1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
# ----------------------------------------------------------------------
# title: TOM useful functions
# author: Alassane Samba (alassane.samba@orange.com)
# Copyright (c) 2017 Orange
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
# http://www.apache.org/licenses/LICENSE-2.0
# ----------------------------------------------------------------------
############
### Evaluate a prediction
############
prediction_evaluator_with_p<-function(pred, actual, p){
##error
error=actual-pred
## null ndeviance
null.deviance=sum((mean(actual)-actual)^2)
## deviance : sum of squared error
se=sum(error^2)
## n
n=length(actual)
## mean squared error
mse=se/n
## root mean squared error
rmse=sqrt(mse)
## normalized root mean squared error
nrmse=sqrt(mse/(null.deviance/n))
## r2 : coef of determination
r2=1-(se/null.deviance)
#adjusted r2
adfR2=1-(1-r2)*((n-1)/(n-p))
## absolute error ratio
abs.error.ratio=abs(error/actual)
## mean absolute error ratio
mean.abs.error.ratio=mean(abs.error.ratio)
## median absolute error ratio
med.abs.error.ratio=median(abs.error.ratio)
## 80th-percentile absolute error ratio
perc80.abs.error.ratio=quantile(abs.error.ratio,0.8)
## return :
return(list(p=p,n=n,sd=sqrt(null.deviance/n),NRMSE=nrmse,RMSE=rmse,R2=r2,adj.R2=adfR2,mean.abs.error.ratio=mean.abs.error.ratio,med.abs.error.ratio=med.abs.error.ratio,perc80.abs.error.ratio=perc80.abs.error.ratio))
### ajouter error et error ratio au return pour pouvoir faire les graphes, etc.
}
#########
## Calculate R2 (coef of determination / part of explained variance) from the GLM regression
#########
betterGenericR2calculator<-function(dataset,targetName,independantVariableNames){
dataset2=na.omit(dataset[,c(targetName,independantVariableNames)])
numVars=colnames(dataset2)[unlist(lapply(dataset2,is.numeric))&colnames(dataset2)%in%independantVariableNames]
factorVars=colnames(dataset2)[(!unlist(lapply(dataset2,is.numeric)))&colnames(dataset2)%in%independantVariableNames]
if(length(factorVars)>0&length(numVars)>0){
factorVarPasted=droplevels(as.factor(apply(cbind(rep("",nrow(dataset2)),as.data.frame(dataset2[,factorVars])),1,paste,collapse=":")))
theformula=paste(targetName,paste(numVars,collapse = "*"), sep='~')
nbNumVars=length(numVars)
resList=by(dataset2, factorVarPasted, FUN=function(x){m=lm(theformula,data=x,y=T); return(list(pred=m$fitted.values,actual=m$y))})
pred=unlist(lapply(resList,function(x){x$pred}))
actual=unlist(lapply(resList,function(x){x$actual}))
p=((length(levels(droplevels(as.factor(factorVarPasted))))-1)*nbNumVars)+(length(levels(droplevels(as.factor(factorVarPasted))))-1)+nbNumVars+1
res=prediction_evaluator_with_p(pred,actual,p)
}else if(length(factorVars)==0&length(numVars)>0){
theformula=paste(targetName,paste(numVars,collapse = "*"), sep='~')
nbNumVars=length(numVars)
m=lm(theformula,data=dataset2,y=T)
pred=m$fitted.values
actual=m$y
p=nbNumVars+1
res=prediction_evaluator_with_p(pred,actual,p)
}else if(length(factorVars)>0&length(numVars)==0){
factorVarPasted=droplevels(as.factor(apply(cbind(rep("",nrow(dataset2)),as.data.frame(dataset2[,factorVars])),1,paste,collapse=":")))
m=lm(dataset2[,targetName]~factorVarPasted,y=T)
pred=m$fitted.values
actual=m$y
p=length(levels(factorVarPasted))
res=prediction_evaluator_with_p(pred,actual,p)
}else{
res=NULL
}
return(res)
}
###################
###### Determine the best predictor set (continuous and factor independant variables) to consider for a continuous dependant variable
###################
genericBestPredictor<-function(dataset,targetName,independantVariableNames, plot=T, text=T, las=1){
ordered_best_additional_predictors=list()
ordered_best_predictors_per_level=list(NULL)
ordered_best_r2=list()
for (i in 1:length(independantVariableNames)){
level_i_predictors=as.list(independantVariableNames)[!as.list(independantVariableNames)%in%ordered_best_additional_predictors]
varExp_i=lapply(level_i_predictors,function(x){betterGenericR2calculator(dataset,targetName,c(unlist(ordered_best_additional_predictors),x))$R2})
if(i==1){
bivariateR2<-varExp_i
names(bivariateR2)<-unlist(level_i_predictors)
}
ordered_best_additional_predictors=c(ordered_best_additional_predictors,level_i_predictors[varExp_i%in%max(unlist(varExp_i))])
ordered_best_predictors_per_level=c(ordered_best_predictors_per_level,paste(unlist(ordered_best_predictors_per_level[i]),unlist(ordered_best_additional_predictors[i]), sep=":"))
ordered_best_r2=c(ordered_best_r2,max(unlist(varExp_i)))
ordered_r2_progress=c(round(unlist(ordered_best_r2)[1],2),paste(rep("+",length(ordered_best_r2)-1),round(unlist(ordered_best_r2)[-1]-unlist(ordered_best_r2)[-length(ordered_best_r2)],2)))
}
ordered_best_predictors_per_level=ordered_best_predictors_per_level[-1]
mynames=unlist(ordered_best_additional_predictors)
mynames=c(mynames[1],paste("+",mynames[2:length(mynames)]))
names(ordered_best_r2)<-mynames
if(plot){
#barplot(unlist(ordered_best_r2), names.arg = unlist(ordered_best_predictors_per_level),las=las,ylab="R2",main=paste("Correlation with",targetName))
barplot(unlist(ordered_best_r2), names.arg = mynames, las=las, ylab="R2",main=paste("Correlation with",targetName))
text(y=0.1, x=((1:length(mynames))-0.4)*1.2,labels = ordered_r2_progress)
}
if(text) return(list(bivariateR2=bivariateR2,orderedBestR2=ordered_best_r2,orderedBestPredictorsPerLevel=ordered_best_predictors_per_level,orderedBestAdditionalPredictors=ordered_best_additional_predictors, targetName=targetName))
}
####################
|