering message if the message's query_epoch if the PG in question has entered
+a new epoch (See PG::old_peering_evt, PG::queue_peering_event). Notifies,
+infos, notifies, and logs are all handled as PG::RecoveryMachine events and
+are wrapped by PG::queue_* by PG::CephPeeringEvts, which include the created
+state machine event along with epoch_sent and query_epoch in order to
+generically check PG::old_peering_message upon insertion and removal from the
+queue.
+
+Note, notifies, logs, and infos can trigger the creation of a PG. See
+OSD::get_or_create_pg.
+
+
diff --git a/src/ceph/doc/dev/osd_internals/osd_overview.rst b/src/ceph/doc/dev/osd_internals/osd_overview.rst
new file mode 100644
index 0000000..192ddf8
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/osd_overview.rst
@@ -0,0 +1,106 @@
+===
+OSD
+===
+
+Concepts
+--------
+
+*Messenger*
+ See src/msg/Messenger.h
+
+ Handles sending and receipt of messages on behalf of the OSD. The OSD uses
+ two messengers:
+
+ 1. cluster_messenger - handles traffic to other OSDs, monitors
+ 2. client_messenger - handles client traffic
+
+ This division allows the OSD to be configured with different interfaces for
+ client and cluster traffic.
+
+*Dispatcher*
+ See src/msg/Dispatcher.h
+
+ OSD implements the Dispatcher interface. Of particular note is ms_dispatch,
+ which serves as the entry point for messages received via either the client
+ or cluster messenger. Because there are two messengers, ms_dispatch may be
+ called from at least two threads. The osd_lock is always held during
+ ms_dispatch.
+
+*WorkQueue*
+ See src/common/WorkQueue.h
+
+ The WorkQueue class abstracts the process of queueing independent tasks
+ for asynchronous execution. Each OSD process contains workqueues for
+ distinct tasks:
+
+ 1. OpWQ: handles ops (from clients) and subops (from other OSDs).
+ Runs in the op_tp threadpool.
+ 2. PeeringWQ: handles peering tasks and pg map advancement
+ Runs in the op_tp threadpool.
+ See Peering
+ 3. CommandWQ: handles commands (pg query, etc)
+ Runs in the command_tp threadpool.
+ 4. RecoveryWQ: handles recovery tasks.
+ Runs in the recovery_tp threadpool.
+ 5. SnapTrimWQ: handles snap trimming
+ Runs in the disk_tp threadpool.
+ See SnapTrimmer
+ 6. ScrubWQ: handles primary scrub path
+ Runs in the disk_tp threadpool.
+ See Scrub
+ 7. ScrubFinalizeWQ: handles primary scrub finalize
+ Runs in the disk_tp threadpool.
+ See Scrub
+ 8. RepScrubWQ: handles replica scrub path
+ Runs in the disk_tp threadpool
+ See Scrub
+ 9. RemoveWQ: Asynchronously removes old pg directories
+ Runs in the disk_tp threadpool
+ See PGRemoval
+
+*ThreadPool*
+ See src/common/WorkQueue.h
+ See also above.
+
+ There are 4 OSD threadpools:
+
+ 1. op_tp: handles ops and subops
+ 2. recovery_tp: handles recovery tasks
+ 3. disk_tp: handles disk intensive tasks
+ 4. command_tp: handles commands
+
+*OSDMap*
+ See src/osd/OSDMap.h
+
+ The crush algorithm takes two inputs: a picture of the cluster
+ with status information about which nodes are up/down and in/out,
+ and the pgid to place. The former is encapsulated by the OSDMap.
+ Maps are numbered by *epoch* (epoch_t). These maps are passed around
+ within the OSD as std::tr1::shared_ptr<const OSDMap>.
+
+ See MapHandling
+
+*PG*
+ See src/osd/PG.* src/osd/PrimaryLogPG.*
+
+ Objects in rados are hashed into *PGs* and *PGs* are placed via crush onto
+ OSDs. The PG structure is responsible for handling requests pertaining to
+ a particular *PG* as well as for maintaining relevant metadata and controlling
+ recovery.
+
+*OSDService*
+ See src/osd/OSD.cc OSDService
+
+ The OSDService acts as a broker between PG threads and OSD state which allows
+ PGs to perform actions using OSD services such as workqueues and messengers.
+ This is still a work in progress. Future cleanups will focus on moving such
+ state entirely from the OSD into the OSDService.
+
+Overview
+--------
+ See src/ceph_osd.cc
+
+ The OSD process represents one leaf device in the crush hierarchy. There
+ might be one OSD process per physical machine, or more than one if, for
+ example, the user configures one OSD instance per disk.
+
diff --git a/src/ceph/doc/dev/osd_internals/osd_throttles.rst b/src/ceph/doc/dev/osd_internals/osd_throttles.rst
new file mode 100644
index 0000000..6739bd9
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/osd_throttles.rst
@@ -0,0 +1,93 @@
+=============
+OSD Throttles
+=============
+
+There are three significant throttles in the filestore: wbthrottle,
+op_queue_throttle, and a throttle based on journal usage.
+
+WBThrottle
+----------
+The WBThrottle is defined in src/os/filestore/WBThrottle.[h,cc] and
+included in FileStore as FileStore::wbthrottle. The intention is to
+bound the amount of outstanding IO we need to do to flush the journal.
+At the same time, we don't want to necessarily do it inline in case we
+might be able to combine several IOs on the same object close together
+in time. Thus, in FileStore::_write, we queue the fd for asyncronous
+flushing and block in FileStore::_do_op if we have exceeded any hard
+limits until the background flusher catches up.
+
+The relevant config options are filestore_wbthrottle*. There are
+different defaults for xfs and btrfs. Each set has hard and soft
+limits on bytes (total dirty bytes), ios (total dirty ios), and
+inodes (total dirty fds). The WBThrottle will begin flushing
+when any of these hits the soft limit and will block in throttle()
+while any has exceeded the hard limit.
+
+Tighter soft limits will cause writeback to happen more quickly,
+but may cause the OSD to miss oportunities for write coalescing.
+Tighter hard limits may cause a reduction in latency variance by
+reducing time spent flushing the journal, but may reduce writeback
+parallelism.
+
+op_queue_throttle
+-----------------
+The op queue throttle is intended to bound the amount of queued but
+uncompleted work in the filestore by delaying threads calling
+queue_transactions more and more based on how many ops and bytes are
+currently queued. The throttle is taken in queue_transactions and
+released when the op is applied to the filesystem. This period
+includes time spent in the journal queue, time spent writing to the
+journal, time spent in the actual op queue, time spent waiting for the
+wbthrottle to open up (thus, the wbthrottle can push back indirectly
+on the queue_transactions caller), and time spent actually applying
+the op to the filesystem. A BackoffThrottle is used to gradually
+delay the queueing thread after each throttle becomes more than
+filestore_queue_low_threshhold full (a ratio of
+filestore_queue_max_(bytes|ops)). The throttles will block once the
+max value is reached (filestore_queue_max_(bytes|ops)).
+
+The significant config options are:
+filestore_queue_low_threshhold
+filestore_queue_high_threshhold
+filestore_expected_throughput_ops
+filestore_expected_throughput_bytes
+filestore_queue_high_delay_multiple
+filestore_queue_max_delay_multiple
+
+While each throttle is at less than low_threshhold of the max,
+no delay happens. Between low and high, the throttle will
+inject a per-op delay (per op or byte) ramping from 0 at low to
+high_delay_multiple/expected_throughput at high. From high to
+1, the delay will ramp from high_delay_multiple/expected_throughput
+to max_delay_multiple/expected_throughput.
+
+filestore_queue_high_delay_multiple and
+filestore_queue_max_delay_multiple probably do not need to be
+changed.
+
+Setting these properly should help to smooth out op latencies by
+mostly avoiding the hard limit.
+
+See FileStore::throttle_ops and FileSTore::thottle_bytes.
+
+journal usage throttle
+----------------------
+See src/os/filestore/JournalThrottle.h/cc
+
+The intention of the journal usage throttle is to gradually slow
+down queue_transactions callers as the journal fills up in order
+to smooth out hiccup during filestore syncs. JournalThrottle
+wraps a BackoffThrottle and tracks journaled but not flushed
+journal entries so that the throttle can be released when the
+journal is flushed. The configs work very similarly to the
+op_queue_throttle.
+
+The significant config options are:
+journal_throttle_low_threshhold
+journal_throttle_high_threshhold
+filestore_expected_throughput_ops
+filestore_expected_throughput_bytes
+journal_throttle_high_multiple
+journal_throttle_max_multiple
+
+.. literalinclude:: osd_throttles.txt
diff --git a/src/ceph/doc/dev/osd_internals/osd_throttles.txt b/src/ceph/doc/dev/osd_internals/osd_throttles.txt
new file mode 100644
index 0000000..0332377
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/osd_throttles.txt
@@ -0,0 +1,21 @@
+ Messenger throttle (number and size)
+ |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+ FileStore op_queue throttle (number and size, includes a soft throttle based on filestore_expected_throughput_(ops|bytes))
+ |--------------------------------------------------------|
+ WBThrottle
+ |---------------------------------------------------------------------------------------------------------|
+ Journal (size, includes a soft throttle based on filestore_expected_throughput_bytes)
+ |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
+ |----------------------------------------------------------------------------------------------------> flushed ----------------> synced
+ |
+Op: Read Header --DispatchQ--> OSD::_dispatch --OpWQ--> PG::do_request --journalq--> Journal --FileStore::OpWQ--> Apply Thread --Finisher--> op_applied -------------------------------------------------------------> Complete
+ | |
+SubOp: --Messenger--> ReadHeader --DispatchQ--> OSD::_dispatch --OpWQ--> PG::do_request --journalq--> Journal --FileStore::OpWQ--> Apply Thread --Finisher--> sub_op_applied -
+ |
+ |-----------------------------> flushed ----------------> synced
+ |------------------------------------------------------------------------------------------|
+ Journal (size)
+ |---------------------------------|
+ WBThrottle
+ |-----------------------------------------------------|
+ FileStore op_queue throttle (number and size)
diff --git a/src/ceph/doc/dev/osd_internals/pg.rst b/src/ceph/doc/dev/osd_internals/pg.rst
new file mode 100644
index 0000000..4055363
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/pg.rst
@@ -0,0 +1,31 @@
+====
+PG
+====
+
+Concepts
+--------
+
+*Peering Interval*
+ See PG::start_peering_interval.
+ See PG::acting_up_affected
+ See PG::RecoveryState::Reset
+
+ A peering interval is a maximal set of contiguous map epochs in which the
+ up and acting sets did not change. PG::RecoveryMachine represents a
+ transition from one interval to another as passing through
+ RecoveryState::Reset. On PG::RecoveryState::AdvMap PG::acting_up_affected can
+ cause the pg to transition to Reset.
+
+
+Peering Details and Gotchas
+---------------------------
+For an overview of peering, see `Peering <../../peering>`_.
+
+ * PG::flushed defaults to false and is set to false in
+ PG::start_peering_interval. Upon transitioning to PG::RecoveryState::Started
+ we send a transaction through the pg op sequencer which, upon complete,
+ sends a FlushedEvt which sets flushed to true. The primary cannot go
+ active until this happens (See PG::RecoveryState::WaitFlushedPeering).
+ Replicas can go active but cannot serve ops (writes or reads).
+ This is necessary because we cannot read our ondisk state until unstable
+ transactions from the previous interval have cleared.
diff --git a/src/ceph/doc/dev/osd_internals/pg_removal.rst b/src/ceph/doc/dev/osd_internals/pg_removal.rst
new file mode 100644
index 0000000..d968ecc
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/pg_removal.rst
@@ -0,0 +1,56 @@
+==========
+PG Removal
+==========
+
+See OSD::_remove_pg, OSD::RemoveWQ
+
+There are two ways for a pg to be removed from an OSD:
+
+ 1. MOSDPGRemove from the primary
+ 2. OSD::advance_map finds that the pool has been removed
+
+In either case, our general strategy for removing the pg is to
+atomically set the metadata objects (pg->log_oid, pg->biginfo_oid) to
+backfill and asynronously remove the pg collections. We do not do
+this inline because scanning the collections to remove the objects is
+an expensive operation.
+
+OSDService::deleting_pgs tracks all pgs in the process of being
+deleted. Each DeletingState object in deleting_pgs lives while at
+least one reference to it remains. Each item in RemoveWQ carries a
+reference to the DeletingState for the relevant pg such that
+deleting_pgs.lookup(pgid) will return a null ref only if there are no
+collections currently being deleted for that pg.
+
+The DeletingState for a pg also carries information about the status
+of the current deletion and allows the deletion to be cancelled.
+The possible states are:
+
+ 1. QUEUED: the PG is in the RemoveWQ
+ 2. CLEARING_DIR: the PG's contents are being removed synchronously
+ 3. DELETING_DIR: the PG's directories and metadata being queued for removal
+ 4. DELETED_DIR: the final removal transaction has been queued
+ 5. CANCELED: the deletion has been canceled
+
+In 1 and 2, the deletion can be canceled. Each state transition
+method (and check_canceled) returns false if deletion has been
+canceled and true if the state transition was successful. Similarly,
+try_stop_deletion() returns true if it succeeds in canceling the
+deletion. Additionally, try_stop_deletion() in the event that it
+fails to stop the deletion will not return until the final removal
+transaction is queued. This ensures that any operations queued after
+that point will be ordered after the pg deletion.
+
+OSD::_create_lock_pg must handle two cases:
+
+ 1. Either there is no DeletingStateRef for the pg, or it failed to cancel
+ 2. We succeeded in canceling the deletion.
+
+In case 1., we proceed as if there were no deletion occurring, except that
+we avoid writing to the PG until the deletion finishes. In case 2., we
+proceed as in case 1., except that we first mark the PG as backfilling.
+
+Similarly, OSD::osr_registry ensures that the OpSequencers for those
+pgs can be reused for a new pg if created before the old one is fully
+removed, ensuring that operations on the new pg are sequenced properly
+with respect to operations on the old one.
diff --git a/src/ceph/doc/dev/osd_internals/pgpool.rst b/src/ceph/doc/dev/osd_internals/pgpool.rst
new file mode 100644
index 0000000..45a252b
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/pgpool.rst
@@ -0,0 +1,22 @@
+==================
+PGPool
+==================
+
+PGPool is a structure used to manage and update the status of removed
+snapshots. It does this by maintaining two fields, cached_removed_snaps - the
+current removed snap set and newly_removed_snaps - newly removed snaps in the
+last epoch. In OSD::load_pgs the osd map is recovered from the pg's file store
+and passed down to OSD::_get_pool where a PGPool object is initialised with the
+map.
+
+With each new map we receive we call PGPool::update with the new map. In that
+function we build a list of newly removed snaps
+(pg_pool_t::build_removed_snaps) and merge that with our cached_removed_snaps.
+This function included checks to make sure we only do this update when things
+have changed or there has been a map gap.
+
+When we activate the pg we initialise the snap trim queue from
+cached_removed_snaps and subtract the purged_snaps we have already purged
+leaving us with the list of snaps that need to be trimmed. Trimming is later
+performed asynchronously by the snap_trim_wq.
+
diff --git a/src/ceph/doc/dev/osd_internals/recovery_reservation.rst b/src/ceph/doc/dev/osd_internals/recovery_reservation.rst
new file mode 100644
index 0000000..4ab0319
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/recovery_reservation.rst
@@ -0,0 +1,75 @@
+====================
+Recovery Reservation
+====================
+
+Recovery reservation extends and subsumes backfill reservation. The
+reservation system from backfill recovery is used for local and remote
+reservations.
+
+When a PG goes active, first it determines what type of recovery is
+necessary, if any. It may need log-based recovery, backfill recovery,
+both, or neither.
+
+In log-based recovery, the primary first acquires a local reservation
+from the OSDService's local_reserver. Then a MRemoteReservationRequest
+message is sent to each replica in order of OSD number. These requests
+will always be granted (i.e., cannot be rejected), but they may take
+some time to be granted if the remotes have already granted all their
+remote reservation slots.
+
+After all reservations are acquired, log-based recovery proceeds as it
+would without the reservation system.
+
+After log-based recovery completes, the primary releases all remote
+reservations. The local reservation remains held. The primary then
+determines whether backfill is necessary. If it is not necessary, the
+primary releases its local reservation and waits in the Recovered state
+for all OSDs to indicate that they are clean.
+
+If backfill recovery occurs after log-based recovery, the local
+reservation does not need to be reacquired since it is still held from
+before. If it occurs immediately after activation (log-based recovery
+not possible/necessary), the local reservation is acquired according to
+the typical process.
+
+Once the primary has its local reservation, it requests a remote
+reservation from the backfill target. This reservation CAN be rejected,
+for instance if the OSD is too full (backfillfull_ratio osd setting).
+If the reservation is rejected, the primary drops its local
+reservation, waits (osd_backfill_retry_interval), and then retries. It
+will retry indefinitely.
+
+Once the primary has the local and remote reservations, backfill
+proceeds as usual. After backfill completes the remote reservation is
+dropped.
+
+Finally, after backfill (or log-based recovery if backfill was not
+necessary), the primary drops the local reservation and enters the
+Recovered state. Once all the PGs have reported they are clean, the
+primary enters the Clean state and marks itself active+clean.
+
+
+--------------
+Things to Note
+--------------
+
+We always grab the local reservation first, to prevent a circular
+dependency. We grab remote reservations in order of OSD number for the
+same reason.
+
+The recovery reservation state chart controls the PG state as reported
+to the monitor. The state chart can set:
+
+ - recovery_wait: waiting for local/remote reservations
+ - recovering: recovering
+ - recovery_toofull: recovery stopped, OSD(s) above full ratio
+ - backfill_wait: waiting for remote backfill reservations
+ - backfilling: backfilling
+ - backfill_toofull: backfill stopped, OSD(s) above backfillfull ratio
+
+
+--------
+See Also
+--------
+
+The Active substate of the automatically generated OSD state diagram.
diff --git a/src/ceph/doc/dev/osd_internals/scrub.rst b/src/ceph/doc/dev/osd_internals/scrub.rst
new file mode 100644
index 0000000..3343b39
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/scrub.rst
@@ -0,0 +1,30 @@
+
+Scrubbing Behavior Table
+========================
+
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+| Flags | none | noscrub | nodeep_scrub | noscrub/nodeep_scrub |
++=================================================+==========+===========+===============+======================+
+| Periodic tick | S | X | S | X |
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+| Periodic tick after osd_deep_scrub_interval | D | D | S | X |
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+| Initiated scrub | S | S | S | S |
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+| Initiated scrub after osd_deep_scrub_interval | D | D | S | S |
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+| Initiated deep scrub | D | D | D | D |
++-------------------------------------------------+----------+-----------+---------------+----------------------+
+
+- X = Do nothing
+- S = Do regular scrub
+- D = Do deep scrub
+
+State variables
+---------------
+
+- Periodic tick state is !must_scrub && !must_deep_scrub && !time_for_deep
+- Periodic tick after osd_deep_scrub_interval state is !must_scrub && !must_deep_scrub && time_for_deep
+- Initiated scrub state is must_scrub && !must_deep_scrub && !time_for_deep
+- Initiated scrub after osd_deep_scrub_interval state is must scrub && !must_deep_scrub && time_for_deep
+- Initiated deep scrub state is must_scrub && must_deep_scrub
diff --git a/src/ceph/doc/dev/osd_internals/snaps.rst b/src/ceph/doc/dev/osd_internals/snaps.rst
new file mode 100644
index 0000000..e17378f
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/snaps.rst
@@ -0,0 +1,128 @@
+======
+Snaps
+======
+
+Overview
+--------
+Rados supports two related snapshotting mechanisms:
+
+ 1. *pool snaps*: snapshots are implicitely applied to all objects
+ in a pool
+ 2. *self managed snaps*: the user must provide the current *SnapContext*
+ on each write.
+
+These two are mutually exclusive, only one or the other can be used on
+a particular pool.
+
+The *SnapContext* is the set of snapshots currently defined for an object
+as well as the most recent snapshot (the *seq*) requested from the mon for
+sequencing purposes (a *SnapContext* with a newer *seq* is considered to
+be more recent).
+
+The difference between *pool snaps* and *self managed snaps* from the
+OSD's point of view lies in whether the *SnapContext* comes to the OSD
+via the client's MOSDOp or via the most recent OSDMap.
+
+See OSD::make_writeable
+
+Ondisk Structures
+-----------------
+Each object has in the pg collection a *head* object (or *snapdir*, which we
+will come to shortly) and possibly a set of *clone* objects.
+Each hobject_t has a snap field. For the *head* (the only writeable version
+of an object), the snap field is set to CEPH_NOSNAP. For the *clones*, the
+snap field is set to the *seq* of the *SnapContext* at their creation.
+When the OSD services a write, it first checks whether the most recent
+*clone* is tagged with a snapid prior to the most recent snap represented
+in the *SnapContext*. If so, at least one snapshot has occurred between
+the time of the write and the time of the last clone. Therefore, prior
+to performing the mutation, the OSD creates a new clone for servicing
+reads on snaps between the snapid of the last clone and the most recent
+snapid.
+
+The *head* object contains a *SnapSet* encoded in an attribute, which tracks
+
+ 1. The full set of snaps defined for the object
+ 2. The full set of clones which currently exist
+ 3. Overlapping intervals between clones for tracking space usage
+ 4. Clone size
+
+If the *head* is deleted while there are still clones, a *snapdir* object
+is created instead to house the *SnapSet*.
+
+Additionally, the *object_info_t* on each clone includes a vector of snaps
+for which clone is defined.
+
+Snap Removal
+------------
+To remove a snapshot, a request is made to the *Monitor* cluster to
+add the snapshot id to the list of purged snaps (or to remove it from
+the set of pool snaps in the case of *pool snaps*). In either case,
+the *PG* adds the snap to its *snap_trimq* for trimming.
+
+A clone can be removed when all of its snaps have been removed. In
+order to determine which clones might need to be removed upon snap
+removal, we maintain a mapping from snap to *hobject_t* using the
+*SnapMapper*.
+
+See PrimaryLogPG::SnapTrimmer, SnapMapper
+
+This trimming is performed asynchronously by the snap_trim_wq while the
+pg is clean and not scrubbing.
+
+ #. The next snap in PG::snap_trimq is selected for trimming
+ #. We determine the next object for trimming out of PG::snap_mapper.
+ For each object, we create a log entry and repop updating the
+ object info and the snap set (including adjusting the overlaps).
+ If the object is a clone which no longer belongs to any live snapshots,
+ it is removed here. (See PrimaryLogPG::trim_object() when new_snaps
+ is empty.)
+ #. We also locally update our *SnapMapper* instance with the object's
+ new snaps.
+ #. The log entry containing the modification of the object also
+ contains the new set of snaps, which the replica uses to update
+ its own *SnapMapper* instance.
+ #. The primary shares the info with the replica, which persists
+ the new set of purged_snaps along with the rest of the info.
+
+
+
+Recovery
+--------
+Because the trim operations are implemented using repops and log entries,
+normal pg peering and recovery maintain the snap trimmer operations with
+the caveat that push and removal operations need to update the local
+*SnapMapper* instance. If the purged_snaps update is lost, we merely
+retrim a now empty snap.
+
+SnapMapper
+----------
+*SnapMapper* is implemented on top of map_cacher<string, bufferlist>,
+which provides an interface over a backing store such as the filesystem
+with async transactions. While transactions are incomplete, the map_cacher
+instance buffers unstable keys allowing consistent access without having
+to flush the filestore. *SnapMapper* provides two mappings:
+
+ 1. hobject_t -> set<snapid_t>: stores the set of snaps for each clone
+ object
+ 2. snapid_t -> hobject_t: stores the set of hobjects with the snapshot
+ as one of its snaps
+
+Assumption: there are lots of hobjects and relatively few snaps. The
+first encoding has a stringification of the object as the key and an
+encoding of the set of snaps as a value. The second mapping, because there
+might be many hobjects for a single snap, is stored as a collection of keys
+of the form stringify(snap)_stringify(object) such that stringify(snap)
+is constant length. These keys have a bufferlist encoding
+pair<snapid, hobject_t> as a value. Thus, creating or trimming a single
+object does not involve reading all objects for any snap. Additionally,
+upon construction, the *SnapMapper* is provided with a mask for filtering
+the objects in the single SnapMapper keyspace belonging to that pg.
+
+Split
+-----
+The snapid_t -> hobject_t key entries are arranged such that for any pg,
+up to 8 prefixes need to be checked to determine all hobjects in a particular
+snap for a particular pg. Upon split, the prefixes to check on the parent
+are adjusted such that only the objects remaining in the pg will be visible.
+The children will immediately have the correct mapping.
diff --git a/src/ceph/doc/dev/osd_internals/watch_notify.rst b/src/ceph/doc/dev/osd_internals/watch_notify.rst
new file mode 100644
index 0000000..8c2ce09
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/watch_notify.rst
@@ -0,0 +1,81 @@
+============
+Watch Notify
+============
+
+See librados for the watch/notify interface.
+
+Overview
+--------
+The object_info (See osd/osd_types.h) tracks the set of watchers for
+a particular object persistently in the object_info_t::watchers map.
+In order to track notify progress, we also maintain some ephemeral
+structures associated with the ObjectContext.
+
+Each Watch has an associated Watch object (See osd/Watch.h). The
+ObjectContext for a watched object will have a (strong) reference
+to one Watch object per watch, and each Watch object holds a
+reference to the corresponding ObjectContext. This circular reference
+is deliberate and is broken when the Watch state is discarded on
+a new peering interval or removed upon timeout expiration or an
+unwatch operation.
+
+A watch tracks the associated connection via a strong
+ConnectionRef Watch::conn. The associated connection has a
+WatchConState stashed in the OSD::Session for tracking associated
+Watches in order to be able to notify them upon ms_handle_reset()
+(via WatchConState::reset()).
+
+Each Watch object tracks the set of currently un-acked notifies.
+start_notify() on a Watch object adds a reference to a new in-progress
+Notify to the Watch and either:
+
+* if the Watch is *connected*, sends a Notify message to the client
+* if the Watch is *unconnected*, does nothing.
+
+When the Watch becomes connected (in PrimaryLogPG::do_osd_op_effects),
+Notifies are resent to all remaining tracked Notify objects.
+
+Each Notify object tracks the set of un-notified Watchers via
+calls to complete_watcher(). Once the remaining set is empty or the
+timeout expires (cb, registered in init()) a notify completion
+is sent to the client.
+
+Watch Lifecycle
+---------------
+A watch may be in one of 5 states:
+
+1. Non existent.
+2. On disk, but not registered with an object context.
+3. Connected
+4. Disconnected, callback registered with timer
+5. Disconnected, callback in queue for scrub or is_degraded
+
+Case 2 occurs between when an OSD goes active and the ObjectContext
+for an object with watchers is loaded into memory due to an access.
+During Case 2, no state is registered for the watch. Case 2
+transitions to Case 4 in PrimaryLogPG::populate_obc_watchers() during
+PrimaryLogPG::find_object_context. Case 1 becomes case 3 via
+OSD::do_osd_op_effects due to a watch operation. Case 4,5 become case
+3 in the same way. Case 3 becomes case 4 when the connection resets
+on a watcher's session.
+
+Cases 4&5 can use some explanation. Normally, when a Watch enters Case
+4, a callback is registered with the OSDService::watch_timer to be
+called at timeout expiration. At the time that the callback is
+called, however, the pg might be in a state where it cannot write
+to the object in order to remove the watch (i.e., during a scrub
+or while the object is degraded). In that case, we use
+Watch::get_delayed_cb() to generate another Context for use from
+the callbacks_for_degraded_object and Scrubber::callbacks lists.
+In either case, Watch::unregister_cb() does the right thing
+(SafeTimer::cancel_event() is harmless for contexts not registered
+with the timer).
+
+Notify Lifecycle
+----------------
+The notify timeout is simpler: a timeout callback is registered when
+the notify is init()'d. If all watchers ack notifies before the
+timeout occurs, the timeout is canceled and the client is notified
+of the notify completion. Otherwise, the timeout fires, the Notify
+object pings each Watch via cancel_notify to remove itself, and
+sends the notify completion to the client early.
diff --git a/src/ceph/doc/dev/osd_internals/wbthrottle.rst b/src/ceph/doc/dev/osd_internals/wbthrottle.rst
new file mode 100644
index 0000000..a3ae00d
--- /dev/null
+++ b/src/ceph/doc/dev/osd_internals/wbthrottle.rst
@@ -0,0 +1,28 @@
+==================
+Writeback Throttle
+==================
+
+Previously, the filestore had a problem when handling large numbers of
+small ios. We throttle dirty data implicitely via the journal, but
+a large number of inodes can be dirtied without filling the journal
+resulting in a very long sync time when the sync finally does happen.
+The flusher was not an adequate solution to this problem since it
+forced writeback of small writes too eagerly killing performance.
+
+WBThrottle tracks unflushed io per hobject_t and ::fsyncs in lru
+order once the start_flusher threshold is exceeded for any of
+dirty bytes, dirty ios, or dirty inodes. While any of these exceed
+the hard_limit, we block on throttle() in _do_op.
+
+See src/os/WBThrottle.h, src/osd/WBThrottle.cc
+
+To track the open FDs through the writeback process, there is now an
+fdcache to cache open fds. lfn_open now returns a cached FDRef which
+implicitely closes the fd once all references have expired.
+
+Filestore syncs have a sideeffect of flushing all outstanding objects
+in the wbthrottle.
+
+lfn_unlink clears the cached FDRef and wbthrottle entries for the
+unlinked object when the last link is removed and asserts that all
+outstanding FDRefs for that object are dead.