summaryrefslogtreecommitdiffstats
path: root/LICENSE
blob: 143e209aa4d05ffed7d74f5614f08715ec08abfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
Copyright 2015 Open Platform for NFV Project, Inc. and its contributors

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
n309' href='#n309'>309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/*
// Copyright (c) 2010-2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/

#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_hash.h>
#include <rte_ip.h>

#include "prox_malloc.h"
#include "task_init.h"
#include "lconf.h"
#include "defines.h"
#include "stats.h"
#include "tx_pkt.h"
#include "hash_entry_types.h"
#include "prefetch.h"
#include "prox_cksum.h"
#include "gre.h"
#include "etypes.h"
#include "log.h"
#include "quit.h"
#include "prox_assert.h"
#include "pkt_prototypes.h"
#include "quit.h"

struct cpe_gre_key {
	prox_rte_ether_addr clt_mac;
	uint16_t          pad;
} __attribute__((__packed__));

struct cpe_gre_data {
	uint32_t gre_id;
	uint32_t cpe_ip;
	uint64_t tsc;
#ifdef GRE_TP
	uint64_t tp_tsc;
	double tp_tbsize;
#endif
} __attribute__((__packed__));

struct task_gre_decap {
	struct task_base base;
	struct rte_hash *cpe_gre_hash;
	struct cpe_gre_data *cpe_gre_data;
	struct lcore_cfg *lconf;
	uint8_t runtime_flags;
	uint8_t mapping[PROX_MAX_PORTS];
	uint32_t bucket_index;
	int     offload_crc;
	const void* key_ptr[16];
	struct cpe_gre_key key[16];
	uint64_t           cpe_timeout;
#ifdef GRE_TP
	double cycles_per_byte;
	uint32_t tb_size;
#endif
};

static void handle_gre_decap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);
static void handle_gre_encap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts);

static inline uint8_t handle_gre_encap(struct task_gre_decap *task, struct rte_mbuf *mbuf, struct cpe_gre_data *table);
static inline void handle_gre_encap16(struct task_gre_decap *task, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out);
static inline uint8_t handle_gre_decap(struct task_gre_decap *tbase, struct rte_mbuf *mbuf);

void update_arp_entries_gre(void *data);

static void init_cpe_gre_hash(struct task_args *targ)
{
	char name[64];
	uint8_t socket_id;
	uint8_t lcore_id;
	uint8_t table_part;

	/* Already set up by other task */
	if (targ->cpe_gre_hash) {
		return;
	}

	lcore_id = targ->lconf->id;
	socket_id = rte_lcore_to_socket_id(lcore_id);
	sprintf(name, "core_%u_CPE_GRE_Table", targ->lconf->id);
	table_part = targ->nb_slave_threads;

	if (table_part == 0)
		table_part = 1;
	if (!rte_is_power_of_2(table_part)) {
		table_part = rte_align32pow2(table_part) >> 1;
	}

	struct rte_hash_parameters hash_params = {
		.name = name,
		.entries = MAX_GRE / table_part,
		.bucket_entries = GRE_BUCKET_ENTRIES,
		.key_len = sizeof(struct cpe_gre_key),
		.hash_func_init_val = 0,
		.socket_id = socket_id
	};

	struct rte_hash* phash = rte_hash_create(&hash_params);
	struct cpe_gre_data *cpe_gre_data = prox_zmalloc(MAX_GRE / table_part, socket_id);

	PROX_PANIC(phash == NULL, "Unable to allocate memory for IPv4 hash table on core %u\n", lcore_id);

	for (uint8_t task_id = 0; task_id < targ->lconf->n_tasks_all; ++task_id) {
		enum task_mode smode = targ->lconf->targs[task_id].mode;
		if (smode == GRE_DECAP || smode == GRE_ENCAP) {
			targ->lconf->targs[task_id].cpe_gre_hash = phash;
			targ->lconf->targs[task_id].cpe_gre_data = cpe_gre_data;
		}
	}
}

static void init_task_gre_decap(struct task_base *tbase, struct task_args *targ)
{
	struct task_gre_decap *task = (struct task_gre_decap *)tbase;

	init_cpe_gre_hash(targ);
	task->cpe_gre_hash = targ->cpe_gre_hash;
	task->cpe_gre_data = targ->cpe_gre_data;
	task->runtime_flags = targ->runtime_flags;
	task->lconf = targ->lconf;
	task->cpe_timeout = msec_to_tsc(targ->cpe_table_timeout_ms);

	targ->lconf->period_func = update_arp_entries_gre;
	targ->lconf->period_data = tbase;
	targ->lconf->period_timeout = msec_to_tsc(500) / NUM_VCPES;

	for (uint8_t i = 0; i < 16; ++i) {
		task->key_ptr[i] = &task->key[i];
	}
}

static void init_task_gre_encap(struct task_base *tbase, struct task_args *targ)
{
	struct task_gre_decap *task = (struct task_gre_decap *)tbase;

	init_cpe_gre_hash(targ);
	task->cpe_gre_hash = targ->cpe_gre_hash;
	task->cpe_gre_data = targ->cpe_gre_data;
	task->runtime_flags = targ->runtime_flags;
	task->lconf = targ->lconf;

	struct port_cfg *port = find_reachable_task_sending_to_port(targ);
	if (port) {
		task->offload_crc = port->requested_tx_offload & TX_OFFLOAD_CKSUM;
	}

#ifdef GRE_TP
	if (targ->tb_rate) {
		task->cycles_per_byte = ((double)rte_get_tsc_hz()) / ((double)targ->tb_rate);
		task->tb_size = targ->tb_size != 0 ? targ->tb_size : 1520;
	}
	else {
		/* traffic policing disabled */
		task->cycles_per_byte = 0;
	}
#endif
}

static struct task_init task_init_gre_decap = {
	.mode = GRE_DECAP,
	.mode_str = "gredecap",
	.init = init_task_gre_decap,
	.handle = handle_gre_decap_bulk,
	.size = sizeof(struct task_gre_decap)
};

static struct task_init task_init_gre_encap = {
	.mode = GRE_ENCAP,
	.mode_str = "greencap",
	.init = init_task_gre_encap,
	.handle = handle_gre_encap_bulk,
	.size = sizeof(struct task_gre_decap)
};

__attribute__((constructor)) static void reg_task_gre(void)
{
	reg_task(&task_init_gre_decap);
	reg_task(&task_init_gre_encap);
}

void handle_gre_decap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_gre_decap *task = (struct task_gre_decap *)tbase;
	uint8_t out[MAX_PKT_BURST];
	uint16_t j;

	prefetch_first(mbufs, n_pkts);

	for (j = 0; j + PREFETCH_OFFSET < n_pkts; ++j) {
#ifdef PROX_PREFETCH_OFFSET
		PREFETCH0(mbufs[j + PREFETCH_OFFSET]);
		PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PREFETCH_OFFSET - 1], void *));
#endif
		out[j] = handle_gre_decap(task, mbufs[j]);
	}
#ifdef PROX_PREFETCH_OFFSET
	PREFETCH0(rte_pktmbuf_mtod(mbufs[n_pkts - 1], void *));
	for (; j < n_pkts; ++j) {
		out[j] = handle_gre_decap(task, mbufs[j]);
	}
#endif

	task->base.tx_pkt(&task->base, mbufs, n_pkts, out);
}

struct gre_packet {
	prox_rte_ether_hdr eth;
	prox_rte_ipv4_hdr ip;
	struct gre_hdr gre;
	union {
		prox_rte_ether_hdr eth2;
		prox_rte_ipv4_hdr ip2;
	};
} __attribute__((__packed__));

/* Handle ipv4 over GRE and Ethernet over GRE. In case of ipv4 over
   GRE remove gre and ipv4 header and retain space for ethernet
   header. In case of Eth over GRE remove external eth, gre and ipv4
   headers and return pointer to payload */
static inline prox_rte_ether_hdr *gre_decap(struct gre_hdr *pgre, struct rte_mbuf *mbuf)
{
	int16_t hsize = 0;
	if (pgre->type == ETYPE_EoGRE) {
		hsize = sizeof(prox_rte_ether_hdr) + sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr);
	}
	else if (pgre->type == ETYPE_IPv4) {
		/* retain sizeof(prox_rte_ether_hdr) */
		hsize = sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr);
	}
	else {
		return NULL;
	}

	return (prox_rte_ether_hdr *)rte_pktmbuf_adj(mbuf, hsize);
}

static inline uint8_t handle_gre_decap(struct task_gre_decap *task, struct rte_mbuf *mbuf)
{
	prox_rte_ipv4_hdr *pip = (prox_rte_ipv4_hdr *)(rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *) + 1);

	if (pip->next_proto_id != IPPROTO_GRE) {
		plog_warn("Invalid packet proto_id = 0x%x expect 0x%x\n",
			pip->next_proto_id, IPPROTO_GRE);
		return OUT_DISCARD;
	}

	struct cpe_gre_data data;
	struct cpe_gre_key key;
	struct gre_hdr *pgre = (struct gre_hdr *)(pip + 1);
	data.gre_id = pgre->gre_id;
	data.cpe_ip = pip->src_addr;

	prox_rte_ether_hdr *peth = gre_decap(pgre, mbuf);
	PROX_PANIC(peth != 0, "Failed to gre_decap");

	pip = (prox_rte_ipv4_hdr *)(peth + 1);

/* emulate client MAC for test purposes */
#if 1
	if (pgre->type == ETYPE_IPv4) {
		prox_rte_ether_hdr eth = {
			.d_addr = {.addr_bytes =
				   {0x0A, 0x02, 0x0A, 0x0A, 0x00, 0x01}},
			.s_addr = {.addr_bytes =
				   {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
			.ether_type = ETYPE_IPv4
		};
		uint32_t hip = rte_bswap32(pip->src_addr);
		eth.s_addr.addr_bytes[2] = (hip >> 24) & 0xFF;
		eth.s_addr.addr_bytes[3] = (hip >> 16) & 0xFF;
		eth.s_addr.addr_bytes[4] = (hip >> 8) & 0xFF;
		eth.s_addr.addr_bytes[5] = (hip) & 0xFF;
		rte_memcpy(peth, &eth, sizeof(prox_rte_ether_hdr));
	}
	prox_rte_ether_addr_copy(&peth->s_addr, &key.clt_mac);
#endif

	data.tsc = rte_rdtsc() + task->cpe_timeout;

	int32_t hash_index = rte_hash_add_key(task->cpe_gre_hash, &key);
	if (unlikely(hash_index < 0)) {
		plog_warn("Failed to add key, gre %x\n", data.gre_id);
	}
	else if (unlikely(hash_index >= MAX_GRE)) {
		plog_warn("Failed to add: Invalid hash_index = 0x%x\n",
			hash_index);
		return OUT_DISCARD;
	}
	rte_memcpy(&task->cpe_gre_data[hash_index], &data, sizeof(data));
	if (task->runtime_flags & TASK_TX_CRC) {
		prox_ip_cksum(mbuf, pip, sizeof(prox_rte_ether_hdr), sizeof(prox_rte_ipv4_hdr), task->offload_crc);
	}

	return 0;
}

void handle_gre_encap_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts)
{
	struct task_gre_decap *task = (struct task_gre_decap *)tbase;
	uint8_t out[MAX_PKT_BURST];
	uint16_t done = 0;

	while (n_pkts) {
		uint16_t chopped = RTE_MIN(n_pkts, 16);
		prefetch_pkts(mbufs, chopped);
		handle_gre_encap16(task, mbufs, chopped, out + done);
		mbufs += chopped;
		n_pkts -= chopped;
		done += chopped;
	}

	task->base.tx_pkt(&task->base, mbufs - done, done, out);
}

#define DO_ENC_ETH_OVER_GRE 1
#define DO_ENC_IP_OVER_GRE 0

static inline void handle_gre_encap16(struct task_gre_decap *task, struct rte_mbuf **mbufs, uint16_t n_pkts, uint8_t *out)
{
	for (uint8_t i = 0; i < n_pkts; ++i) {
		prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbufs[i], prox_rte_ether_hdr *);
		prox_rte_ether_addr_copy(&peth->d_addr, &task->key[i].clt_mac);
	}

	int32_t hash_index[16];
	rte_hash_lookup_bulk(task->cpe_gre_hash, task->key_ptr, n_pkts, hash_index);
	for (uint8_t i = 0; i < n_pkts; ++i ) {
		if (unlikely(hash_index[i] < 0)) {
			plog_warn("Invalid hash_index (<0) = 0x%x\n", hash_index[i]);
			out[i] = OUT_DISCARD;
		}
		else if (unlikely(hash_index[i] >= MAX_GRE)) {
			plog_warn("Invalid hash_index = 0x%x\n", hash_index[i]);
			out[i] = OUT_DISCARD;
		}
		rte_prefetch0(&task->cpe_gre_data[hash_index[i]]);
	}

	for (uint8_t i = 0; i < n_pkts; ++i ) {
		if (likely(out[i] != OUT_DISCARD)) {
			out[i] = handle_gre_encap(task, mbufs[i], &task->cpe_gre_data[hash_index[i]]);
		}
	}
}

#ifdef DO_ENC_ETH_OVER_GRE
#define PKT_PREPEND_LEN (sizeof(prox_rte_ether_hdr) + sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr))
#elif DO_ENC_IP_OVER_GRE
#define PKT_PREPEND_LEN (sizeof(prox_rte_ipv4_hdr) + sizeof(struct gre_hdr))
#else

static inline uint8_t handle_gre_encap(struct task_gre_decap *task, struct rte_mbuf *mbuf, struct cpe_gre_data *table)
{
	prox_rte_ether_hdr *peth = rte_pktmbuf_mtod(mbuf, prox_rte_ether_hdr *);
	prox_rte_ipv4_hdr *pip = (prox_rte_ipv4_hdr *)(peth + 1);
	uint16_t ip_len = rte_be_to_cpu_16(pip->total_length);

	struct cpe_gre_key key;
	prox_rte_ether_addr_copy(&peth->d_addr, &key.clt_mac);

#ifdef GRE_TP
	/* policing enabled */
	if (task->cycles_per_byte) {
		const uint16_t pkt_size = rte_pktmbuf_pkt_len(mbuf) + PROX_RTE_ETHER_CRC_LEN;
		uint64_t tsc_now = rte_rdtsc();
		if (table->tp_tbsize < pkt_size) {
			uint64_t cycles_diff = tsc_now - table->tp_tsc;
			double dB = ((double)cycles_diff) / task->cycles_per_byte;
			if (dB > (double)task->tb_size) {
				dB = task->tb_size;
			}
			if ((table->tp_tbsize + dB) >= pkt_size) {
				table->tp_tbsize += dB;
				table->tp_tsc = tsc_now;
			}
			else {
				TASK_STATS_ADD_DROP_DISCARD(&task->base.aux->stats, 1);
				return OUT_DISCARD;
			}
		}
		table->tp_tbsize -= pkt_size;
	}
#endif /* GRE_TP */

	/* reuse ethernet header from payload, retain payload (ip) in
	   case of DO_ENC_IP_OVER_GRE */
	peth = (prox_rte_ether_hdr *)rte_pktmbuf_prepend(mbuf, PKT_PREPEND_LEN);
	PREFETCH0(peth);
	ip_len += PKT_PREPEND_LEN;

	pip = (prox_rte_ipv4_hdr *)(peth + 1);
	struct gre_hdr *pgre = (struct gre_hdr *)(pip + 1);

	prox_rte_ether_hdr eth = {
		.d_addr = {.addr_bytes = {0x0A, 0x0A, 0x0A, 0xC8, 0x00, 0x02}},
		.s_addr = {.addr_bytes = {0x0A, 0x0A, 0x0A, 0xC8, 0x00, 0x01}},
		.ether_type = ETYPE_IPv4
	};
	rte_memcpy(peth, &eth, sizeof(prox_rte_ether_hdr));

	rte_memcpy(pgre, &gre_hdr_proto, sizeof(struct gre_hdr));
#if DO_ENC_ETH_OVER_GRE
	pgre->type = ETYPE_EoGRE;
#elif DO_ENC_IP_OVER_GRE
	pgre->type = ETYPE_IPv4;
#endif
	pgre->gre_id = table->gre_id;

	rte_memcpy(pip, &tunnel_ip_proto, sizeof(prox_rte_ipv4_hdr));
	pip->src_addr = 0x02010a0a;	//emulate port ip
	pip->dst_addr = table->cpe_ip;
	pip->total_length = rte_cpu_to_be_16(ip_len);

	if (task->runtime_flags & TASK_TX_CRC) {
		prox_ip_cksum(mbuf, pip, sizeof(prox_rte_ether_hdr), sizeof(prox_rte_ipv4_hdr), task->offload_crc);
	}

	return 0;
}

void update_arp_entries_gre(void *data)
{
	uint64_t cur_tsc = rte_rdtsc();
	struct task_gre_decap *task = (struct task_gre_decap *)data;

#if RTE_VERSION >= RTE_VERSION_NUM(2,1,0,0)
	// rte_hash_iterate might take a long time if no entries found => we should not use it here
	// struct rte_hash is now internal.....
	// => Not implemented
#else
	uint32_t *sig_bucket = (hash_sig_t *)&(task->cpe_gre_hash->sig_tbl[task->bucket_index * task->cpe_gre_hash->sig_tbl_bucket_size]);
	uint32_t table_index = task->bucket_index * task->cpe_gre_hash->bucket_entries;

	uint8_t *entry_bucket =
	    (uint8_t *) & task->cpe_gre_hash->key_tbl[task->bucket_index * task->cpe_gre_hash->bucket_entries * task->cpe_gre_hash->key_tbl_key_size];

	for (uint32_t pos = 0; pos < task->cpe_gre_hash->bucket_entries; ++pos, ++table_index) {
		struct cpe_gre_entry *key = (struct cpe_gre_entry *)&entry_bucket[pos * task->cpe_gre_hash->key_tbl_key_size];
		if (task->cpe_gre_data[table_index].tsc < cur_tsc) {
			sig_bucket[pos] = 0;
			task->cpe_gre_data[table_index].tsc = UINT64_MAX;
		}
	}
	++task->bucket_index;
	task->bucket_index &= task->cpe_gre_hash->bucket_bitmask;
#endif
}