summaryrefslogtreecommitdiffstats
path: root/docs/design/architecture.rst
diff options
context:
space:
mode:
authorBrady Johnson <brady.allen.johnson@ericsson.com>2016-01-20 11:33:16 +0100
committerBrady Johnson <brady.allen.johnson@ericsson.com>2016-01-21 19:32:13 +0100
commitde5689105582602e6f2a453bfe9da196cdfc0a99 (patch)
treed5d920d419e75b6fa7ed773998e543adfd9f6e24 /docs/design/architecture.rst
parent560c8d8d36304fb3dafcf148c101a7839ec58c60 (diff)
SFC design Documents for Brahmaptura release
- Patch set 9 : Addressed Jim Guichard's review comments. - Patch set 10 : Removed date and revision as its duplicated, according to Chris' review comments. Change-Id: Idca9696c4b703a3ef93b553fe785449cea0935f0 Signed-off-by: Brady Johnson <brady.allen.johnson@ericsson.com>
Diffstat (limited to 'docs/design/architecture.rst')
-rw-r--r--docs/design/architecture.rst126
1 files changed, 124 insertions, 2 deletions
diff --git a/docs/design/architecture.rst b/docs/design/architecture.rst
index 24be1675..d2a1bb4d 100644
--- a/docs/design/architecture.rst
+++ b/docs/design/architecture.rst
@@ -1,4 +1,126 @@
Architecture
-============
+------------
+
+This section describes the architectural approach to incorporating the upstream
+OpenDaylight (ODL) SFC project into the OPNFV Brahmaputra platform.
+
+Service Functions
++++++++++++++++++
+
+A Service Function (SF) is a Function that provides services to flows traversing
+a Service Chain. Examples of typical SFs include: Firewall, NAT, QoS, and DPI.
+In the context of OPNFV, the SF will be a Virtual Network Function. The SFs
+receive data packets from a Service Function Forwarder.
+
+Service Function Forwarders
++++++++++++++++++++++++++++
+
+The Service Function Forwarder (SFF) is the core element used in Service
+Chaining. It is an OpenFlow switch that, in the context of OPNFV, is hosted
+in an OVS bridge. In OPNFV there will be one SFF per Compute Node that will
+be hosted in the "br-int" OpenStack OVS bridge.
+
+The responsibility of the SFF is to steer incoming packets to the corresponding
+Service Function, or to the SFF in the next compute node. The flows in the SFF
+are programmed by the OpenDaylight SFC SDN Controller.
+
+Service Chains
+++++++++++++++
+
+Service Chains are defined in the OpenDaylight SFC Controller using the
+following constructs:
+
+SFC
+ A Service Function Chain (SFC) is an ordered list of abstract SF types.
+
+SFP
+ A Service Function Path (SFP) references an SFC, and optionally provides
+ concrete information about the SFC, like concrete SF instances. If SF
+ instances are not supplied, then the RSP will choose them.
+
+RSP
+ A Rendered Service Path (RSP) is the actual Service Chain. An RSP references
+ an SFP, and effectively merges the information from the SFP and SFC to create
+ the Service Chain. If concrete SF details were not provided in the SFP, then
+ SF selection algorithms are used to choose one. When the RSP is created, the
+ OpenFlows will be programmed and written to the SFF(s).
+
+Service Chaining Encapsulation
+++++++++++++++++++++++++++++++
+
+Service Chaining Encapsulation encapsulates traffic sent through the Service
+Chaining domain to facilitate easier steering of packets through Service Chains.
+If no Service Chaining Encapsulation is used, then packets much be classified
+at every hop of the chain, which would be slow and would not scale well.
+
+In ODL SFC, Network Service Headers (NSH) is used for Service Chaining
+encapsulation. NSH is an IETF specification that uses 2 main header
+fields to facilitate packet steering, namely:
+
+NSP (NSH Path)
+ The NSP is the Service Path ID.
+
+NSI (NSH Index)
+ The NSI is the Hop in the Service Chain. The NSI starts at 255 and is
+ decremented by every SF. If the NSI reaches 0, then the packet is dropped
+ which avoids loop detections.
+
+NSH also has metadata fields, but that's beyond the scope of this architecture.
+
+In ODL SFC, NSH packets are encapsulated in VXLAN-GPE.
+
+Classifiers
++++++++++++
+
+A classifier is the entry point into Service Chaining. The role of the
+classifier is to map incoming traffic to Service Chains. In ODL SFC, this
+mapping is performed by matching the packets and encapsulating the packets in
+a VXLAN-GPE NSH tunnel.
+
+The packet matching is specific to the classifier implementation, but can be
+as simple as an ACL, or can be more complex by using PCRF information or DPI.
+
+VNF Manager
++++++++++++
+
+In OPNFV SFC, a VNF Manager is needed to spin-up VMs for Service Functions.
+It has been decided to use the OpenStack Tacker VNF Mgr to spin-up and manage
+the life cylcle of the SFs. Tacker will receive the ODL SFC configuration,
+manage the SF VMs, and forward the configuration to ODL SFC. The following
+sequence diagram details the interactions with the VNF Mgr:
+
+.. image:: ./images/OPNFV_SFC_Brahmaputra_SfCreation.jpg
+
+OPNFV SFC Network Topology
+++++++++++++++++++++++++++
+
+The following image details the Network Topology used in OPNFV Brahmaputra SFC:
+
+.. image:: ./images/OPNFV_SFC_Brahmaputra_NW_Topology.jpg
+
+
+OVS NSH patch workaround
+++++++++++++++++++++++++
+
+When using NSH with VXLAN tunnels, its important that the VXLAN tunnel is
+terminated in the SF VM. This allows the SF to see the NSH header, allowing
+it to decrement the NSI and also to use the NSH metadata. When using VXLAN with
+OpenStack, the tunnels are not terminated in the VM, but in the "br-int" OVS
+bridge. There is work ongoing in the upstream OVS community to implemement NSH
+encapsulation. To get around the way OpenStack handles VXLAN tunnels, the OVS
+work will also include the ability to encapsulate/decapsulate VXLAN tunnels from
+OpenFlow rules, instead of relying on the Vtep ports. The ongoing upstream OVS
+work will probably not be finished by the time OPNFV Brahmaputra is released, so
+a work-around has been created. This work-around will use a private branch of
+OVS that has a preliminary version of NSH implemented.
+
+The following diagram illustrates how packets will be sent to an SF, when the
+SFF has processed the packet and wants to send it to the SF:
+
+.. image:: ./images/OPNFV_SFC_BrahmaputraOvsNshWorkaround_toSf.jpg
+
+The following diagram illustrates how packets will sent from an SF to an SFF,
+once the SF has processed a packet:
+
+.. image:: ./images/OPNFV_SFC_BrahmaputraOvsNshWorkaround_fromSf.jpg
-This section will describe the architectural approach to incorporating SFC into the OPNFV platform. \ No newline at end of file