diff options
-rw-r--r-- | examples/compute-qpi-report/qpi.json | 250 | ||||
-rw-r--r-- | examples/compute-qpi-report/report.ipynb | 71 | ||||
-rw-r--r-- | examples/storage-qpi-report/storage-qpi.ipynb | 784 | ||||
-rw-r--r-- | examples/storage-qpi-report/storperf-danube.json | 4161 | ||||
-rw-r--r-- | examples/storage-qpi-report/storperf-master.json | 4161 | ||||
-rw-r--r-- | examples/storage-qpi-report/zte-apex-virtual.json | 484 | ||||
-rw-r--r-- | tests/ci/run_ci.sh | 12 |
7 files changed, 9920 insertions, 3 deletions
diff --git a/examples/compute-qpi-report/qpi.json b/examples/compute-qpi-report/qpi.json new file mode 100644 index 00000000..313b0ed5 --- /dev/null +++ b/examples/compute-qpi-report/qpi.json @@ -0,0 +1,250 @@ +{ + "score": 1789, + "nodes": [ + { + "name": "node-9", + "description": "QTIP Performance Index of compute", + "system_info": { + "product": [ + "KVM" + ], + "disk": [ + "53.7GB (5.9% used)" + ], + "os": [ + "Ubuntu 14.04 trusty" + ], + "memory": [ + "799.5/3945.4MB" + ] + }, + "score": 1789, + "sections": [ + { + "metrics": [ + { + "score": 0.8011997053326527, + "workloads": [ + { + "description": "workload", + "score": 0.906301071363719, + "result": "14973.3", + "name": "rsa_sign_512" + }, + { + "description": "workload", + "score": 0.9057407614156525, + "result": "202818.2", + "name": "rsa_verify_512" + }, + { + "description": "workload", + "score": 0.9153740089624267, + "result": "5311.7", + "name": "rsa_sign_1024" + }, + { + "description": "workload", + "score": 0.8537774532382183, + "result": "75999.7", + "name": "rsa_verify_1024" + }, + { + "description": "workload", + "score": 0.5396440129449838, + "result": "667.9", + "name": "rsa_sign_2048" + }, + { + "description": "workload", + "score": 0.8264622658404671, + "result": "23074.2", + "name": "rsa_verify_2048" + }, + { + "description": "workload", + "score": 0.7456140350877193, + "result": "85.0", + "name": "rsa_sign_4096" + }, + { + "description": "workload", + "score": 0.7166840338080352, + "result": "6190.5", + "name": "rsa_verify_4096" + } + ], + "name": "ssl_rsa", + "description": "metric" + }, + { + "score": 0.8825181751154869, + "workloads": [ + { + "description": "workload", + "score": 0.8370586428196568, + "result": "455386.11k", + "name": "aes_128_cbc_16_bytes" + }, + { + "description": "workload", + "score": 0.88480457910821, + "result": "508865.58k", + "name": "aes_128_cbc_64_bytes" + }, + { + "description": "workload", + "score": 0.8915887914399657, + "result": "523945.47k", + "name": "aes_128_cbc_256_bytes" + }, + { + "description": "workload", + "score": 0.9128156148324568, + "result": "543212.20k", + "name": "aes_128_cbc_1024_bytes" + }, + { + "description": "workload", + "score": 0.8863232473771453, + "result": "523026.43k", + "name": "aes_128_cbc_8192_bytes" + } + ], + "name": "ssl_aes", + "description": "metric" + } + ], + "score": 0.8418589402240698, + "name": "SSL", + "description": "cryptography and SSL/TLS performance" + }, + { + "metrics": [ + { + "score": 0.44965595077729636, + "workloads": [ + { + "description": "workload", + "score": 0.45041322314049587, + "result": "1.09 M", + "name": "dpi_pps" + }, + { + "description": "workload", + "score": 0.4488986784140969, + "result": "10.19 G", + "name": "dpi_bps" + } + ], + "name": "dpi_throughput", + "description": "metric" + } + ], + "score": 0.44965595077729636, + "name": "DPI", + "description": "deep packet inspection" + }, + { + "metrics": [ + { + "score": 0.8277109922623959, + "workloads": [ + { + "description": "workload", + "score": 0.8159569260890847, + "result": "8335.43", + "name": "triad" + }, + { + "description": "workload", + "score": 0.8046851833547495, + "result": "8141.71", + "name": "add" + }, + { + "description": "workload", + "score": 0.8622673849167483, + "result": "7043.29", + "name": "copy" + }, + { + "description": "workload", + "score": 0.827934474689001, + "result": "6722.34", + "name": "scale" + } + ], + "name": "floatmem", + "description": "metric" + }, + { + "score": 0.6916571989516922, + "workloads": [ + { + "description": "workload", + "score": 0.7023780136591788, + "result": "8536.47", + "name": "triad" + }, + { + "description": "workload", + "score": 0.6702975125995773, + "result": "8246.31", + "name": "add" + }, + { + "description": "workload", + "score": 0.6987862883385272, + "result": "8521.74", + "name": "copy" + }, + { + "description": "workload", + "score": 0.6951669812094855, + "result": "8472.50", + "name": "scale" + } + ], + "name": "intmem", + "description": "metric" + } + ], + "score": 0.7596840956070441, + "name": "memory", + "description": "cache and memory performance" + }, + { + "metrics": [ + { + "score": 1.4439459760636688, + "workloads": [ + { + "description": "workload", + "score": 0.9324691580096908, + "result": "27044320.8", + "name": "dhrystone_lps" + }, + { + "description": "workload", + "score": 1.955422794117647, + "result": "4255.2", + "name": "whetstone_MWIPS" + } + ], + "name": "arithmetic", + "description": "metric" + } + ], + "score": 1.4439459760636688, + "name": "arithmetic", + "description": "arithmetic computing speed" + } + ], + "spec": "https://git.opnfv.org/qtip/tree/resources/QPI/compute.yaml", + "baseline": "https://git.opnfv.org/qtip/tree/resources/QPI/compute-baseline.json" + } + ], + "name": "compute", + "description": "POD Compute QPI" +} diff --git a/examples/compute-qpi-report/report.ipynb b/examples/compute-qpi-report/report.ipynb new file mode 100644 index 00000000..b4068a37 --- /dev/null +++ b/examples/compute-qpi-report/report.ipynb @@ -0,0 +1,71 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD9CAYAAAC/fMwDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFuZJREFUeJzt3X3YXHV95/H310SsIA9qYmuTQKjGShYtQopVoVLxIWAL\nfcAWKqv2cqF2xfUBuwV1qbK6Bd3VquBWikprlSfbahaiaHlYkQqSQHgINBgwSBAlIqjoAoZ+94/f\nb8xhuO+55557wh34vV/XdV+ZOXPmnO9855zP/ObMzElkJpKkx77HzXYBkqRHhoEvSY0w8CWpEQa+\nJDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJasTc2VrxvHnzcvHixbO1ekl6VFq9evX3M3P+KPedtcBf\nvHgxq1atmq3VS9KjUkTcOup9PaQjSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSB\nL0mNmLVf2uqRt/i482d1/RtOeuWsrl9qnSN8SWrEo3KEvy2PVLfl2iS1zRG+JDXCwJekRhj4ktQI\nA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUiEfluXT02OM5iKStzxG+JDXCwJek\nRhj4ktQIA1+SGmHgS1Ij/JaO9Cjmt5s0HY7wJakRQwV+RCyPiHURsT4ijpvg9l0j4uKIuDoiro2I\ng8dfqiRpJqYM/IiYA5wKHAQsBY6IiKV9s70LOCcznwccDnxs3IVKkmZmmBH+vsD6zLwlMx8AzgIO\n7ZsngZ3q5Z2B74yvREnSOAzzoe0C4LbO9Y3A8/vmeTfw5Yh4E7AD8NKxVCdJGptxfWh7BHBGZi4E\nDgY+HREPW3ZEHB0RqyJi1aZNm8a0aknSMIYJ/NuBRZ3rC+u0rtcD5wBk5teBXwDm9S8oM0/LzGWZ\nuWz+/PmjVSxJGskwgX8lsCQido+I7Sgfyq7om+fbwIEAEbEHJfAdwkvSNmTKwM/MzcAxwAXAjZRv\n46yNiBMj4pA627HAURFxDXAm8LrMzK1VtCRp+ob6pW1mrgRW9k07oXP5BuBF4y1NkjRO/tJWkhph\n4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RG+D9eSdoq/N+4tj2O8CWpEQa+JDXCwJekRhj4ktQI\nA1+SGmHgS1Ij/FqmpOa0+pVRR/iS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4\nktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9J\njRgq8CNieUSsi4j1EXHcJPP8YUTcEBFrI+Kz4y1TkjRTc6eaISLmAKcCLwM2AldGxIrMvKEzzxLg\neOBFmXl3RDxtaxUsSRrNMCP8fYH1mXlLZj4AnAUc2jfPUcCpmXk3QGbeOd4yJUkzNUzgLwBu61zf\nWKd1PQt4VkRcFhGXR8TycRUoSRqPKQ/pTGM5S4ADgIXAVyPiOZl5T3emiDgaOBpg1113HdOqJUnD\nGGaEfzuwqHN9YZ3WtRFYkZk/y8xvATdRXgAeIjNPy8xlmbls/vz5o9YsSRrBMIF/JbAkInaPiO2A\nw4EVffN8njK6JyLmUQ7x3DLGOiVJMzRl4GfmZuAY4ALgRuCczFwbESdGxCF1tguAuyLiBuBi4M8z\n866tVbQkafqGOoafmSuBlX3TTuhcTuBt9U+StA3yl7aS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWp\nEQa+JDXCwJekRhj4ktSIcZ0tU3rMWnzc+bO6/g0nvXJW16/HDkf4ktQIA1+SGmHgS1IjDHxJaoSB\nL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS\n1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1Ijhgr8iFgeEesi\nYn1EHDdgvj+IiIyIZeMrUZI0DlMGfkTMAU4FDgKWAkdExNIJ5tsReDNwxbiLlCTN3DAj/H2B9Zl5\nS2Y+AJwFHDrBfP8dOBm4b4z1SZLGZJjAXwDc1rm+sU77uYjYG1iUmecPWlBEHB0RqyJi1aZNm6Zd\nrCRpdDP+0DYiHgd8EDh2qnkz87TMXJaZy+bPnz/TVUuSpmGYwL8dWNS5vrBO69kR2BO4JCI2AL8B\nrPCDW0natgwT+FcCSyJi94jYDjgcWNG7MTN/mJnzMnNxZi4GLgcOycxVW6ViSdJIpgz8zNwMHANc\nANwInJOZayPixIg4ZGsXKEkaj7nDzJSZK4GVfdNOmGTeA2ZeliRp3PylrSQ1wsCXpEYY+JLUCANf\nkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWp\nEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph\n4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaMVTgR8TyiFgXEesj4rgJbn9bRNwQ\nEddGxIURsdv4S5UkzcSUgR8Rc4BTgYOApcAREbG0b7argWWZ+Vzgc8D7x12oJGlmhhnh7wusz8xb\nMvMB4Czg0O4MmXlxZv60Xr0cWDjeMiVJMzVM4C8Abutc31inTeb1wBdnUpQkafzmjnNhEXEksAx4\n8SS3Hw0cDbDrrruOc9WSpCkMM8K/HVjUub6wTnuIiHgp8E7gkMy8f6IFZeZpmbksM5fNnz9/lHol\nSSMaJvCvBJZExO4RsR1wOLCiO0NEPA/4OCXs7xx/mZKkmZoy8DNzM3AMcAFwI3BOZq6NiBMj4pA6\n2weAJwHnRsSaiFgxyeIkSbNkqGP4mbkSWNk37YTO5ZeOuS5J0pj5S1tJaoSBL0mNMPAlqREGviQ1\nwsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMM\nfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCX\npEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNWKowI+I5RGxLiLWR8RxE9z+hIg4u95+\nRUQsHnehkqSZmTLwI2IOcCpwELAUOCIilvbN9nrg7sx8JvAh4ORxFypJmplhRvj7Ausz85bMfAA4\nCzi0b55Dgb+rlz8HHBgRMb4yJUkzNUzgLwBu61zfWKdNOE9mbgZ+CDx1HAVKksYjMnPwDBGHAcsz\n8z/V6/8ReH5mHtOZ5/o6z8Z6/eY6z/f7lnU0cHS9+qvAunE9kGmaB3x/yrlmh7WNxtpGY22jmc3a\ndsvM+aPcce4Q89wOLOpcX1inTTTPxoiYC+wM3NW/oMw8DThtlELHKSJWZeay2a5jItY2GmsbjbWN\nZluubZBhDulcCSyJiN0jYjvgcGBF3zwrgNfWy4cBF+VUbx0kSY+oKUf4mbk5Io4BLgDmAJ/MzLUR\ncSKwKjNXAJ8APh0R64EfUF4UJEnbkGEO6ZCZK4GVfdNO6Fy+D3jVeEvbqmb9sNIA1jYaaxuNtY1m\nW65tUlN+aCtJemzw1AqS1AgDX5Ia8ZgN/IhYFhEfGfMy3x0Rt0fEmvp3cJ3+1Ii4OCLujYhTOvNv\nHxHnR8S/RcTaiDhpiHUc0jtfUUTMr+cmujoi9p9mrRsi4rpa56rO9FfVWv49IpbVacsi4p8jYnW9\nz+qIeMl01jfB+h+2ns5tx9fzLq2LiFfUaYtqD2+o93vzBMs8NiIyIubV6+Pq1Scj4s76e5Lu9KdE\nxFci4pv13yfX6a+OiGvrY7gjIn6t735zah3nTaeOet8P1O3l2vqc7NK57WF9G7TOiDgwIq6q28DX\nIuKZdfqM+zbo+Zqsb53bX1O3i8M6095fl3NjRHwkYrRf6k+wjURd3vra0707854cEdfXvz/qTI+I\neF9E3FTr+S/j6ltnHRM9X7vXZa6Pcm6y7er03SLiwlr/JRGxsHOfXSPiy7XOG2Kq85hl5qz+AQE8\nbrbrGKYW4N3A2yeYvgOwH/AG4JTO9O2B36qXtwMuBQ4asPy5fdcPB04fpVfABmDeBNP3oPzo7RJg\nWWf684Bfrpf3BG6fYa8mW89S4BrgCcDuwM2Ub389Hdi7zrMjcBOwtHO/RZRvit1K+dHLwF5Ns9bf\nBPYGru+b/n7guHr5OODkevmFwJPr5YOAK/ru9zbgs8B5I9Ty8t5jo5yTqrfOCfs2aJ21h3vUy/8Z\nOGNcfRv0fE3Wt3p9DnAR5Usgh3X6eVm9bQ7wdeCA6fRtom2kTjsY+GK9/2/0nivglcBXKF9c2YHy\n9fOd6m1/Avx9b33A06bTtyH3z4mer3OAw+vlvwH+rF4+F3htvfwS4NOd+1wCvKxefhKw/cD1jlrw\nTP6AxZRf2f49cCNwMXA9cB3w1jrPUfVJuAb4x0EPhPINoevrvF+t0w7oNROYX5/ctcDpbAmNxcB6\n4J76dy/wfwfU8l3g2slqAf4M+FFnQ9mBcsqJxwPPoITwrZTgf3ad54z65F4BfBB4HXAKsBfwbcoP\n2O6rt/+g06uNwCWT9YrJA7/Xq3uBqwb0ajPwyRn0qlfLV3lo4B9f/3auy74AeMEEvfoeJUQuBZ5N\nOUfTF4AfA6sn6dUmYA3wxlp7bxu7oy57UK1fBNb29Wod8PTOvPfz8G3sAsoPD3t9W1evf7feNmrf\ntgd+D/jMEH37DiVEXw3cWftzKfAt4PmUbeyKWte4+9ar9QtsCZ5J+wa8BfjrutzDat++Afw/4FO1\nnjXAgSP0bWN9vBvYEvgfB47o9G0d5cXqHZRTwPS2t43ALbVv1wLPZOp9s9u3v+5sN0cBHxqQVwuB\nCynh3dvvgvLL3d6L/QuAC+rltcCiznw/qpeXAl+bVvbOYuD/O+UVdx/gK53bdqn/PrUz7b3AmwYs\n7zpgQd/9D+g08xTg+Hp5OZBsCbHNnVq+Alw3WS2UEf49lB3nk9RRXmf+19WNpjeq/yPqKKBurN8G\nfqVulBd1Av886mitt1F1Lv9dre+3KDvJv9Tb/hV44WS9ouzsV1F2/qP7e0UZGRwwSa8+A/zLTHrV\nqeWbPDTwTwGOrJe/QB3p9fXqMkqI7VR7dS3w4dqrnwJPm6RXvctPouzcvVqvAb4+Ra0fBb7T93ze\n09e3H06wjd1AGUScQgnkzwHH1L71An+Uvr0J+D+dXg3q27co+9FqtmxXz6/X7wJ+Qnmh3GUr9O29\nwF9Stu2dpujbHpT9oLctH9bp2/+khHpSwnVafaOcwPEbtW8b2BL45wH7dfp2FbAMeB/lRXl7ygvR\nt4Fja99+BryTEsB3Ar86RN9uBh7f2TefMyCvPlefrwPYst/No5yksjfPIuo7Tso7gTfXy79fe/RU\n4Hfr4/sn4GrgA3Te9U30N5vH8G/NzMspAfkrEfHRiFhOGSED7BkRl0bEdZSRy38YsKzLgDMi4ijK\nW8J++1HO8klmfgm4u3PbbZ1aLgN+ebJaKDvX3ZQd8Q7gf02wrm/W+aC87Ts7InauNcyhPDkfp4wy\nes7NzAcHPL5bM/Niyihuz4j4B8oTfnm3vr5e7ZeZe1MOObwxIn6z26u6/ol69dJa65/OpFedWnYY\n8LjOphyegC29+kXK6OZ+yo54GrAE6P3u4yeUEJhUZt5L2ek2UV6gHwSeNkWtvwv8woDFXgZs37eN\n7UXZMf+C0rM7gTsz8xRKwPaM0rcjKYH3mQlq6fbtLZRQXUc5FLdPRKyhbGNLKIc0zgXOp4TqpEbs\n25GUF7i3ZOaPJlhst28n1V5l5/b9KIdw9gB+ibK97Q/8+jT6dhlwJuXQy6CcOLvOA2V0vJKyD72I\nEtpvo/RtDuVd9XmU3Dh9wDJ7fbsI+O2IeDYl+K+baN6I+G3KNrJ60DL7vB14cURcDbyYMuB8kHI4\nav96+69TBpOvG7Sg2Qz8nwBk5t3Ar1FGnG9gS3PPAI7JzOcA72HAzpiZbwDeRdn5VkfEdM7U+UCv\nFsoI4+MDatmjU8vfUk4d3W8DsDwinkJ5Fb+IMoq5LzMXZOZe9W+Pzn1+MsFymOD2jwGrKCF63wT1\n/bxXmXk7QGbeCfxzr9ZOr55A+XX0z3tVPwxaDBybmTdPUMd0etWrpX8b656baUVd348ovfoqJeDu\nzczdM3MvSqD8mDLaPAx4CnBVRPzSpN0qzgaeSDkeezpTb2Mfprxd7vpeRPRemN9DedfR28b2B/6c\n8mvz3nmj9gEOiYgNlADZn/L/Q0y3bxdSAv3VWYd1A/q2lPL5w1pKADyectjjZcCmzLyi3ucSyrHy\nqQzdt7reHwPfysx/6ixjsr4dTDlOfRZlwPExyqGWlwOX1+CkPv69Gb5vH6y3P4myvSxkyzbS37df\nrMvch3LopfdC/SXgqLrN3UQZmEHZJp87RN9Op4Ttn1AOTU3mRWzZRs4CXlIHcHcBu0Q5Fxl0zlmW\nmd/JzN/PzOdR3nmQmfdQDkOtyXLq+s3A5yl9m9Ssf0unfpr+uMz8R0oQ9QreEbgjIh5PGfEMWsYz\nMvOKLL/+3cRDT/YGZXTwh3XelwNPZmLbU36MNlktizq1/B5lx+r3M8oxxQ9TRgjvqcu9JiJeVWuI\n6Ptmx5BupmwIyyifF0zWq7kRsWNd1w6UHer6ev0ZNQQ2UEZTvV7NpYwCL6Yc05xpryZ73lYAh0fE\nEyjHbx8EXkPp1d/WOq/v9apef1lmLqa8Fb6L8mHhd6fo1RpK+P0x5dDKVNtY///x0Kv1tfXyW4Gz\n6zb2Q8oL0/9gSyBdRhmNLqScETYox4Pf2rfMqfr2Ssq7nQsz86d9tUzUt89k5sLM3I3yediNmXkk\n5bl9SkQ8q97/ufX2qQzdN8phzZ0oh7W6JuvbGuCQ+vjuoHyQvBLYjTKCXU7Z3l5IOX4/bN8upRym\nvJqyjWxkyzayAnhN/dbPnpQXqHdQtvVd6ruS71GC/8t1vn+lHHaC8o7hpqmaVvepRbVvZw6Y7/j6\nfC2ufbgoM4+sL+wXUwY11P59AUpGRkQvq4+n9B1KzuwSEb0zZ76Ehz8XDzHUqRW2sgXAp/oeEMB/\no3xYsqn+u+OAZXwgIpZQdrILKaPBF3dufw9wZpRTO3+dcuzux5QRQdfOwB9HxEGT1NKrYR/KSPNP\ne3esr9g7Ub6Nc3+9/VWUt9P/Rnkb+4mI+GBd91m1zulYQNnZt6eMjibr1dOBr5Vtl7nAZ+vhGYB/\niPI1yd7b1pOBv6KMGBfV6e+KiHdTdp5Re7W51vFE4PyIWJOZr8hyHqZzKBvmZsoL4zsox14/Sjk8\nMbf26uRa4yi9ghLMl9Xazx2wje1Eedf2xIjYCPxlZn6CcgjinIh4fX2834/6VVzKtvBWYH6Ur70e\nzEO3sR9QQrnfVH17OmXQ8Ip6aObyzHzDgL4d0Fn2e4GPRMQ1lND+EuVD1QWUgP2dMfZtTa31LsqI\ndQ3wjiynYZmsb5Pum5RviZ1ZH9vVdd7/Oo2+TZYTKynPzXrK5z8nUbb5lwOX1n3kfsrho9WUvn0e\n+APKC8+d1MHiEM4B9qpHLUbxF8BZEfFeSg8+UacfAPxVRCTlHccbATLzwYh4O3BhfaFaTRk0TaqJ\nUyvUUdGDWU4E9wLgf9e3bo86Ub63+6HMvHArLd9ejbYu+zbauuzbI2hbGOE/EnaljDgeRzkueNQs\n1zNtUX6A8w3gmq28Qdmr0di30di3R9CjaoQfEe/k4WflPDcz3zfm9ZxK+XCl68OZ+anOPI9ILYPU\nD1wn2sAOpHywZa+21DBprzofurqN9bFvoxm2b4+0R1XgS5JGN+vf0pEkPTIMfElqhIEvSY0w8CWp\nEQa+JDXi/wPL3cFfQ6ukQgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x7f5982b410d0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "from asq.initiators import query\n", + "import json\n", + "\n", + "workload_name = []\n", + "workload_score = []\n", + "project_name = 'workspace'\n", + "\n", + "with open(\"qpi.json\".format(project_name)) as result:\n", + " final = json.load(result)\n", + "\n", + "qpi = query(final['nodes']).where(lambda child: child['name'] == 'node-9') \\\n", + " .select_many(lambda child: child['sections']) \\\n", + " .where(lambda child: child['name'] == 'SSL') \\\n", + " .select_many(lambda child: child['metrics']).to_list()\n", + "\n", + "for wl in qpi[0]['workloads']:\n", + " workload_name.append(wl['name'])\n", + " workload_score.append(wl['score'])\n", + "\n", + "x_axis = range(len(workload_name))\n", + "\n", + "plt.bar(x_axis, workload_score)\n", + "plt.xticks(x_axis, workload_name)\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/examples/storage-qpi-report/storage-qpi.ipynb b/examples/storage-qpi-report/storage-qpi.ipynb new file mode 100644 index 00000000..e8002139 --- /dev/null +++ b/examples/storage-qpi-report/storage-qpi.ipynb @@ -0,0 +1,784 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Storage QPI Report" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import json\n", + "import pandas as pd\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import qgrid\n", + "\n", + "qgrid.nbinstall(overwrite=True)\n", + "\n", + "RESULT_FILE = './storperf-master.json'\n", + "with open(RESULT_FILE, 'r') as f:\n", + " result_data = json.load(f)\n", + "metrics = result_data['report']['metrics']\n", + "\n", + "# TODO(yujunz) move common functiont to qtip package\n", + "\n", + "def metrics_to_dataframe(metrics):\n", + " \"\"\"convert storperf metrics to DataFrame\"\"\"\n", + " def _convert(metric, value):\n", + " columns = metric.split('.')\n", + " return {\n", + " 'workload_name': columns[0],\n", + " 'queue_depth': columns[2],\n", + " 'block_size': columns[4],\n", + " 'read_write': columns[5],\n", + " 'metric_name': ('.').join(columns[6:]),\n", + " 'value': value\n", + " }\n", + "\n", + " return pd.DataFrame([_convert(*p) for p in metrics.items()])\n", + "\n", + "def get_metric(metric_name):\n", + " return df[df.metric_name == metric_name]\n", + "\n", + "def show_metric(metric_name):\n", + " return qgrid.show_grid(get_metric(metric_name))\n", + "\n", + "def plot_metric(metric_name):\n", + " df_metric = get_metric(metric_name)\n", + " fig = plt.figure(figsize=(16,9))\n", + "\n", + " ax = fig.add_subplot(111, projection='3d')\n", + " for wl, rw, c in zip(['rw', 'rw', 'wr', 'rr'], ['read', 'write', 'write', 'read'], ['r', 'g', 'b', 'y']):\n", + " _df = df_metric[(df_metric.workload_name == wl) & (df_metric.read_write == rw)]\n", + " ax.scatter(_df.block_size, _df.queue_depth, _df['value'], c=c, label='{}.{}'.format(wl, rw))\n", + "\n", + " ax.set_xlabel('block size')\n", + " ax.set_ylabel('queue depth')\n", + " ax.set_zlabel(metric_name)\n", + " ax.legend()\n", + "\n", + "df = metrics_to_dataframe(metrics)\n", + "\n", + "# filter invalid data\n", + "df = df[(df.workload_name != '_warm_up') & (df.value != 0.0)]\n", + "df.block_size = df.block_size.astype(int)\n", + "df.queue_depth = df.queue_depth.astype(int)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Results\n", + "\n", + "### Bandwidth" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e938b447d1dc467484b39d234e4bf554" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_metric('bw')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAH+CAYAAADu2DEaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXlwHPWZx/2d6Tl1H5ZkHSNLtmxh+QDbsmUDchKWxBs2\nmAoQgqniePG+G0hIsqSyCTmgSLJbSTZQSTBkobKGONkNJJtU1lQqoYCACyfmWBNg38TGGHxMz0ij\nYzSHRj139/uHt5uentYcmp6ZntbzqVLJ1sxI3TPdM79vf5/n+5gEQQBBEARBEARBEARBFIq52htA\nEARBEARBEARB1BYkJAmCIAiCIAiCIIiiICFJEARBEARBEARBFAUJSYIgCIIgCIIgCKIoSEgSBEEQ\nBEEQBEEQRUFCkiAIgiAIgiAIgigKEpIEQRAEQRAEQRBEUZCQJAiCIAiCIAiCIIqChCRBEARBEARB\nEARRFJYi7y+UZSsIgiAIgiAIgiAIPWAq5E7kSBIEQRAEQRAEQRBFQUKSIAiCIAiCIAiCKAoSkgRB\nEARBEARBEERRkJAkCIIgCIIgCIIgiqLYsB2CIAiCIAiCIAjdkUwm4fF4EIvFqr0pNYHD4UBfXx+s\nVuuSHm8ShKKCWCm1lSAIgiAIgiAI3XH27Fk0Njaivb0dJlNBwaPLFkEQ4Pf7MT8/j8HBQeXNlNpK\nEARBEARBEMTyIBaLkYgsEJPJhPb29pLcWxKSBEEQBEEQBEEYAhKRhVPqc0VCkiAIgiAIgiAIgigK\nEpIEQRAEQRAEQRAG47bbbsOvfvWrsv1+EpIEQRAEQRAEQSxPZmaA//mfC981RhAE8Dy/pMemUimN\nt0Z7SEgSBEEQBEEQBLH8ePJJYNUq4MMfvvD9ySdL/pXnzp3D8PAwbrnlFmzcuBH79+8HAPzwhz/E\n6tWrAQBnzpzBZZddlvXY2267DXfccQfGxsbwpS99CQsLC7j99tuxY8cObNmyBYcPH5b+xvj4OLZu\n3YqtW7fi2LFjAC4I17vuugvDw8O48sorMT09XfL+5ILmSBIEQRAEQRAEsbyYmQH27wei0QtfwIX/\nX3kl0NFR0q8+ffo0Dh06hIGBAVx99dUAgKNHj6K9vR1erxdHjx7F7t27VR/r8Xhw7NgxMAyDr371\nq7jiiivw+OOPIxgMYseOHbjyyivR2dmJ5557Dg6HA6dPn8a+fftw/Phx/OY3v8GpU6dw4sQJTE1N\nYWRkBLfffntJ+5ILEpIEQRAEQRAEQSwvzp0DbLb3RSQAWK0Xfl6ikFy1ahV27twJAIhEIpifnwfL\nsrjpppvw0ksv4ejRo7j22mtVH/uJT3wCDMMAAJ599lk8/fTTeOCBBwBcGG/idrvR09ODu+66C2++\n+SYYhsE777wDAHjppZewb98+MAyDnp4eXHHFFSXtRz5ISBIEQRAEQRAEsbwYGAASicyfJZMXfl4i\n9fX10r8vvfRSPPHEExgeHsb4+Dgef/xxvPzyy3jwwQfzPlYQBPz617/G8PBwxn3uv/9+dHV14a23\n3gLP83A4HCVv81KgHkmCIAiCIAiCIJYXHR3AwYOA0wk0NV34fvBgyW6kkvHxcTzwwAPYvXs3tmzZ\nghdffBF2ux3Nzc15H7tnzx4cOHAAgiAAAN544w0AQCgUQnd3N8xmM372s58hnU4DAHbv3o1f/OIX\nSKfTmJycxIsvvqjpvighIUkQBEEQBEEQxPJj3z7g/Hng+ecvfN+3T/M/MT4+DpZlsXv3bjAMA5fL\nhcsvv1y6/b777sPTTz+t+th7770XyWQSmzdvxoYNG3DvvfcCAD796U/j0KFDuPjii/H2229LLubH\nP/5xrF27FiMjI7jllluwa9cuzfdHjklUuAVS1J0JgiAIgiAIgiAqwcmTJ7F+/fpqb0ZNschzZirk\nseRIEgRBEARBEARBEEVBQpIgCIIgCIIgCIIoChKSBEEQBEEQBEEQRFGQkCQIgiAIgiAIgiCKgoQk\nQRAEQRAEQRAEURQkJAmCIAiCIAiCIIiiICFJEARBEARBEARRYxw/fhyf+9znAABHjhzBsWPHKvr3\nLRX9awRBEARBEARBEDphZmEG54LnMNAygI76Dk1/tyAIEAQBZrP23l0qlcLo6ChGR0cBXBCSDQ0N\nuPTSSzX/W4tBjiRBEARBEARBEMuOJ/+/J7HqB6vw4Z99GKt+sApP/uXJkn/nuXPnMDw8jFtuuQUb\nN27E/v37AQA//OEPsXr1agDAmTNncNlll2U8Lp1OY3BwEIIgIBgMgmEYvPTSSwCA3bt34/Tp07j/\n/vtx880347LLLsPNN9+MI0eO4GMf+xjOnTuHRx99FN///vdxySWX4OjRo5iZmcF1112H7du3Y/v2\n7fjTn/5U8r4pIUeSIAiCIAiCIIhlxczCDPY/vR/RVBTRVBQAsP/wflw5eGXJzuTp06dx6NAhDAwM\n4OqrrwYAHD16FO3t7fB6vTh69Ch2796d8RiGYTA8PIwTJ07g7Nmz2Lp1K44ePYqxsTGwLIu1a9cC\nAE6cOIE//vGPcDqdOHLkCABgYGAAd9xxBxoaGvDFL34RAHDTTTfh7rvvxuWXXw632409e/bg5MmT\nJe2XEhKSBEEQBEEQBEEsK84Fz8HG2CQRCQBWxopzwXMlC8lVq1Zh586dAIBIJIL5+XmwLIubbroJ\nL730Eo4ePYprr70263Hj4+N46aWXcPbsWXzlK1/Bj3/8Y3zgAx/A9u3bpfvs3bsXTqcz7zY8//zz\nOHHihPT/cDiMSCSChoaGkvZNDpW2EgRBEARBEASxrBhoGUAincj4WTKdxEDLQMm/u76+Xvr3pZde\niieeeALDw8MYHx/H0aNH8fLLL2eVtgIXSliPHj2K1157DVdddRWCwSCOHDmC8fFx1d+dC57n8cor\nr+DNN9/Em2++Ca/Xq6mIBEhIEgRBLAt4nkcikUAqlUI6nYYgCNXeJIIgCIKoGh31HTh4zUE4LU40\n2ZvgtDhx8JqDmgfujI+P44EHHsDu3buxZcsWvPjii7Db7Whubs66744dO3Ds2DGYzWY4HA5ccskl\neOyxx7LKYNVobGzE/Py89P+PfOQjOHDggPT/N998U5sdkkFCkiAIwqAIgoB0Oo14PI54PA6O46QS\nm1AohFAohEgkAo7jEI/HkUwmSWQSBEEQy4Z9G/fh/D+ex/M3P4/z/3ge+zbu0/xvjI+Pg2VZ7N69\nGwzDwOVy4fLLL5duv++++/D0008DAOx2O1wul1QWOz4+jvn5eWzatCnv37n66qvxm9/8Rgrbeeih\nh3D8+HFs3rwZIyMjePTRRzXfN1ORCwZaXRAEQegcnueRTqclUWgymQAAiURC+rf43i9Gk8vvBwAm\nkwlmsxkMw2R8N5lM0hdBEARB6ImTJ09i/fr11d6MmmKR56ygD3kK2yEIgjAAgiCA53mkUinwPA/g\nfTEo3i5HFIJqglC8ryhIlSITQJbAFL9IZBIEQRDE8oCEJEEQRA2j5j6WKuZyiUzgfdGaTqeRTCYz\nbpuZmcGKFStgs9kyRKYoaklkEgRBEIQxICFJEARRY+RzH8tNLqHq8/nQ0tICs9mcJTIBZLiXam4m\nQRAEQRC1AQlJgiCIGmEp7qMgCJibmwPLspifn4fJZILNZoPT6URdXR2cTiecTiccDgcYhil5G+Xu\no9q2AEA6nUYqlaK+TIIgCIKoYUhIEgRB6BjRfUwmkzhz5gwGBwcLch/j8Ti8Xi8mJyfR3NyMgYEB\n1NXVQRAEJBIJRKNRRKNRhMNhTE1NIRqNgud5WCyWLJHpdDphsRT+cSG6pEqoL5MgCIIgjAMJSYIg\nCB2idB8BYGpqCmvWrFn0MXL3MRqNore3F2NjY7BYLJKANJlMsNvtsNvtaGlpyfodyWRSEpkcx8Hv\n94PjOKTTaTAMkyEuxS+r1Zq3rzIfxfZlKoWmKDCpL5MgCIIgKgMJSYIgCJ2w1N7HRCIhuY9NTU0Y\nHBxEU1PTkgSU1WqF1WpFU1NT1m3pdFoSmdFoFKFQCBzHIZlMwmQywel0YmFhAVNTU2hubobT6YTd\nbtdEyOVyHUWhnUql8vZlWiwW6TklkUkQBEHUKsePH8dPf/pTPPTQQzhy5AhsNhsuvfTSim4DCUmC\nIIgqU2rvo+g+7tixI28JqlrJaKEwDIOGhgY0NDSo7kMsFsPbb7+NdDqN2dlZcByHRCIB4MKQZaWT\n6XA4NAkIKqRkVuzLFLdH/ljqyyQIgli+zMwA584BAwNAR0fl/q5Y6bMUUqkURkdHMTo6CgA4cuQI\nGhoaSEgSBEEsB7RwHxsbGzEwMIDm5ua8gkcURcp5klphNptRV1cHh8OBrq6uDLEpCALi8bjkZAYC\nAUxMTCAWi0EQBCn8R/mlRfhPKX2ZkUgENpsN9fX1UtmsvFyWRCZBEERt8+STwP79gM0GJBLAwYPA\nvn1L/33f+973YLfb8bnPfQ5333033nrrLbzwwgt44YUXcPDgQRw+fBif+tSn8Pzzz+ORRx7B5Zdf\nDuCCqBwaGsKZM2cQCoXQ3t6OF198Ebt378bu3btx8OBB/Od//ifee+89nDlzBv39/fjUpz6FBx54\nAA8//DAeffRRMAyD//iP/8CBAwdw0UUX4Y477oDb7QYA/OAHP8Bll12mxVOWAQlJgiCICrJU9zEQ\nCIDjOLz++uvo6enB9u3bYbVaK7jlhaEmVk0mExwOBxwOB1pbWzNuEwRB6svkOA7z8/OYnp7OCv+R\nf9XV1RUV/pNrW+XflQQCATgcDthstoL7MklkEgRB1AYzMxdEZDR64Qu48P8rr1y6Mzk+Po4HH3wQ\nn/vc53D8+HHE43Ekk0kcPXoUu3fvxs9//nOMjY3hwQcfzHgcwzAYHh7GiRMncPbsWWzduhVHjx7F\n2NgYWJbF2rVrAQAnTpzAH//4RzidThw5cgQAMDAwgDvuuAMNDQ344he/CAC46aabcPfdd+Pyyy+H\n2+3Gnj17cPLkyaXtVA5ISBIEQZSZUtzHiYkJTExMoLGxETabDTt37tS1SCnW9RTHkdhsNjQ3N2fd\nnkqlMsJ/5ubmEI1GkUqlYDabswSmMvyn1H0xmUyqzqggCBAEIW9fptLJpL5MgiAIfXDu3AUnUhSR\nAGC1Xvj5UoXktm3b8PrrryMcDsNut2Pr1q04fvw4jh49ioceeggMw+C6665Tfez4+DheeuklnD17\nFl/5ylfw4x//GB/4wAewfft26T579+6F0+nMux3PP/88Tpw4If0/HA4jEomotqaUAglJgiCIMlGK\n+8iyLBYWFtDb2yu5j8eOHdO9CNG6fNZisaCxsRGNjY1Zt6XTacRiMXAch2g0Cp/Ph2g0KqXTOhyO\nLKFZyfAfsS9T7bHUl0kQBFFdBgYulLPKSSYv/HypWK1WDA4O4ic/+QkuvfRSbN68GS+++CLeffdd\nrF+/PufM5t27d+Pf/u3fMDExgW9+85v43ve+hyNHjmB8fFy6T319fUHbwfM8XnnlFTgcjqXvTAGQ\nkCQIgtAQLdzHhoYG9Pf3o6WlhURFDhiGQX19veoHqxj+I7qZfr8fHo8H8XgcgiBkhP+ITmYlw38W\n68uUO5fUl0kQBFE+Ojou9ETu33/BiUwmL/y/1MCd8fFxPPDAA3j88cexadMmfOELX8C2bdvyvn/v\n2LEDN998M1avXg2Hw4FLLrkEjz32GH7729/m/ZuNjY0Ih8PS/z/ykY/gwIED+Kd/+icAwJtvvolL\nLrmktB1TgYQkQRCEBizVfQwGg2BZFpFIJMN9rFXKGehTDGL4T11dXdZt4kxN0ckMBoOYnJxELBYD\nz/OwWq2oq6tDLBaD0+lEfX19RcJ/xG0rdl4miUyCIIilsW/fhZ5ILVNbx8fH8S//8i/YtWsX6uvr\n4XA4MlxFOffddx9GR0exd+9e2O12uFwu7Ny5U/o9Tz75JDZt2pT3b1599dW4/vrrcfjwYRw4cAAP\nPfQQPvOZz2Dz5s1IpVLYvXs3Hn300dJ3ToGpyA/86q8OCIIgdMJi7mO+BX0ymYTX65XcR5fLVZD7\neOzYMezatWvJgiGRSJQ0/qMQTp8+jRUrVmSF6tQK8vAfj8cDnufBMAyi0agU1S53McWvSoh/sS9T\n/LcS6sskCGK5c/LkSaxfv77am1FTLPKcFfShQY4kQRBEkYiOkdj/thT3saenB6Ojo7DZbAX/XdHt\nW6ooqIRbqBdHcqnIw39CoRBsNhtWrlwp3S4P/xFHmXAcpxr+I37ZbDZd9GVGo1HU19fDZrNluJni\n7QRBEARRDCQkCYIgCkAQBKl0tVj3cWJiAl6vtyj3UQ2z2Qye5zXp4ysXtS4k81FI+I8oMsUxJvF4\nXDX8R+zL1Epkyr/LEV+PM2fOYHBwMOtvqoX/UF8mQRAEkQ8SkgRBEDkoxX30eDyYn59fkvuoRi2I\ntFrYxnKRL/wnHo9LInNubg4cx6mG/8i/tAz/EbdRPoNTGf4j/oz6MgmCIIh8kJAkCIJQUKr7ODEx\ngbq6OrhcLrS2tmq22BYdST2znIVkLuRlr0rE8B9RZIZCIfh8vozwHzWRKReEhaI8FgsJ/ylmXqYo\nMKkvkyAIwviQkCQIgvg/RFcmFovhnXfewYYNGwpyH0OhEFiWxfz8PLq7u7Ft27aS3Uc1akWk1cI2\nFkol9sVkMsFut8Nut6OlpSXrdjH8h+M4LCwsYHZ2Niv8Rzkv02KxZB23S9kXreZlqrmZBEEQRG1D\nQpIgiGWNmvvIMAzm5+dzLnaTySQmJyfh9XrL4j6qUSuOpFHQy75YrVZYrVY0NTVl3ZZKpaS+TI7j\nEAwGEY1GkUwmYTabM/oyE4kEEokE7HZ7xfoy1eZlCoKQ4WRSXyZBEERtQkKSIIhlh1iut1jvo3zM\ngvJxlXIf1TCZTCUJyUoszkvdRqI4LBYLGhoa0NDQkHUbz/OIxWLSvMxEIoH33nsPyWRSckGVTqbd\nbte0L7NYkSlCfZkEQRDFc9ttt+FjH/sYrr/++or8PRKSBEEsGwrtfVT+P5VKScmrTqcTLpcLbW1t\nFV/Qms1m3ZeN0iJfP5jNZtTV1aGurg4A4Pf7MTIyApvNBkEQMhJmA4EAJiYmEIvFIAgCbDZbhsAU\nE2YZhil5u6gvkyAIPZFIzCAWOweHYwA2W4emv1t8PxMv0IktCWqkUqkl9b5Xk9raWoIgiCLJ5z7m\nQnQfQ6EQenp6Kuo+qlErpa16F7vLGbmIyxX+k0wmJSczHA5jamoK0WgUPM/DYrFkicylhv8sto2F\n9GX6fD5EIhEMDAxkPFZeLkt9mQRB5GJq6kmcOrUfJpMNgpDA8PBBdHXtK+l3njt3Dnv27MHY2Bhe\nf/11nDhxAl/4whfw/PPP45FHHsHll18u3fe2226Dw+HAG2+8gcsuuwzf+ta38NnPfhZ/+ctfkEwm\ncf/99+Oaa67BuXPncPPNN2NhYQEA8PDDD+PSSy+FIAj47Gc/i+eeew4ul6viaxQSkgRBGJKlJq+K\n7uPCwgLOnj0Ll8slhe5UGy1EmloZoZaQkNQvhb4uJpMJNpsNNpstZ/iP2Jfp9/sRjUaRSqUy0mnl\nItNqtWrelymKRvHqvjL8h/oyCYLIRSIxg1On9oPnowCiAIBTp/ajtfXKkp3J06dP49ChQ9i5cydM\nJhPGxsbw4IMPqt7X4/Hg2LFjYBgGX/3qV3HFFVfg8ccfRzAYxI4dO3DllVeis7MTzz33HBwOB06f\nPo19+/bh+PHj+M1vfoNTp07hxIkTmJqawsjICG6//faStr0YSEgSBGEYtHIfu7u74XQ6cckll1Ri\nswuGHMnKY6R9AbQpPc4V/pNOpyWRKY4y4ThO6stUG2Oy1PAf5UWRUvsyczmZJDIJwnjEYudgMtkg\nikgAMJmsiMXOlSwkV61ahZ07dwK48N5y3XXXLXrfT3ziE9IFsWeffRZPP/00Hnjggf/bxhjcbjd6\nenpw11134c033wTDMHjnnXcAAC+99BL27dsHhmHQ09ODK664oqTtLhYSkgRB1DyluI+Tk5PweDxw\nOp3o6+uT3Eefz1eJTS+KWhBpRgrbMZp4qMSxwzBM3vAfUWTOzs6C4zjE43HV8B+xL3Ox8B+e5wt+\njQrpy+R5HjzPL9qXqQz/ob5MgqhtHI4BCEIi42eCkITDMVDy766vr5f9ndz95fL7CoKAX//61xge\nHs64z/3334+uri689dZb4HkeDoej5G3UAhKSBEHUJKW4j+FwGCzLIhgMoru7G1u3boXdbq/EZpdE\nLTiSgPFcPCNRTdGjDP+RIwgC4vF4QeE/4lc6ndYkYRYorC8zX/gP9WUSRG1hs3VgePjg//VIWiEI\nSQwPH9Q8cKcY9uzZgwMHDuDAgQMwmUx44403sGXLFoRCIfT19cFsNuPQoUNIp9MAgN27d+Oxxx7D\nrbfeiunpabz44ou46aabKra9JCQJgqgpSnUfvV4v7HY7XC4XRkZGFn2c6KxptVDVglIdyUqN/yD0\niZ4FvslkgsPhgMPhQGtra8ZtYviP2JM5Pz+P6elphEIhCIKA6elp1ZJZq9Wq2bbJvyu3DVDvyxQf\no+zLlJfL0vlCENWlq2sfWluvLFtqqxr33XcfRkdHsXfv3qzb7r33XvzjP/4jNm/eDJ7nMTg4iN/+\n9rf49Kc/jeuuuw4//elP8bd/+7eSi/nxj38cL7zwAkZGRtDf349du3aVffvlmIr8YNHvpxBBEIZl\nMfdR/n0x5O7jypUr0dfXV5D7+Oqrr2Lbtm26iuJ+7733UF9fj5UrVy7p8el0WhpUXy58Ph8SiQT6\n+/vL9jcqhcfjgdlsRk9PT7U3RROOHz+OrVu36uriSCmIr09nZ2dG+I/4b2X4jzwESKvwn1yI6yvx\n/Yv6Mgmi/Jw8eRLr16+v9mbUFIs8ZwW9AelnhUQQBKGgFPfR5/PB4/EU5D6qoccy0lK2KRKJwO12\nIx6PS+WF4qJaS7FcC32chDHgeR4Mw8BisaCxsRGNjY1Z90mn04jFYhmjTKLRKBKJhOSCqvVlap0w\nq4bYlyle4AGAQCAAnufR3t5OfZkEQegeEpIEQeiKUnof5+fnwbIsAoEAVq5ciUsuuWTJDel6FJLF\nijSe5zE1NQWWZWE2m9Hb2wur1SoFnszNzWU4N/JxDeK/iy0PNJqQNNq+GEmAyId8LwbDMKivr88I\nsxBRhv+IY0zi8TgEQcgK/6mrq8sZ/lMsau9p8XgcAKS/UUhfpsVikQQmiUyCICoJCUmCIHTBUt3H\ndDotJa/abDa4XC6sX7++5MWUHoVkodsUjUbBsiymp6fR0dGBjRs3oq6uTnI+8o1t4DgOwWAQ0WhU\nKoUtdDagkYQkLcj1TanCOF/4TyKRkJzMUCgEn8+HaDQKQRBgtVpVz4lcyYyFILqsxfRliqm3ItSX\nSSx3jHbRrJyU+nlNQpIgiKqhF/dRDT0KyVwiTRAEzM7Owu12I5VKweVyYWhoqGD3JNfYBmV5oHw2\noNlshsPhkBbTiURCNXSE0AdGek2KGf9RLOI4ErvdnjP8JxqNIhKJYGZmBtFoFOl0GgzDZDmZhbr7\nPM/nvZ+W8zJF0Up9mYRRcDgc8Pv9aG9vp+M5D4IgwO/3l7R2IiFJEETFkbuPb7/9NtatW1eU++j1\nemG1WjVzH9VgGEZ3QtJsNmeVucXjcXi9XkxOTqK1tRXr1q1T7RUDli4i8pUHygfQB4NBLCwsIBAI\nZA2gFxfUNpuNPuCJkimktLUcmEwm2Gw22Gw2NDc3Z92eSqWyzgmO46QScrEvU+5kiueE6EiWsm3y\n70qUfZlKoanWl0kik6gl+vr64PF4MDMzU+1NqQkcDgf6+vqW/HgSkgRBVITF3Ee/3593MSh3H7u6\nunDxxReXfRiv2WyW5jTpBbPZLD2PgUAALMuC4zj09fVhbGysKgmzZrM5Q2TW19djbm4OQ0NDGT1o\nHMdhenpa6kGTB53Ig39IZBKFolfXu5DwH1FkKs+JVCqFhoYGJBIJzcN/gPzzMgVByNuXqXQyqS+T\n0BNWqxWDg4PV3oxlAwlJgiDKSr7ex8UWIOl0WkpetVgsZXUf1dBjaSvP85ibm8Pk5CQaGhqwatUq\nNDc3624RJ5bXyXvQ2tvbM+6jDDqZnZ0Fx3FZIlPuZtrtdt3tK1E99Cokc5HP3T916pTUszk3Nyed\nE2rhP+JXOcN/RJR9mWqPpb5Mglh+kJAkCEJzSul9jEQiYFkWc3NzFXMf1dCTkAyHw3C73fD7/air\nq8Po6ChsNlu1N0uVQheM+YJO5E6m3++Hx+OREi3FBbW8NFBL10a5LYQ+4XneMDMxgfcdv5aWlqyS\nWTH8R7zwIob/xGIxqa9STWRqVaVQSl+myWRCOBxGW1sb9WUShMEgIUkQhGYsJXnVZDIhmUxieno6\nw30cHh6u6iKx2kJSnkYrzsLs7OxEMBjUrYgEtEltlfdWtrW1ZdwmCALi8bgU/KPm2ijHmNjt9iUd\nS0ZKoDUitehI5mMxcSwP/2lpacm6XQz/4TgOCwsLmJ2dXTT8Rz4/tlLzMt955x1s27aN+jIJwmCQ\nkCQIoiRKdR9jsRheffVVdHV1YfPmzXA6nZXY7LxUS0guLCzA7XZLjqw8jdbv9+vGJV2McosvsexV\nzaVWjmwIBAKYmJhALBbLKg0UxaaWcwGJyrKchGQ+rFYrrFar6mifVCqV4fDLR/soA7HK0ass/h61\nECHqyySI2oaEJEEQS6KUuY9TU1PweDxgGAZ2ux1btmzRjYAUqaSQ5Hke09PTYFkWJpNpUUdWDNsp\nhXIvvqrp4uUb2SCWBoqL6cnJSWkuoM1myyqXJTdS35CQLAyLxbLoaB+xV1m8+CKOMRF7ldX6Mpdy\n8WWx10mrvkylm5nrbxIEoR0kJAmCKBgteh/9fj+6urqwadMmOJ1OvPHGG7pcsFcitTUajcLj8WBq\nagodHR0YGRlRDeEQEccD6Bm9loPmKg0U5wKKi+lwOAyfz4dwOAxBEDAzM5NVLutwOEoePk+URjnn\nSFaLSvd9FtqrrObwixdf8p0XS30/KLUvUxn+Q32ZBKE9JCQJgsjLUt1Hnuel5FWGYdDX15fltDEM\no7sxG8CEWa/NAAAgAElEQVSF7VIrtSoVQRAwOzsLlmWRTCbhcrmwa9eugkSJFo5kudGrkMyFfC6g\nXGROTEwgnU6jq6tLcjLn5+elkQ3ykBO50HQ6nSQyK0C15kiWEz0FCMnLXpUoL74ozwuLxSI91m63\nS+Wr1Qj/EX9GfZkEoT0kJAmCUKVU99Hj8WB2dhZdXV3YuHGj6hVvQL9CUuvS1kQiAY/Hg8nJSbS0\ntGDt2rWqc+ZyQY5kdcg1fF4echKJRFQX0/I5mSQytYNKW6vHYhdfRMTzIhqNIhKJIJFI4H//93+R\nSqVgNpuznEyn0wmr1Vqx8B/qyyQIbSAhSRBEBqW4j1NTU2BZFmazGS6XC+vWrcu7KKp2OupiaLFd\ngiAgGAzC7XaD4zj09vZibGxsyVflS92mSi2CjCIkC3m+coWcyBfTakmaSoGp5biG5YBRhaQR9kl+\nXjQ1NYHjOGzatAnAhZ5H8byIRqPw+XzgOE4K/xFnyMrPCy1nyJarL9MIrxtBFAt9YhEEUZL7uLCw\nAJZlMTs7i87OzpzuoxpGdCRTqRQmJibg9XpRX1+P/v5+tLS0lLzQqAW3jxZT75MvSVN0MsVZmRzH\nZY1rkItNEpmZ1Ip7VyxG2yfxmBZhGCZv+I8oMsWLL7FYDACyxvtonbxcbF/mqVOnsG7dugzXkvoy\nieUEfSoRxDKmVPfR4/HAZDKhr6+vIPdRDSMJyXA4DJZlEQwG0dPTg23btmk681Erl7ScC5paELt6\nwGKxoLGxUbW8WRSZ4tfc3Byi0ShSqVTWTEB5WeByw4iOpBFRCslc5Av/icfj0nkRDAYzwn+sVmuW\nyNSylFxNZHIcl3GBR96XqbZv1JdJGA0SkgSxzCjVffR4PJiZmUFnZyc2bNhQlPuoBsMwNV3amk6n\npUAhq9WK/v5+jIyMlGVhQOM/lge5RKa8LFAcY8JxXFbvmXxBrVXvmd4wopA04rmTTqc1cQzlM2TV\nxvvIS8mV4T/yUnL5lxYXYJRpsWoU25cpCkwqmSX0DglJglgmlOI+ijMOAcDlcmHt2rWalRJVYszG\nUsgnJOUlvV1dXbj44ovhcDjKuk0UtkPkKgtMp9MZMwFDoZDUe2Y2mxGNRnHmzJmyBJxUA6P0Exod\nUciVE3n4j1ooltzl5zguw+VXhv+I54eW50apfZnyclnqyyT0BAlJgjAw4lXQ+fl5WCyWjDKafB9A\nHMeBZVnMzMygo6NDE/dRjXKN2SgVtZJbnucxMzMDt9sNAAUHCmmFXoOJ5BhNSNbSvjAMg/r6etVZ\npDzP47XXXkNTU5MUcBKNRpFIJDLGPMhFps1m0/1CVe/bVyxG2x+guNLWcpHP5Rf7MjmOQzgczjg3\nxPAfZV+mliJT/l2OUmTKXXhx/A31ZRLVhIQkQRgQpfv49ttvY82aNXnHTZTbfVSDYRgpSEFPyEVb\nLBYDy7KYmprCihUrMDIyorpYLze1INJqYRsLxUiLMHGRuWLFiqzbxIAT0ckUSwLj8bi0kJaXBdbV\n1elGZOphG4jc6EFI5iLfBZh4PC6dG36/Xzo3BEFALBbDO++8kyU0qxX+o7wf9WUS5YaEJEEYhFy9\njxaLJaeTxXEcPB4Ppqen0dHRUVGhpFeXzWQyIRaL4Y033kAikUBfXx927dpV1QVRLYi0WthGIpNc\nASfKFM2ZmZkskal0MrUc1bCcMOp5o3chmQt52auSeDyOv/71r+jo6JBKyX0+H2KxGHieh9VqVXX6\nyxn+I6eQvkxlySz1ZRLFQkKSIGqcQnofLRZLVu+F6D56PB4IgoC+vj4MDQ1VPHpeb6mtiUQCXq8X\nXq8XyWQSGzZsUB3fUA1q5cPdqAvi5Ui+FE15SaByVIPaPEAtSwKNhlHHmfA8r2l6tV4QxWJra6tq\n+E8qlZKcTLU5suVOXy6kL1Msl1WD4zi0tLRQXyaRExKSBFGDFJu8KhdrcvdxxYoVWL9+fVXKNNW2\nrVoIgoBgMAiWZRGJRNDX14fR0VG89dZbuhGRtQItMpYP8t7Ktra2jNvEUQ3iQnpubg4cx0klgcp5\ngHV1dbDb7YYUUoViVCFZy45kLlKp1KKzXU0mE6xWK5qbm/OG/4ijTKLRqBSMpeb0a1lOnq9kNh6P\n47333sOmTZuySmZF11LNzaSS2eUHCUmCqCGWmrzKMAzm5ubgdrvB8zxcLldV3MfFtq1aQjKVSmFi\nYgJerxd1dXXo7+9HS0uLlI6qx5JbvUOlrQSQOapBiXIeYCAQyJgHaLfbsxbRWg6d1yskJGuLUvYr\nV/gPz/MZIlPZsyyeH/ILMVpehDGZTEin07BarVn7V0hfZq6EWRKZxoOEJEHonFLmPkajUbAsC6/X\ni4aGBqxfv151bEA1qUaP5Pz8PNxuN4LBILq7u7Ft27as0istZjYuR4wmJI20L3oh3zzARCIhOZnB\nYBCTk5OIRqMQBAE2m01aRCeTSSwsLGgablJNjCokjbpfuRzJUjCbzYuG/8jLyUWnXywnF88P5bxM\nh8NRtOBdbN8K6csURWauvky5yKS+zNqGhCRB6BS5eBQXs4XOfZyZmQHLsuB5Xup9TKfTuhORQOUc\nyXQ6jampKbAsC6vVCpfLhZGREfrw0hgjCUk6NiqP6LjY7fZFh86LIjOdTuPs2bMZ4SbiIlruZNaK\nG2ZUwUWOpHbIy8mViBdhRJEZDoczwn8sFkuWk+l0OlUFYzKZXJJILrQvczGRKX5ZLBZJYJLI1Dck\nJAlCR5TqPno8HkxNTaG9vR0XXXSRJBx9Ph8SiUTZt38plFtIyudhdnV1YfPmzaofwkYnnU7D5/PB\n5/NllUZpXTZIH/r6wwjiXj50vqWlBSzLYuPGjQDeF5nyWYBTU1OIRqMZCZrKRbSeBA4JydqiXI7k\nUpFfhGlpacm6XTw/Cgn/4ThOqsqpxrxMsYxX/lh5uSzLsujq6qIMAx2gnzOAIJYxpbiPs7OzYFkW\n6XR60REVFoul6oE2i1EOISl3ZQVBqMg8TL0SjUbhdrsxMzODzs5ODA4OSgsKtd40NUeHhKExMNrr\nqFxoiiJTLdxE7mRGIhGp70zNqdF6TEOhkJCsLdLpdE2l0VqtVlitVlXxlU6nM/oyA4EAkskkZmZm\nMlxQ+ZeWY36KnZf5rW99C5/5zGcwNjamyd8nlg4JSYKoElq4j9PT02hra8Pw8HDOslWGYbLGf+gF\nLUshY7GY5Mq2tbVluLLLCUEQ4Pf74Xa7kUwm0d/fj7Vr18JkMiGRSMBkMqmWDYoBKBzHZaVsKkc5\niCmbRhMnRsUIjqScYvcnV4JmLqdGFJlKN7McTpSRhaQR9yuVSqmOxalFGIZBQ0OD9HmZTqdRX1+P\nzs7OjFmyHMdlzJIFkJEwK+/L1DL8R/4dAAKBAFasWKHJ7ydKg4QkQVSYpbqPgiBILlsqlUJfXx92\n7txZ0JVePYzYWIxShYggCFIibTweL+p5qVUWKzdKJpPwer2YmJhAU1MThoaGMq4+51p85wtAkS8k\n/H4/WJbNSBGUC0ye5zUtiaomRhFgRnk9RLTcn1xOjTimgeO4jFmZ8nJA5RiTpYpMowpJnucN+X5s\nVKcVuHDcizMt5bNk29vbM+6nHPOjrHIRw7GUX6U+byQk9QMJSYKoAKW4j0qXbd26daqR4bnQc2nr\nUkkkEvB6vZicnERTUxNWr16t6jaUit4W4Gp9K+FwGG63G+FwGD09Pdi+fXvOwdbF7lOueYE8z2cs\nJGZmZhCLxfA///M/kjhVlgxqOQ+tnNTCNi5XKnVe5hrTIJ8FKLr40WgUqVRqSQPnjSok9fYeqhV6\n65HUkkL3Ld+YH3nf8vz8vGpJufIcKeTvRiKRotdBRHkw5hlAEDqhGu6jGnoubS0GQRAQCoXgdrsR\niUTQ29ubVzSVglh2q6dFkDjjErgQoiSm0Pb392PDhg05t1U89rR02cxmc1aKYCgUwvbt27NKoqan\np8FxnFReK19AyBfaenq+jYLejuNS0cP+5BKZ8p4zjuMQDAbBcRxSqVTGOSO/yGLUElCjYnRHslSR\nXEjfsrwvU34hRn6OOJ1OBINBNDU1obu7O+8IEqKykJAkCI3Ryn1sbW1dkvuohp5LWwshlUphcnIS\nHo8HTqcT/f39aG1tLfsHCcMwunMJBEHA6dOn4ff70dnZqesU2lwlUfKh2xzHwefzgeM4JJNJmM3m\nLCezrq6ubBcMiNqD53ldLySVPWdylMEmoVBIKp0FLsy5Vbr4tXyBpVa3Ox9GdiSTyWTZ32+LCf95\n+umn8eyzz2Jubg4WiwULCwv4yle+gqGhIaxZswZDQ0Po7e2VPqu///3v49///d9hMpmwadMmPPHE\nE5icnMSNN94Iv9+Pbdu24Wc/+xlsNhvi8ThuueUWvP7662hvb8cvfvELDAwMAAC+/e1v4+DBg2AY\nBg899BD27NkDAHjmmWfw+c9/Hul0Gn//93+Pe+65p6zPlZ4x5hlAEFWgFPdRTF5NJpPo7e3VvMev\nFoSkmsMwPz8PlmURCATQ3d2NrVu3wm63V2ybzGazFLhRTeR9oJFIBN3d3RgeHtaVwC2WXEO30+k0\nYrGYVC4rDqQXRaZawiaJzNzowcHTEkEQavb4X0xker1e8DyPtra2jAss0Wg0y8WvpVJxo/QZKxFL\nmI1Itd1W5Tny5S9/GV/+8pcBAH6/HzfccAM+9KEP4d1338XTTz+N9957Dx6PBwDQ1taG06dP4+23\n34bT6cQNN9yAp556Cr/73e9w991348Ybb8Qdd9yBgwcP4s4778TBgwfR2tqKd999F0899RS+/OUv\n4xe/+AVOnDiBp556Cn/9618xMTGBK6+8Eu+88w4A4DOf+Qyee+459PX1Yfv27di7dy9GRkaq82RV\nGRKSBFECovu4sLAAjuPQ1NRUlPvo9Xrh8/nQ2tqKtWvXlq3mX8+LDOB9oWuxWMDzPHw+HzweDxiG\nQX9/P9avX1+VfTCbzVIZaTVQhuesWbMGgiCgs7OzZhfRhcAwTE6RKXcyA4GAal+avFy22hcCCO0x\nmjAGIPWNLXbsi6Xi4gUWZam43MUXz4Fqi0wjvk4itXwxoxD0+rpFIhF0dnZiz549kkMowvM8Xn/9\ndVx77bWIRqOwWq3gOA7d3d144YUX8POf/xwAcOutt+L+++/HnXfeicOHD+P+++8HAFx//fW46667\nIAgCDh8+jBtvvBF2ux2Dg4MYGhrCa6+9BgAYGhrC6tWrAQA33ngjDh8+TEKSIIjCUbqPoVAIfr9f\ndQiw8nFK93FsbGzZL3TNZjMWFhbg8/mkeYebNm2qeslmtYTk/Pw83G43gsFgVniOGLazXMlXMigu\nsuUjTJQJm8WMcTDKc220Bb3eS1uXQr4yenmpuNpjxX5kMfRKHNEgikylk1mJ8T3VdrbKjdGOwVpg\nbm4uq1VCxGw2Y/v27fjiF7+I/v5+OJ1OfOQjH8G2bdvQ0tIivd/39fXB6/UCuFAJ4HK5AFzoe25u\nbobf74fX68XOnTul3y1/jHh/8eevvvpqWfa1Fljeq1eCKIJcvY82my1nmI3SfVSOZViuiKFC8/Pz\nOHnyJFatWoW1a9fq5ipvJYUkz/OYmpoCy7KSEzsyMpK1UJGH7RCZMAyTN2FTbYzDYgPpjbZINNL+\nGNENKqUfO5/IlM+IFY99cQ6g3W7PGmPicDg0OV6MLiSNiN4vns3NzWWlh8sJBAI4fPgwzp49i5aW\nFnziE5/AM888U8EtXF6QkCSIPBTS+6iWiiq6jx6PR5pvWG33US+uRDweh8fjgc/nQ1tbG5qamnDR\nRRepukzVpBJCMhaLgWVZTE1NoaOjAxs3bsw55LpUR1Lr1NZaIVfCpjyifmFhQXJzEokEgAvHq1xk\nOhyOmlscG+0118t7mZaUK9hLnoCpXIDLZ8SKyZkcxyEej0MQhIwZseLxb7fbC95OvYWVaYXRzic5\neg8RyuVIAsDzzz+PwcFBdHR0AACuvfZa/OlPf0IwGJT2zePxoLe3FwDQ29sLlmXR19eHVCqFUCiE\n9vZ26eci8scs9vPliH6PFIKoIsUmr8rnNMpFUktLC9asWaML91EURdVaAIuBMSzLIhaLZYw0+ctf\n/qJLl61cQlIenhOPx+FyubBr166CXhtyJLVnsfTAmZkZhEIhdHR0IBqNZs1Bs1qtWS6m0+nU7cLZ\nSMKLhKQ2yAN8lIjD5uX9yPJh86KTKT/+HQ5Hxj4Y1ZE0qkAG9C8kA4FATiHZ39+PV155BRzHwel0\n4g9/+ANGR0fxoQ99CL/61a9w44034tChQ7jmmmsAAHv37sWhQ4ewa9cu/OpXv8IVV1wBk8mEvXv3\n4qabbsIXvvAFTExM4PTp09ixY4eUnH727Fn09vbiqaeeknovlyP6PVIIogosNXmVYRhEo1G88cYb\niMfjuux9FANtKv2hLg+MaWxsxODgYNZMKTEdVW+I4z+0IpVKYWJiAh6PB42NjVi9erXqfK1cVDsA\naLnBMAyam5uzXiflsO1wOAyfz4dYLAae52Gz2bLKZZWL7EpiNAfFiAt5ve2TfNh8a2trxm2CICCR\nSEg9ycFgMENk2mw2qbIimUxiYWFB1xdZikUPad7lIplM6nrfAoFARo+ikrGxMVx//fXYunUrLBYL\ntmzZgn/4h3/A3/3d3+HGG2/E17/+dWzZsgX79+8HAOzfvx8333wzhoaG0NbWhqeeegoAsGHDBtxw\nww0YGRmBxWLBI488Iq2fHn74YezZswfpdBq33347NmzYUP4d1yn6PVIIokKUMvcxHo/D6/VicnIS\n8XgcmzZtKloYVAqLxYJUKgWbzVaRvxcKheB2uzE/P58VGKNEr+NJtBK4kUgEbrcbgUAAPT09GB0d\nXfLrUCulqUZ0jOTkGrYtikyxHzMUCmFycjLLyZGLzGLKBZeC0V4Po+0PoD8hmQuTyQS73Q673b6o\nyBRDf5LJJM6ePStdZFFz8mutXNzIoz9SqZSuxynlK20FgG984xv4xje+kfGz1atXS6mrchwOB/7r\nv/5L9fd87Wtfw9e+9rWsn1911VW46qqrithq40JCkli2lDL30e/3w+PxIBaLSe7ja6+9plsRCVRG\nrKVSKWl0h8PhgMvlQltbW0GOrh5dtlLcP57nMT09DbfbDYZh4HK5NBljUguOpCh2jbDQX4pol4tM\nZZKz0slRKxdUW2Qb4bnUEqMcX3JqSUjmQi4yRcEljkpQc/KnpqYyysWVpeJOp1N3ok3v5Z+loPd9\nK0RIEpVDv0cKQZQB0X1MpVKSqFqK+9jc3Kxaoqln5H2cWiN33FauXIktW7bAbrcX/Hg9O5LFirZY\nLCb1yK5YsSJveM5StknvjmStuKb5KIdQyefkyHvSlMEn4ggHpZNZyHYaTXgtx/EftYiynSKfk59K\npaSLLMqeZIvFkhX8Uy2RadTeT6A2hOSKFSuqvRnE/6HfI4UgNKQU91EMiIlGo3l7H/W8WNNarCnH\nVZTiuOm1R7JQISkIAgKBANxuN6LRaFHhOcVSC2E7RhGSlSZfT5qYrslxHPx+P1iWzZoTKBeZ1R5G\nX070/F67VJaDkMyFyWSC1WpV7UkGstOV1Ub4KN3McgkivYutQonH3fD5foBkchINDTvR2fkpJJPJ\noi4EV5pgMEiOpI6o/bOAIBahFPcxkUhI7mNTUxMGBwfR1NSU83HVTkXNh9qIkqXAcRw8Hg+mp6cL\nGldR6LbVopAUw3O8Xi/q6+sxMDCA5ubmsi5wSy1trdTim4SktsjTNZUjHMQ5gaKTozaM3mKxIBaL\nIRgMwul01rzIpDmStYGWzt1i6cpA7jmxDMNkCcy6urqShKARHMlUKoCzZ/8e6XQYZrMDs7M/Qyo1\ng1Tq/9HdKC45iUQCDoej2ptB/B8kJAnDoaX7uGPHjoI/bMQwG71+uJQi1gRBwMzMDFiWRTqdhsvl\nwtDQkGaLHoZhkEwmNfldWsIwjDRLUE4kEgHLspibm0N3dze2bdtWsRCjWnD7almg1CLyOYFKeJ5H\nLBZDIBBAJBLB9PQ0OI5DIpHIEKfiMHun0wmr1ar715AcydognU5X5L0x15xYUWTKS8aj0aj0eS3v\nxZSfA7kwgiPJcW8gnQ7DYrlwYcpkciAUehYMs0+3+6b3z77liD6PFIIoEi3dx6W6SqKQ1GtJiLh9\nxSCfidna2op169apflCXip5LW8Xt4nkeMzMzcLvdMJlM6O/vx0UXXVTxxWwthe0Q1cdsNqOurg48\nzyMUCmHdunXSbTzPZyywfT4fOI5DMpnMEKfyclm9pDlSj2RtoIcqnVwiM51OS8e/OMaE4zikUqlF\nzwExb0Av58JSMZlsAATZRRkegAnJpH5FcjqdhtlsNty5X8vo80ghiAIpxX0MBAJgWRYcx6G3tzfn\neIpCWIpQqyQMwyAej+e9n7Lfr6+vr+wzMfVc2ppIJPDee+/B5/Ohra0NIyMjqK+vr9o2aSHSyu3m\nGElIGmU/gGyn2Gw2o76+XvV4TqfTiMViORfYynTZSi6sjVjaChjPzdd7CSjDMGhoaFAt5RRFpvgV\nDAYRjUaRTCaRSCRQV1cnzcesJTdfpL5+FHb7IOLxdwEwANLo6Ph/MTEh6FYkh0Khmgo5XA6QkCRq\nDq3cx8bGRqxatUqznja9C0mLxQKO4xa9PZlMSv1+jY2NFen3E9GbkBQEAcFgEOfOncPCwgKGhobK\nLqYLRa/urRyjCMlaWRAWQrGvB8MwOUWm3MkMBAKqpYLyclmtzx0jlrYaEb0LyVzkEpmnTp1CU1MT\nrFZrlpuvLBkX/623vmSz2YHBwR9jbu6/kExOoq5uFM3NH4Hb/bouPuvUmJuby+oRJ6qLPo8UglBB\nK/exp6enZPdRDb0LycXEWigUAsuyCIfD6OnpwejoaMX6/UT0Uq6ZTqcxMTEBj8eDuro6dHV1YWFh\nAS6Xq9qbJmE2m3XZTyrHKELSaGi1iM3n4ogupnyEiSgolC7mUkUmCcnaQCxFNBrpdBqNjY2q54DY\nlyyeB8q+ZIfDkRX8Uy2RyTCN6Oi4PeNnenb7SUjqDxKShK4R3cdwOCz1HppMpoLe5BKJBCYmJjAx\nMYHGxkb09/ejpaWlbG/WtSAkxe1Lp9OYnJyEx+OB3W5Hf38/NmzYULWFWbUdyYWFBbjdbszNzWHl\nypXYunUr7HY7gsEgIpFI1bZLjVoQabWwjcuNSr0eDMPkDT3JNb5BKTQXc7P00HtH5Meor1Mup1Xs\nS1ZLMxdFpujoqyUsK93MQmfFLgf8fj+N/tAZJCQJXaJ0H//85z9j165deQWkWJLIsiwikYgmvY+F\nUgtCMhaL4eTJk5ibm0NXVxcuueQSXcRoV0NIikm0brcbgiCgv78fw8PDGceYXpxSObUw/oOEpD6p\n9mI0V+iJckaguMCWD6KXi0wjhJ0sB2q5tDUXS01tzScy5WN8xAstsVgMJpMJdrs9y813OByantd6\nf98OBAIkJHUGCUlCNyzW+2g2m2GxWHIm2iWTSXi9XkxMTKChoQEul6us7qMaFouloDCbSsPzPKan\np3Hu3DlwHAeXy5UlmKpNJYVkIpGAx+PB5OQkWltbcdFFFy06M0uPQrJUkSaeZ+WEhKT+0PvrkWtG\nYDKZlBbX8/PzmJ6eRjAYhMlkwuTkpGq5rJ7e35YzRhWS5divXGN8BEHIcDL9fr/kZAqCkOFkiueC\n3W4v+jzQe3KwWDVE6AcSkkTVKaT3UXT75FcAle5juXofC0VeOqoHotEoWJbF9PQ0Ojo6sH79erzz\nzjvo7Oys9qZlUW7BJggCQqEQ3G43IpFIwUm0DMPoTkgu9bkSBfTExASA9wfcyxfhWo530LtwKRQj\n7Ue1HcmlYrVa0dzcnJHWePbsWdTV1aG1tVVyMkOhEHw+H6LRKARBgM1myzrGHQ6HLhfKRjnOlOhd\nmCyVSvcRygN81LYlHo9nhF9NTEwgFotBEIRFnUy17U+lUrp2+ufm5rBhw4ZqbwYhg4QkURVyuY9q\nWK1WJJNJOBwOXbiPaoizpaqJIAiYnZ2F2+1GKpWCy+XC0NCQJD6qvX2LUS5HUt4L6nA40N/fj9bW\n1oKPFT0mpJpMpqKEZDgcxvnz5zE/P4++vj5s375dWrSKgRBqMwSVArOYUJRqn4taYZT9MCKCIIBh\nGNhsNthstqyRAIIgSE6mKDInJycXXVwv1cHRCiMLLjqPyovYW+lwONDa2ppxmyAISCQSGWN85CLT\nZrNlCEzxvNIrVNqqP0hIEhVlqcmrFosFgUAAZ8+eldzHaqSL5qKaPZLxeFwaa9La2op169Zl9SEV\nK0AqidYLDY7j4Ha7MTs7i5UrVy65F1SPpa1mszmve8HzPKampuB2u2G1WrFq1Sq0tbXBZDIhnU5n\niEW1Xh35kG5l8qZav5qylJBKW/WH0Rb0+fbHZDJJIrOlpSXrsfLFtZqDozy+te5FU2JUIWmkY64W\nEXsr7Xb7oiJT7uiHQiEsLCzgtddeg9Vq1V3ZOAlJ/UFCkig7xbqPcsTZhlNTU5ifn8fatWuLcpQq\nSaWFpHKsSb5yTT0+Z1oid2PT6TT6+/uxbt26kj709CokF9umeDwOj8cDn8+HFStWYNOmTapCMR+5\nxjvIQ1HEfjUxFEW8ur2wsIBgMAir1Vr2BThROEZ6HUoRxvkW1/LAk8V60ZROZqnPrVGFpBEvKBll\nn+TngXixZXZ2FuFwGIODgxnv9eFwGD6fD7FYDDzPw2q1ZgnMXCnLWhEIBLBixYqy/g2iOEhIEmWj\nlLmP4mzD+fl59PT0oL+/H06nU9fzgyolJEVx7fV60dDQgFWrVqG5udlQi8RiSCQSUqnzYm7sUtGj\nkFRz+0KhEM6fPy/NvNy5c+eiH+ilHieLhaLISwkXFhYwPz+PUCiEWCwGAFkuTzVnpy1HjLL4FeF5\nvizHjrxMUIk88ITjOPj9frAsmzW6QX6cF3qMG1VIGhGjBggBF9YXVqs1w9FXKxtPpVJZAVjKlGXl\nGGSI4V0AACAASURBVBMtnrNQKJRVYUBUFxKShKZo4T5OTEygrq4OLpdLch89Ho/uh7CXW0iGw2G4\n3W6EQiFdlvZWGjE8R+z9KyQ8p1j0KHJEccvzPHw+H1iWlWaBVtOtly88GhoasGLFCsntUS7AlbPT\nyhn6Q7yPHo/npVKNoenywBPlRU3l6Aa1+YDKMkG5yDSikDRaObWIkYVkIWNNTCaTagCWiHKUj9q8\nWKWbWchntyAIklAl9AO9GoQmaOU+dnd3Y9u2bVkCyWq1Ss6GXinHB2Y6nc4QCy6XCxs2bCjpb+n5\nwz3ftimfj/7+fqn3b7mQTCYRDodx7NgxdHZ24uKLL9bFLFA5Stc03wJ8sdAfhmGyAn/q6uoMu4gr\nJ0ZzJPX2PpZrdIP8GI9Go5iengbHcUgkEtK5Ic75DYVCcDqdkitUyxhVcC11hmQtkEqlSv48yTXK\nR+5kchyXITLl7/fid1F4yqn188JoGPNMICpCKe5jKpWSyjOdTidcLldOQVDNIJtqsLCwALfbDb/f\nX1JYjBIxHVWPH4Ki+FA7BjiOA8uymJmZQVdXl2bPR60gjro5f/48OI6D2WzOWb5abYoJ2ykm9Ed5\nZTtf6E8l90Pv6E14lUq5SlvLQb4h9OLwebX0ZKV7U0tuvVGFpF4/Q7UgmUyWdd8sFguampoWFZni\nnEwx5O3AgQN4+eWX4XQ60dfXh1gshieffBJDQ0MYGhrK6HE+deoUPvnJT0r/P3PmDL75zW/illtu\nwSc/+UmcO3cOAwMD+OUvf4nW1lYIgoDPf/7z+N3vfoe6ujr85Cc/wdatWwEAhw4dwj//8z8DAL7+\n9a/j1ltvBQC8/vrruO222xCNRnHVVVfhhz/8Yc28D5ULY54JRFkpxX0Mh8NgWRbhcHhR91ENcfyH\nkeF5HtPT02BZFiaTCS6XC8PDw5oujMURJXr8EBRFrri/yvAcl8uFtWvXGq78Kxfy8SVOpxMDAwOw\n2+04ceKE7hdoWgiwYkJ/pqampCAIMfRHOT9wuX/gGwmjCGOz2Yz6+nokEgkkEgmsXbtWui2dTmc4\nmcFgEBzHIZVKSSJTeSFFTyJT/n5uJFKplO7ff5dKNedIWiwWNDY2ZmQc/OhHPwJwobXn5Zdfxr/+\n67+CZVm8+OKLePfddxEIBOBwOLBmzRoMDQ3hz3/+szS2q7e3Fx//+Mfxne98B3/zN3+De+65B9/5\nznfwne98B9/97nfx+9//HqdPn8bp06fx6quv4s4778Srr76Kubk5fOMb38Dx48dhMpmwbds27N27\nF62trbjzzjvx4x//GGNjY7jqqqvwzDPP4KMf/WhVni+9oL/VJKFLtHYfiy3PrBVHUhyxUcyHZywW\nA8uymJqawooVKzAyMoL6+vqybB/DMEilUrDb7WX5/aUgnyUphuc0NzdrGp5TK0Sj0UUd2EQiobsA\nICWVWODnCv2RR9rLRzsA74f+LCUQpZYxivASqUaPZDlR+9xgGAb19fWqnwdyt14cYRKNRiWRI3cy\ni50DqxU8zxtScBnVaQX0W7bb1NSE3t5eDA0N4Utf+lLGbdFoFGfOnMG5c+ekc+gPf/gD1qxZg1Wr\nVuHw4cM4cuQIAODWW2/FBz/4QXz3u9/F4cOHccstt8BkMmHnzp0IBoOYnJzEkSNH8OEPf1hqw/jw\nhz+MZ555Bh/84AcRDoexc+dOAMAtt9yC//7v/yYhWe0NIPSNXDwW4z4CkHofRfdx69atSxYwteJI\nioI3n8squm0syyKZTMLlcmHXrl1l/3CSizW9wfM83n77bXAch56eHmzfvl1XV9fLjTjO5fz580gk\nEnC5XBgaGspaXGqRJFtuQVHNklC1SHuRYkN/auHi1XLFaMK42AuQudz6dDqd0YcmnwPLMEyWi1mu\nvmOjCi69ii0t0PO+zc3NqSb3O51ObNiwARs2bJB+9tRTT2Hfvn0AgKmpKXR3dwMAVq5ciampKQAX\nLli7XC7pMX19ffB6vTl/3tfXl/Xz5Y4+jxaiqpTqPspL8bQIhwFqx5HMJyTloypaWlowNDSk2itQ\nzu3Tk5CUJ49Go1GsWbMGF198se4WiOVctKbTaUxMTMDj8aC+vh6rV69WTcITqYW+Pb1uY77QH3l/\nzuTkJMLhMOLxOMLhcM2H/hhNeBltf7RMbWUYJqtEUETsQ8uVqKkUmks9zo0qJI26X4C+921ubg7t\n7e1575dIJPD000/j29/+dtZthRohROGQkCQktHAfQ6FQye6jGrVy4qsJXjEoxe12g+M49Pb2lmVU\nRSGIpa3VRizdnJ6eRmdnJzZv3owzZ86gsbFRd6+16ABq/eHKcVxGoFKh54weZ1sq0auQzIXYqyYv\nIwwEApidncXq1asLCv2Rx9kbqexSjxhtXEal9ketD01EObZBdOzlswGVfce53heN3COpFpxkFPT2\nGSwSCAQKEpK///3vsXXrVnR1dQEAurq6MDk5ie7ubkxOTqKzsxMA0NvbC5Zlpcd5PB709vait7dX\nKoUVf/7BD34Qvb298Hg8Wfdf7pCQXOZo4T56vV7NRlPUOnIhKe8Nra+vR39/P1paWqr6/FSztFUQ\nBPj9frjdbqmcV166qdeyW4ZhNBOSgiBgbm4O58+fRyqVQn9/P9atW1fUYqsWzq9aFJKLIQhCwaE/\n4XAYPp9Pl6E/RnPwjLY/ehDGucY2JJPJRQfQW63WLBfT6XTq2t0qBT2XfxqZubm5jDCqxXjyySel\nslYA2Lt3Lw4dOoR77rkHhw4dwjXXXCP9/OGHH8aNN96IV199Fc3Nzeju7saePXvw1a9+FYFAAADw\n7LPP4tvf/jba2trQ1NSEV155BWNjY/jpT3+Kz372s+XZ2RqCzoRliige5+bmkEwm0d7eXrD7KCav\nBoNBrFy5Elu2bKlYeIveFw8WiwXhcBiTk5MIBoPo6ekpOJm2ElRDrCWTSamct6mpadFyXlGw6Q0x\nAa6Ufk3xooLH48n5HFSCSpw/RhGShTxX+UJ/5GEoXq8X8XgcQHVCf/T83lksev8sKBa9D1pfbAC9\nIAgZF1NCoRB8Ph+i0SgSiYQ0H1N5MaXaorkUjCqQ9T5Sp5DS1oWFBTz33HN47LHHpJ/dc889uOGG\nG3Dw4EGsWrUKv/zlLwEAV111FX73u99haGgIdXV1eOKJJwAAbW1tuPfee7F9+3YAwH333Se1Qvzo\nRz+Sxn989KMfXfZBOwAJyWWFmvso9v90dHTkfGwqlYLP54PH45Hcx5GRkYq+6Yhunx4DWNLpNHw+\nHyYmJmC1WrFu3bqKPz+FUMle0/n5ebjdbgSDQfT29uYNzxEFm94opZRUnAc6NzeH7u5ujI6O6uai\nQjkxipAsBXnoj3zWGVB46I9caJb6vme010Pvi95iSafTNfneYDKZYLPZYLPZskSm2+2GyWRCY2Oj\nJDInJycRi8UgCALsdntWT2YtjOkxqiOp9/0qpLS1vr4efr8/42ft7e34wx/+kHVfk8mERx55RPX3\n3H777bj99tuzfj46Ooq//OUvRWy18dHvEUNoRq7eR5vNljMNVek+VnMQvNVq1Z2QXFhYAMuymJ2d\nRVdXF/r6+mC1WrFixYpqb5oqDMMgkUiU7ffzPI+pqSmwLAuLxVLUBQe9lrYWKyTl8y95nkd/fz8u\nuugi3S+OtMZowkVLign9kc8OFMc6LCX0x2gOntHGfxhtf4ALx3JdXR1aWlpUE5SVjr04pkcUmcpy\nWb2ITKM6knoXknNzc7pdWy1n9HvEECVRaO+j2lgNpfvY19enC3fNYrEgmUzC6XRWdTt4nsfMzAzc\nbjcAwOVySX1uExMTUumaHilXaqt8FmZHRwc2btxYdBhBrQvJVCoFj8ezrOdfilT7vaKWUQv9EVGO\ndVjuoT9GOs700COpNbnCdvI59vF4XDrW/X4/otGoNAvW4XBkOZl2u71ix4PeBddS0ft+FRq2Q1QW\n/R4xxJIoNnnVarVKDtX8/DxYlkUgEKi6+6hGtWdJxmIxeDweTE1Nob29HSMjI1mLPYvFgoWFhSpt\nYX60TG0Vg2PcbjcSiQT6+vpKmoVpNpt1OSs0n5CMRCJSCe9ynH+phslk0mW/a7HoTajkGusgD0NR\nhv7Y7XYpFKW+vl5X7g5xASMKyaWGlJlMJjgcDtX1h7Is3O/3g2VZqSxcTWRq3XtsVEcymUzq+rOL\n4zjVwDOiupCQNAClJK+azWZwHIdXX30VVqsVLpcL69ev1+UCoxqzJMWkUZZlJbG0c+fORT9E9D7v\nUgvXL5VKScN5Gxsb8849LGbbxCvOekJNSAqCgJmZGZw/fx4mkwn9/f26PW+qgZF6JGtlP3KFoSQS\nCWmxLQ6nr2boD5GNEYVkOQRXvrJwuZOp7D12OBxZ5bJLPdaNeH7o2ZGUGyOEvtDnEUMURClzH+Xu\nI8/zuPjii3XlPqpRSUcykUjA6/VicnISTU1NWLNmTUEpm0YWkvJjpqenR/PgmFoobU0mk1L5amtr\nK9avX09XSFUwkpCsdcQSQnHxLZ97Jro78oU3x3FIJBIwm83SwlvL0B9CHSPOXKz0PpnNZuk4V8Lz\nfMaxPjU1JSXLysWp8lhfTsKFhCSxFPR5xBB5SaVSkqgq1H0Uk0U9Hk+G+/jyyy/rXkQC7/dIlgtB\nEBAMBsGyLCKRSEFJo2rbqGchWez28TyP6elpuN1uMAxTVudNr0KSYRgsLCzA5/MhHA6jt7cXY2Nj\nuv3A1QMkJGsD+QJaiRj6Iy68c4X+iAtvI5b7VQqjhu3o5Zgwm83SsapEGXDl8/nAcRySyWSGOBWP\nc6O+tyWTyaKzDSpFJBJZtpkDeodWQjVMMe6jx+PB3Nwcurq6VN3HWiirsVqt4DhO898rzvjzer2o\nq6tDf38/WlpaliSW9C4kCxVrYj+oz+fDihUrlhSeUyyljNkoB6KI9nq90kiXDRs26OKKqCjU9LAt\napCQ1B/FCpVcoT+pVCpj4S0P/bFarVnOjtFDf7SgFj6Di6VWegnzBVzJncxgMIhoNIrXXntNEpnK\nctlade317Ej6/f6sUCZCH+jziCHykk9Eyt1HcQzDYiMIxJJRu91ezk0uGXH8h1bI5xx2d3dj27Zt\nJZdq1rKQFAQBgUAAbrcbsVis5PAcLbetkiQSCXg8HkxOTqK9vR3d3d2or6/XVey4GGaj10UaCUlj\nY7FY8ob+cBwnhf5Eo9GsuYGljnQw2vGl5/N5qdSKkMwFwzAZIjOZTCIajWLLli1Ip9MZrn0gEEA0\nGs1w7ZXHu16FGqBvIUmJrfpFn0cMkZfFPngjkQhYloXf70dXVxc2b96cd1yGOEtS70JSi9JWnufh\n8/nAsqxU3qvlaBOz2azrBY7a9skd2fr6egwMDGTN/KoE1RaSoVAIbrcb8/Pz6Ovrk8pXxXmQekJ0\nb/W8SNPzeVAoenV8l0KlHOx8oT+iyFSG/sjTNsWv5dSjlk6nDbevRndZGYZBQ0ODap+80rUXj3fx\n8UoXs9B5sOVEz0LS7/dnhSsR+kCfRwxRFOl0OmsI/P/P3psHyXHW9//vnnt3tPdqD+3OzGq1h3Yl\ny7q1NgTE4RirKPlLyjEqCBKRqQQVUA78Yxc2jqmiYjv5VqoMNn/EJUBQIbJxERT4GgcK4wqhQJJt\nbPAlrW1N91w7uzv30XP0dP/+0K+bnvvqmXmm1a8qVcjszvrp7qe7n/fz+Xzen8XFxZof4J1uq1Er\nzYwzmUzC5XJhY2OjZoGtdsS2FaFQSLGIbDN0IrWV53n4/X4wDAOTyQS73Y7h4eG8BZ1OpyMiUiqH\n9Igf6eOrB7UcR6ep1jdQnj64vr6eZ/pTKrKjNtQougB1bcYAtYutSlF7UWQmk0kkEomifrClUsPb\nITJJbv8RDAa1iCShaEKyS6EoqqHoYym6RUg2YhSzsbEBl8sFQRBgs9kwPz+vypd1rfA8j2w2i8uX\nLxPXtqKdEcl0Og2XywW/34/R0dGK9w6J/S0bFd1i2xKfz1cUAVJyJ5qE+aSRD+k1tfWa/iSTSbz8\n8suqMf1Ro9mOGjdhlEjXrZYaLs73eDyO9fV1sCwLnudhMBiKWvVYLBbF5ruYkksioVBIi0gSiiYk\nuxSO47C6uopt27bVFX0shdFoRCaTUXB0raFeoxi/34/h4WHs3Lmz7S0aSFu0pdNpyTwnl8theXm5\npLFAJ2mHkAyHw2AYBolEAjabrWJPUBHSTICA+lOo5b0/BwYGMDk5KdWyhUIhKeVKvlAR/1kslrqf\nL2qKSKoJkp5JtVLKCEUQBLz00ku4+eabiyI7yWQSPM/DaDTmLbgbncvtpBuvz41Gq9M/jUYjjEZj\nyXZj4jObZVnEYrE8kVk43xs1uSL1/giFQpiZmen0MDRKoAnJLsVoNGLfvn2K/C2TySTVqZBMpZes\nIAgIBoNgGAbpdBrT09M1iYRWIEZOO50iIrYzYRgGyWRSEk6XLl0iMjWsVfWlYl0swzCwWCxwOBx1\nufLq9XrihKRotlONZDIJmqYRDAaxbds2HDp0qGKtcTWjlEKRWa6ZtyYkyUNN10PcqCPB9EfjxqKT\nBkKV6o/lkcxIJJI3300mU5647IZNlUKCwSBRhncaf0YTkl2MUos1o9GIeDyuwIjaTyaTgdfrhdfr\nRX9/P2ZnZ4sesu2m00KS4zj4fD643e6S7UzEyF83vUQaIZVKSemr4+Pj2Lt3b0P9UkmskawUJRU3\nVWiaBsdxcDgceY7NgiCUjZhXWqik02lpYb6xsQGWZZFOp0FRVFHkh+d51QgXNR2HWoRSLcfSbaY/\naplnIjzPq2a+ySHRkIaiKJhMJphMprLzXS4yfT4fUqlU3qZKT0+PVLtJ4qaKViNJLmTdDRodoVtq\nJIHrD8xcLodYLAaXy4VYLIapqSkcOnSo4xFAkU61AEkkEmAYBsFgEBMTE9i/f39JJ16DwSD1e1Mb\nYhSWpmmkUinYbDbceuutTYlmElNbS20i5XI5+Hw+uFwubNmyBXNzcyXToxr971ksFlgslqI6FXkN\nm5gqG4vFkE6nEY/Hi+rXuqmnIGmLKY3rNCNSajX9SSaTNZn+qPE5qgSku0o3ilgC0C3I53uhG7t8\nUyUej4Pnebzzzjt5IrMwXbZTIjMUCmkRSULpnrtBowglI5LdICQ5jgPHcbh48aIUaRsaGiJusddO\nISmapzAMA0EQYLfbq9bM6vV6ontdNoJcRPX29irawoREISkfUyqVAsMw2NjYwMTERM3uu0pFqErV\nsEWjUXi9XuzYsUMSmc2kymo0j9oikq3YjJCb/hRGP8qZ/ogGJYVR+XpNf9RybUTU0EOyFBzHNZTZ\nQiJykWmxWBAKhXDTTTcByM9CYVkWgUAALMsilUpJ3ytsX2I2m1s2j8PhsGa2QyiakNQg3mxHjD6G\nQiFQFIXl5eWO9DmslXYItUwmA7fbDZ/PV7ehUKf7NSoJy7J5IqpcFLYZSBSSFEUhGo3C6XQilUrB\nbrdjbm6upsU1RVEtr2EU/34544jCVFnRJEVMlS1MLVTaVVaju+mEKC61YSJSqp1DN5v+KIFahaRa\nj6uwHEeehVKIGLkX53wgEIDL5ZKe3/L0cPH/NrtJ2A29zm9UtDdzF6PUi9RoNBIXoRINUtxuN/R6\nvdSm4o033iB+51ZMHVUaQRAQiUQk19GpqSkcOXKk7gU26UKy2iJRbqyUyWRgt9tb2taFJCEp3hd+\nvx/xeBwLCwvEbqpUEqr1psqWcpWVL1TUvihXAjVFJEmrv6vV9KfQBEWMylssFuRyOaRSqZZGddqJ\nWuvwSayRVIJ6jkseuS/1/JZHMgvr6S0WS9HGSrUaZLXVD6sN9d0NGnVD0ksrmUzC5XJhY2MDY2Nj\nuOmmm/IcRrshDVfp1FZ52mZPT0/TKb2dquGsBVHklnqhyU2EtmzZ0jZjJRJcWzOZDFwuF9bW1rB1\n61aMjY1hbGyMWBHZzDOlUuRH7kwYi8Xg9/u1VNk6UMu56Kaei7WY/sTjcXAch6tXr+aZ/tS74CYJ\nNddIqvG4lBLI8lriQniel2qQWZaVnt+ZTCZPnPb29mJzcxOjo6MYHx+XNiW6Ze7faGhCsotRy00l\n1vm5XC7kcjnYbLayESaSRZBIpfYK9ZBMJsEwDDY3NxVN2yQ5IllKtInnIRAI1FUDqBSddG2NRqOg\naRrxeDyvpc3q6irRu7StSp2tlCqbyWSQSCTAsqyWKlsCkudLvaghuiqvT7Nardjc3MSePXsA5Ed1\najH9IXE+a4Kru8hmsy0/Lp1OJ83XQsRMFHGj8D//8z/x61//GuFwGEajESzL4h//8R8xPz8v/ZNH\nQ8PhMD73uc/h9ddfB0VR+M53voPFxUV88pOfhNPpxMzMDJ555hkMDQ1BEATce++9eO6559Db24vv\nfe972L9/PwDg3Llz+MY3vgEAePDBB3Hq1CkAwMsvv4zPfvazYFkWx44dw+OPP971zyClUN/doNEQ\nohtqOx/86XQabrcba2trGB4exuLiYtU6v26JSLIs29B35aKa53nYbDYsLCwouvveqtRbJRBFriAI\nCAQCoGkauVwOdrtd8fNQK+1ObRUEAevr66BpGgaDAQ6HA8PDw3kvLZLSbUvR7j6S8kV5IaVSZVmW\nzTNJKXSWFeeZ2vphqmXhowYhKUcQhLx3r1wsFpr+iCmwleZzM6Y/SqFWIanW4+I4rq0btIUUZqI8\n9NBDeOihhwAAr732Gr7xjW9g//79WF1dxW9+8xusrq4iFArBYrFg7969SCaT+NjHPoZnn31WivT/\n0z/9Ez7ykY/g/vvvx6OPPopHH30Ujz32GH7+859jdXUVq6uruHjxIs6cOYOLFy8iGAzi61//Ol56\n6SVQFIUDBw7g+PHjGBoawpkzZ/DUU0/hyJEjOHbsGJ5//nnccccdHTtfJKEJyS5GyRepyWRCNptt\n+QNSrG9zuVxIpVKYnp6uq87PaDQilUq1dIzN0kjUNJPJwOPxwOv1YmhoqCZR3Sh6vZ5oMe5yubC5\nuYn+/n4sLCyUrDtqJ+0SbdlsFm63G16vF8PDw9i9e3fJnVuAfIFD0viqmaSIC/JSqbLiplAwGGy5\nK2GrIeV6KAFpNZLNUk89oV6v7wrTH7XWSKpZSJZ733SaZDIJh8OBO++8s+hnLMvi7bffxl/91V/h\ne9/7HgBIPTUvXLiAF198EQBw6tQpHD16FI899hguXLiAkydPgqIorKysIBwOw+fz4cUXX8Rtt90m\nRTpvu+02PP/88zh69Cii0ShWVlYAACdPnsRPfvITTUj+/2hCUgPAnyN9rbK1zmazklDq6+vD9u3b\nG6pvUypttJXUIyRF85xYLFa3qG4UvV5PnBiX98C0WCw4ePBgR3dH5bRaFCUSCdA0jXA4XLOBUrPi\ntl2uraRjMBjQ399fNlVWtLwvdCXs1lRZtYivbqqRrAWe5xU5nmZNf+TzutlNE7XWSALquY/kkJyy\nGwgEiiLzIj09PaAoClu3bsXf/u3f4rXXXsOBAwfw+OOPw+/3Y3JyEgAwMTEBv98PAPB4PLDZbNLf\nmJ6ehsfjqfj59PR00eca1yFz1mjUhJIPs1aljMqF0rZt23Do0KGmGjiT6DBbSDUhmcvlsLa2BpfL\nBYvF0vZ+mKTUSAqCgM3NTdA0DUEQ4HA4IAgCJiYmiBGRQGsWDeKxMwwDnufhcDiwtLRU83+LdKFG\n+viqIabK9vf3IxwOY35+XvpZLf0Ey6XKdpJuvh6FqC21VSkhWYlaTH/EVg5ut1vqF9io6U850zQN\nMslms02tzVpJOBwuKySB6yL4lVdewbe+9S0cOXIE9957Lx599NG83xHbXmkoj3aXawBQtpckx3FS\n6w6LxQKbzVZU49Uo3RyRlDvSjo+PY+/evR1pbNxpwyIxOu3xeDA0NJTXAzMUChEhclsFx3Hwer1w\nu91Npe5qNZKdo5lUWaWjPvWgJvGlttTWdgjJcsjri4eGhorGJe8XKHfZFOs4C+e0KB5zuZzW96+L\nIDkiGQwGMTU1Vfbn09PTUkYXANx111149NFHMT4+Dp/Ph8nJSfh8PoyNjQEApqam4HK5pO+73W5M\nTU1hampKSoUVPz969CimpqbgdruLfl/jOmTOGo2aaEWNZDPE43EwDINQKISJiQns27dP8RdJt5jt\niEJNHnmq5kjbLjoVkYzH46BpGpFIBNu2bcPhw4eLdkBJiZYqDcuyoGkagUAAk5OTTafu6nQ64u8D\ntQrJSlRLlZVHfSqlyvb09BAbHSABNYlioLNCshJyl816TX84jpM2yTpp+qMkatvAkEO6kBQdjUsx\nMTEBm82GK1euYHFxEb/61a+wvLyM5eVlnDt3Dvfffz/OnTsn1VgeP34cTzzxBE6cOIGLFy9iYGAA\nk5OTuP322/HVr34VoVAIAPCLX/wCjzzyCIaHh9Hf34/f//73OHLkCL7//e/jS1/6UluOvRsgc9Zo\n1IxSO/+ivXK98DwPv98Pl8sFvV4Pm81WV4pevXQ6mlYLYruIa9euwev1YnBwkAjTGJF2uraKDqQM\nw0Cn08Fut2N5ebns/FCTkBQEAaFQCDRNI5PJwOFwKOY8S3rET02LLSXOc7Woj9z2vlWpsmoSX1qN\nZOepZvpz5coVWCwWJBIJqSm93PRHHslspemPkqjVaAcgu6Y1GAxWTG0FgG9961v49Kc/jUwmg9nZ\nWXz3u98Fz/O4++67cfbsWTgcDjzzzDMAgGPHjuG5557D3Nwcent78d3vfhcAMDw8jK997Ws4dOgQ\ngOvOsaLxzre//W2p/ccdd9yhGe3I0ISkBoDrQjIajdb8+yzLwuVyYX19HVu3bq3oMKkkJDSHr0Q0\nGgXDMEgkEtDpdCWjbp2mHWJN7kI7PDyM5eXlkguOUmMj+frWAs/z8Pl8YBgGVqsVs7OzDRlLVUJL\nbW0P7RBe9aTKrq+vSwtys9lcFMmsliqrJiGplmMBulNIVsJgMECv12N0dDQvOi8IArLZrLRpcNf9\n5QAAIABJREFUEolE4PP5kEql8tK/5SKTJKdkkqN2aiYUClUVknv37sVLL71U9PmvfvWros8oisKT\nTz5Z8u+cPn0ap0+fLvr84MGDeP3112sc8Y2Fdkd0OUpGJKulysl7HIppmnNzc6p6ATYCz/OSeY7J\nZILdbkckEoHD4ej00Eoiph21glgsBpqmEY1GG3KhFaO5JFJt8ZpOp8EwDNbX1zE2Nob9+/e3rEaI\ndKFG+vi6hWZTZeVCU03XQxOS5FMqekdRlNSaoZTpTzqdlkSmUqY/SiJmCWi0l1qEpEbn0ISkBoDK\nZjvpdBputxtra2sYGhoiKk2zk8ijsmNjY9izZw96enoA/HkhTeJiR+mIJM/zUvqqwWCA3W7Hrl27\nGjp2vV6vmOmTklS6npFIBDRNI5FIwG6345Zbbmn5olCJ9h+tRBOSraUWgxRRZPp8PiSTScTjcUSj\nUfT19RHpKlsPahNeajseoP4+kqJYtFgsNZn+JJNJZLPZqqY/SqJWJ9pcLkfkWkUkGo1icHCw08PQ\nKIP67ogbDKVu/kKzHbG+i2EYsCzbth6HtSBGrTqxMygIAgKBABiGQTabLRuVFcUaCeerEKXmTCaT\ngcvlwtraGkZGRhRJbya1RlIUbuJ1FmuDGYaByWTCzMwMBgcH2/Yy1ul0RAs1TUh2DrlBipy33noL\nk5OT0Ov1SCQSiMfjeamyJpOpqB6TpLRCOaRu0jWKWoWkUu/oaqY/8hrjUCiEZDIp/fcLU2WbMf1R\na2orx3HEleCICIIAQRC0SDDBqO+O0GgIcQGfzWbh9Xrh8XjQ19eHmZkZDAwMEPXSFg132vlgEVtW\neL1e9Pf3Y25urijdrNQY1fjSkUfgpqensbKyouiCgcTaP3FcmUwGbrcbPp8Po6OjeVHodkJRFJHn\nSYNcBEGAwWDAli1bijJKau0lKP/XyYWnGoWk2t4V7TJv0ev12LJli9RCSo5YY8yyrCKmP2o12+mG\ntYqa7ne1QfbM0aiKUjdXNBoFy7K4fPkytm3b1nR7glYi1nO2o0eVvOZv27ZtOHToUE0LqFbWIXaC\nwjpQh8OBoaEhxR/upEYkeZ7HW2+9JYnnTkfnlYhItnIxrqaX/o0QWW0kVVbuKtvT0wOr1SotyFsd\nXVNbGwY1RiRJOKZKNcaNmP50g+BqBJKPi2XZjvTb1qgdMmeORlvI5XLw+Xxwu90wm80wGo1YWVnp\n+MO/GkajsaUiTZ62aDQaG6r5a2eLjUapRUik02kpfbWwDrQVkCQkRXMpmqaRTCYxNTWFPXv2ELGA\n1SKS7YGEa60UjW4clEuVBa4vQMXFeDtTZdWW6kaC6FIakqPGtZj+iJFMuZFVNpuFyWRCKpXKE5nt\nNv1Rmmw2S6yQDAaDRZtbGmRB5szRqJlGHl7xeBwulwvBYBDj4+PYu3cvLBYLLl682BUvNIPB0JJm\n7KlUCi6XC36/v2nRRHq/SzFVs9RiTBAEKX01mUzCZrPhlltuacvCjQTXVo7j4Ha7pR6gy8vLePfd\nd4lK8SY1BVjjxsJgMKCvr69qqmwwGFQ0VZZkkdII3fDevVGQm/4U8u6778JiscBsNoNl2Y6Z/igN\nyTWSwWBQ6uWoQSbkz3ANRRCdNV0uFyiKgs1mw+LiYt7LS0wZJf3Bp2REUhAEBINBMAyDTCYDm82G\nW2+9temXOulCUoz8ycWh2P/Q5XLBYrHA4XC01UBGHFenBFIymQRN0wgGg5iamspLYyZNuGlmNhr1\n0k7x1UyqbGFvzFLmKFpqq0Yn4Hkevb29JSNktZr+iHO6GdMfpSE5tTUYDGqtPwiHzJmjUTPVXqYs\ny8LtdsPv92Pr1q3YtWtXWWdNUUh2wjykHpSISHIcB4/HI5kKKd00nnQhKY5PTNMR+x/KI9SdoN2p\nreJGgtPpBM/zsNvt2LlzZ9F9RZqQbGY8YsQ1nU7DarU27WSooVEPtabKFpqjyFNlk8kkjEajaiKT\nmpDsDioJrlpMf0qlgMtNf8RncTXTH6XJZrOwWq1t++/VQzAYxOjoaKeHoVEBTUiqEEEQsLm5CZfL\nJbWoqCXKJgpJ0jEajUgkEg19NxaLgWEYhMPhlpoKkS4kdTodgsEgrl69ilQqBbvdXrKNSbtpl5DM\n5XLwer1wuVzo6+ur2huVRCFZb0SSZVnQNI1AIICJiQn09PRUXKz39vbCarXCZDKpYrF+o9MNoqtS\nqmw2m0UikZCEZjKZhMfjIdJVtl7UJiTVFjEWadS1tZrpj1iPGQ6H4fV6q5r+KH1uSU9t1WokyUYT\nkl2O/IEib00wNDSE+fn5iovjQoxGI5HN4AupV6SJab0Mw0Cv18Nut2N5ebmlLzqDwYB0Ot2yv98o\nosFSIBBANpvF3NwcUY1+Wy3YUqkUaJrG5uYmJiYmat5IIE1I1mO2EwqFQNM00uk07HY7FhYWpAWM\nfPFaqgWEaDIhr/+R/7sRophaCnHnkZujDA0NgWVZDA4OYmRkpChVdm1tTapbqzVVttOoUUiSdo6V\nQOkUUPm8LnwPVzL9KbV50tPT07DpD8mpraFQCEtLS50ehkYFyJw5GnURCoXAMIzkLNloawKTydQ1\nEclaxplKpeB2u7G2toatW7di9+7dZdN6lYa0iCTLsmAYBhsbG5iYmMDExATGx8eJEpFAa1wyBUFA\nOByWxJTNZsP8/HxdC7dO1m6WopqwlTsPm81mzMzM5F3rUlHfanVt8pTDQCAAlmWRy+WKUrPEfmxq\nQE1RlW6ISNaKPOKlRKqsvI9gJ86R2oSkWvsttvO4Kpn+yDdPWJbN2zwp3PQT/3elNSHpQlKrkSQb\nMmeORl2Ew2E4HI6mXSWbSRltJ5VEmiAIkrBOpVKYnp5um+NorWNsF2L9H03TyGazsNvtkoB65513\nOj6+ViP2vmQYBj09PUViqh5IcJOVU85sJ5vNSo6zIyMjirVr0el0sFqtsFqt2Lp1a97P5FHMUCgE\nj8cjLXJef/31IpFJ6oLlRkAtQlIQhJqEV7VU2VLzthOpspqQ7A5IuU6VNk9E0x9RZAaDwaqmPySb\nLGpmO+RD5szRqIsdO3YoEi3pltTWUhFJjuPg9XrhdruxZcsWbN++XVHznHrppJCUn4u+vj7Mzc0V\n1WaQ1K9RacTel6LBlBLmQaSlthaOJ5lMwul0IhQKYXp6uuGshEYol5p16dIlzM7O5i3WxQWNwWAo\nGcUkYZGmVtSUottsdLVSSmGlaE+rUmVJEShKkcvlVHU8ckjfjGnE9Ccejxdt+nXC9KcUoVBIM9sh\nHE1Iakh0S2qrXKTF43EwDINQKITJycmWmefUSyeEpLx9RbVzQULEVGmi0ShomkY8HofNZsPKyopi\nu+KkCUmxRlJ0nOU4Dg6HA0tLSzUtdNqxGKIoquyuuTwaFIlE4PP5kEqlAKDrjVNIhvRFcK200syl\nWrRHnLeFqbJGoxFWqzVPaNaaKqs2IanWGslup5zpz6VLl7Br1y5pbhea/lgslqJ02VaY/pRCi0iS\njyYkVYBSN3O3uLYC19PpLl++DIqiYLfba15At4t2CTXRoZdhGORyOdjt9qL+oKXQ6/VEmgGJ1Bpx\nEARBqgU0GAxwOBwYHh5WfC7odDpi7g0xZTeZTMLtdmPHjh0djb43gtFoxMDAQNG4BUEoMk5JJBJS\nj8FCgdnT06OqBXgr0SKSzaPX6xVJle3p6cnb5FNT/SqgztRWNd0/hdRq+pNMJrG5uYlkMtkS059S\npFIpYluTaFxHE5IaEqQLyXQ6LZnn5HI5LC8vE/uAaXXqqLwPZn9/f9X2Fe0eXzOI0b9KCxF5LeDw\n8HDLjZRIiEhmMhm4XC74fD6MjY2hp6cHe/bs6eiYlIaiKKlup3AXWp6WFYvF4Pf7wbJsnk2+2BdT\njGIqsZhRywJSTWKl1hrJdlFLqqxYt1ZojNLb24t0Oo2NjQ1iXWXrRY1CUm1RY5Fqzze56c/w8HDe\nz+ox/RHndj0lF2p59qodTUiqAKUWB6Q5UwJ/dtwUXWnFlMWLFy+2zYG1EVq1YJOn8m7btg2HDh1q\nKO3PYDAQKyTFeVhqISIefzgcbsqhuF46KSTj8ThomkYkEskzj9rc3OzIeDpFpV5s8h3z9fV1JBKJ\nvIV6ozVtahFeaqObRLF8DhZujoipsuFwGIlEQor2lGpU30lX2XpRo5BU4zEBzTm21mr6k0wm80x/\nDAZDkci0WCxF51cUkt0w529kNCGpQSQcx8Hn88HtdqO3txd2ux2Dg4PSA0WMqJHqNKYkgiBgY2MD\nDMNAEIS6auHKodfria2RFB1SRYEspu/SNA0Aihx/I2Nqp5AUBAGBQAA0TYPneczMzLS892kraMeC\nv9KOeaWaNnn7BzGaaTKZuu4c10o3ia9qqOVYxFRZo9GI7du3S5+XS5UVyxHEdEL5YlzJdMJmUaPZ\nDsktMpqhVcdVq+lPLBaTTH94nsfTTz+NcDiMubk52O12WK3WimOcmZlBX18f9Ho9DAYDXnrpJQSD\nQXzyk5+E0+nEzMwMnnnmGQwNDUEQBNx777147rnn0Nvbi+9973vYv38/AODcuXP4xje+AQB48MEH\ncerUKQDAyy+/jM9+9rNgWRbHjh3D448/Tsx9RgrquytuQJSe1J18SScSCTAMg2AwiImJCezfvx9m\ns7no98QaRDU+2EXk6ZtDQ0PYuXNnyYdyI5Cc2iqOTe4+OzAwoOjxNzqmVpPL5eDz+cAwDPr6+upO\nWSYJsUVJJ1+6lWra5G1L5M2+5SlZRqMRHMepNhrRrag1zVCkWs2avI7Y7/cXpcoq7SpbLzzPq+7d\nrNZnQCfWUZWyS2w2G15//XW8/fbb+M1vfgOPx4OVlRXwPI/p6WksLCxgfn4eCwsLWFxcBAD8+te/\nznN2ffTRR/GRj3wE999/Px599FE8+uijeOyxx/Dzn/8cq6urWF1dxcWLF3HmzBlcvHgRwWAQX//6\n1/HSSy+BoigcOHAAx48fx9DQEM6cOYOnnnoKR44cwbFjx/D888/jjjvuaOv5Ih113ekaTSMKtHa6\nJAqCgPX1dTAMAwA1GcaI9ZwkNz4XnTXrXfDEYjEwDINIJIJt27a1JH2T5NRWQRDw7rvvIhaLEePE\n2+qIZDqdBsMw8Pv9mJiYwIEDB0puoChJOwQeqTUuFEXBbDbDbDZjaGgo72c8z0uL9Gg0CpZl8eqr\nr0pR8m5NN+y0qFcSNR1LvVSqIxYj8GJKYadSZXO5XMufX+1GrRvX2WyWGFdsiqIwOTmJyclJ3Hbb\nbXjppZdgNpvxne98BzzPw+Px4OrVq7h69Sp++tOf4sc//nHJv3PhwgW8+OKLAIBTp07h6NGjeOyx\nx3DhwgWcPHkSFEVhZWUF4XAYPp8PL774Im677TYpo+W2227D888/j6NHjyIajWJlZQUAcPLkSfzk\nJz/RhGQB6rsrbkCUfBGIAq0dDxbRPGRtbQ3Dw8NYWlqqOeIkRgpIRhTltYgguZjW6XSw2+0tTWUk\nLbVVEASEQiHQNI1wOAy73Y7du3cTE3VolZCMxWJwOp1SyxKx/lENdOtCX6fTSSlZAwMDSCaT2LNn\nT1VnzsKan97eXlUuPElATUJSEATFNlzqcZUtbO9QquVOo+dYjdE7NR4TQLZADgQC0maJTqeDzWaD\nzWbDRz7yEel3fvazn+Ev//IvQVEU/v7v/x5/93d/B7/fj8nJSQDAxMQE/H4/AMDj8cBms0nfnZ6e\nlkwLy30+PT1d9LlGPmTOHo2O0WrnVkEQEIlEwDAMEolEw83TDQYD0Q6zQG1CMpPJwO12w+fzYXh4\nuG1OtKSktoqpnC6XC1arFbOzs/D5fBgcHCRGRALKCkmx5pWmaeh0OjgcDoyMjKhmYSwiprZ2O3LD\nh1qa2CcSCYRCoTxjiVLphu2+3moSX63sI9lu2uFA22yqbE9PT16PzGqCSquR7B5IPq5QKFS1h+T/\n/u//YmpqCuvr67jtttuwc+fOvJ9TFKWaZwWpkDl7NOpC6YhkJpNR7O+JyAVDT08PHA5HnnlOvXRT\nRLIU0WgUNE0jFos1LKabodPtLFKpFFwul5TKKa+FXV9fJ0LkylHifOVyOXg8Hqnms54IfDlIFgdq\nEZK1IK9Nk9fqAMiLBEUiEfh8PqRSKQAoGwlqFaTOlXohrf1HM3S63rNaqqzcebPWVFk1Ru/UeEzA\n9ecTqWnIwWCwyECtkKmpKQDA2NgYPvGJT+DSpUsYHx+Hz+fD5OSk1C5L/F2XyyV91+12Y2pqClNT\nU1IqrPj50aNHMTU1BbfbXfT7GvloQlIlKLVoM5lMikb6EokEXC4XAoFARfOceummiKQIz/Pw+/1g\nGAZGoxEOhwPDw8MdWdx1akEZDodB0zRYloXNZsOtt95atIgisQ1NM0IylUqBYRisr68rWvPZjJlN\nO67/jSQkK2E0GjEwMICBgYG8zwsjQWtra0gkEuA4Dnq9vmQUsxnBoaZrQfIGSr10WkhWopzzppgq\ny7IsEokEwuFwXqqs+G6Ox+NEuso2AsdxRHsyNArHcR0zsatGKBTC3Nxc2Z8nEgnwPI++vj4kEgn8\n4he/wEMPPYTjx4/j3LlzuP/++3Hu3DnceeedAIDjx4/jiSeewIkTJ3Dx4kUMDAxgcnISt99+O776\n1a8iFAoBAH7xi1/gkUcewfDwMPr7+/H73/8eR44cwfe//3186UtfasuxdxOakNTIQ4nU1sJ2FTab\nDQsLC4q+LI1Go7SrTyqikEyn01L66tatW3HTTTcR3QNTaeQC2mw2V41Gi+0/SKIRIRmJROB0OpFM\nJuFwODA3N6foPSCOidRFqCYkK1MpElRoj+/3+8GybNP1bN28kC9ELcdC8j1cDnmqbKkNkldffRWD\ng4PgOK4oVbZULXE3RPrEDR61QXJqazAYLMrwkOP3+/GJT3wCwPXj+NSnPoWPfexjOHToEO6++26c\nPXsWDocDzzzzDADg2LFjeO655zA3N4fe3l5897vfBQAMDw/ja1/7Gg4dOgQAeOihh6RI6Le//W2p\n/ccdd9yhGe2UgMzZo1E3Si3amhFo8no/pdtVFFIpbZQUstks3nvvPQiCkNdI/kZBbqY0OjqKPXv2\noKenp+r3SKnflFNrlFQ0TaJpGgaDATMzMxgaGmrJopd0oUb6+Eimkj1+Op2WROb6+joSiUTZ1g+9\nvb1dJ1JuNLpRSFZCfNaNjIwUZV4UpsoGAoGyqbI9PT2wWCzEnBu19q3OZrPEHlcwGKxYIzk7O4vX\nXnut6PORkRH86le/Kvqcoig8+eSTJf/W6dOncfr06aLPDx48iNdff72OUd94kDl7NDpGIzWSkUgE\nNE0jHo+3rd6v1aZAjcLzPNbW1sAwDHielwQ1qbvnrUgRi8VioGka0Wi0ofmg1+ulxtukUC1KynEc\n3G43PB4PhoeHsXv37pZHnTtd51oNNQhJ0u5biqJgsVhgsViKaofE1g+i4c/GxobU5NtsNiOVSsHj\n8UgLdZPJRNzx3YioTUgC14+p1KZppSb18lriwlRZpV1lG0HNEUlS2n8UEg6Hq5rtaHQeTUiqBKUe\nqLXWSOZyOaytrcHlcsFiscBut7cs8lIK0iKScvOYsbEx3HzzzQiHw2BZltjFmhj5U0L0l3Ii3bVr\nV0PHTmKNZLnjYFkWNE0jEAhg27ZtOHz4cNteyt0g1EgfXy10yzFUav2QyWTwyiuvAIBkmJJOp7s6\n1VAtqFFINuLaWmst8fr6OpLJJDKZTFvnr1ojkiSnttbi2qrRecicPRodo1qkL5lMwuVyYWNjA+Pj\n49i7d29HCtBJiEgKgpBnHmO32/PSV+PxOFFitxCDwdD0y1EeiRsaGlKkfQmJNZKFiD0v0+k0HA6H\n4jXAtaBFJDVqgaIomM1mGAyGIsfBaqmGVqs1b4FuNpuJ3RjrVtQoJAHlNrfrcZUNBAJgWRa5XC4v\nVVYUm82kypIsuJqBVAdkQRCk66hBNuq7K25QlHpolxJogiBgc3MTDMMgl8vBZrNhfn6+ow+fTkYk\n5a1Ment7y5rHkBY1LUSv14PjuIZcdBOJBBiGQTAYxNTUlKKROBJrJIHr94HP5wNN07BYLJiZmSnq\nydZOukFIapBNNVdOcYEeDAbhdruRSqWkhX1hFKidi2w1bVCoVUi2g1pTZeVtdxpNlVVr+w/S0d4j\n5KMJSY08dDqd9JLOZDLweDzwer0YHBzEwsJCUdpUp+jEw0XexmF8fBz79u2rGI3tBiFZj2ATBAGB\nQAA0TYPneTgcjpbUf5ImJLPZLNxuNxKJBCKRCG6++eaaTINaDekRP9LHp1GeSg3seZ7PiwKFQiEk\nk0kpu6Ewiin2FtQojSYkW0MtqbIsy9acKktq5K4ZSH4+Z7NZTbh3CZqQVAlKvqhzuRz+9Kc/IRaL\nYWpqqi3mOaQiCIKUxpjJZGCz2Wpu46AWIZnL5eD1euFyudDf39/yDQVSIm3JZBJOpxOhUAjT09Ow\nWq3YuXNnp4clQcp5KocmJNWJTqeD1WotmcJezjAFQNko0I2OJiTbizxVtpBKqbIsy+LKlSt5QpMk\nV9lGIHnuhUIhDA0NdXoYGjVwY6oDjSJEt1GXy4V0Oo3JyUns3r2b+J3kVjWmFsWT2+2G1WrF7Oxs\n0c5mNUgXktXGx7IsGIbB5uYmJiYmcPDgwSI791bQyYikuHHgdDrBcRwcDgeWlpZAURQ8Hk9HxlQO\nefYAiahFSKrhGNpFpSiQfIHu8/mQTCYlJ8xCgdnT00PsAldpSF7MN0I3H0+lVNlLly5hYmKiYqqs\nXGR2gysyyXWf1Vp/aJADmTNIo24afWCxLAuXyyWla958883405/+hP7+fuIfgqIQUnJXO5lMSuJp\ncnIS+/fvb6iGEPhzDSKplBJscgOhdDoNu93e9nrYTghJnufh8/nAMAysVit27NhRcuOgVRsXjUBR\nVEMRyVwuB7fbDb/fnxclslqtiqYhqkFIknKtux2KoqR5VgjHcZLAjMVi8Pv9YFmWmLYPraabhVcp\nGnFsJR3xuV8pVVbcKNnY2KiYKtvT00OMeMtms8RmBQQCgaIWRxpkQsZs1mgrYq0bwzDIZrOw2+15\n6Zqi4U47ok/NYDQaFRGSgiAgGAyCpmlwHAe73a6ICyfpL1O5YBOFlMvlQk9PT0eNZNrZ/iOTycDl\ncsHn82FsbKxi3auYSkpK3Ua9Ecl0Og2aprGxsYGJiQksLi4im81KtZ/iDjtwPQ2xsNat3sWPGoSk\nRusxGAzo7+9Hf39/3ueFbR/8fj+SyaSUPvvmm28WiUzSn7mlUJuQJOkZqRSVjHbkqbKlervKI/HB\nYDCvnrhw/rY7VZbkiKTW+qN7IHMGadRNLTu02WxWMs/p7+/H3Nxc0csbuN5LMpPJNN3GodUYDAZk\ns9mGjU84jpPSVyudD7ViMBiQTqfxzjvvSP0vO9XORU472n/E43HQNI1IJILp6em8ti2VxkXSIqnW\niGQsFoPT6UQ8Hpc2jSiKku6dwjnP83zeAl5upiK31BeFZrmWEJqQ1GiGcm0feJ7Hyy+/DJvNhmQy\niUQigY2NDbAsC57nYTabixboJKcZ8jxP7GK+EdTobtroMTXrKtvqVFnShaQWkewOyJxBGg1RbuEW\njUbBMAyi0Si2bduGQ4cOVYzikdCjsRYaHae8dcXk5GTbav9IIhqNwuPxgGVZzM3NYWVlhZiXf6tq\n/wpdZ2dmZrC8vFzzy5k0c5tK50k8VqfTCQCYmZnByMiIdKyVzq9OpyubhpjJZMq2hChcvPM8rwlJ\nDcURI3h9fX1Fpl+CICCTySCRSNSUZtiq5vX1oLaIpBqFZCsEV6V64nQ6LT1ny83hnp4eWK3WplJl\nSU5tDQaDcDgcnR6GRg1oQlKlyM1zjEYj7HY7du3aVdOiuVuEZD1mNvJemDzPw263t6R1RSlIWSjw\nPI/19XUwDAOj0YjR0VHkcjlMT093emgtRez7yTBMU66zpAnJUhFJea3nli1bsLi4qKjDbi0tIRKJ\nBAKBAILBIILBoLTwkafKkhwh0iCbSm0YKIqC2WyG2WyummYYCASQTCbB8zyMRmNRKne5SLvSkPJ+\nUAo1Csl2HhNFUbBYLLBYLGXnsDiPC1vv1JsqS3JEMhgMYv/+/Z0ehkYNkDmDNBqCoijJPEdMVdyz\nZ0/dqZ/dIiRrGSfHcXC73fB6vRgYGGh7L0yDwdBx8wGxD6LX68XIyAh2796N3t5eBINB+P3+jo2r\n1aTTaTAMA7/fj4mJCRw4cKBh4ySAPCEpH082m82r9azFJEpJ4yB5S4itW7cCAN59910MDAygr69P\nWrxvbm4ikUhIu+vyRY+4u07aolqLqpJFo/O2XJqhIAh5aYaFkfZSUUwlF99qFJJqOh6AHMFVT6rs\n2tqaZFpVLt2b47iOl7KUQ6uR7B46f2doKMbq6io2Nzdhs9lw6623NvwwNxqNSCaTCo9OeYxGIzKZ\nTMmfxeNxMAyDUCiEqampqum8raIVzrK1Iq8DLNUPtJNtNlqJvCbQZrPVVP9YC+00AaoFiqKQTqfx\n1ltvIRgMwmazEdXzVVzsixGiwp5g4u56IpEoWedWGCHqRPq5FjUlD6WdkymKqinSXioCVDhHG3E9\nVpuQJKmOXCm6IcraSKpsOp3Gli1bEIvFWrZR0iihUAijo6OdHoZGDXR+tmgoxuzsLHbs2NH036kk\n0EjCYDAgkUhI/78gCNjY2ABN06AoCna7XeoB2MkxtrMFiJjCS9M0AMDhcJStA1STkJRfe51Oh5mZ\nGQwPDyt67UmKSIbDYXg8HuRyOSwuLjaUpi3WVLfq/qhmtlMpQiRf+MjdOuU9B8VFfLc3Bdeoj3YK\nL3mkvRB5BCgcDsPr9ea5HpdqW1IKtQnJbhBd9UJKRLIRKqXKvvHGGxgbGwMARVJllSQYDGpmO11C\nd94ZGiUR0yibxWQydU1qK8dxeambQ0NDWFpaKpn60QnaJSQ5joPH44HH48HAwAB27tzc/+lLAAAg\nAElEQVRZ9RwoNV9agVj/V+2lJXfeHRgYaOm1b4ebbCUEQYDf7wdN0zCbzdi6dSssFgvGx8fr/lvt\n2Fxp1LW10sJH3nMwGo3mpW+VSkEk1UhCo3FI6eVaLgJU6Hrs8/mQTCbBcZy0ESKPZKotFVRtxwOo\nUxwD14+rr6+vZHprNpuVMkYKn7XtcEaOxWIlezlrkIcmJFWEUjdxt9RIptNpbGxsSOmrJKX1ibRa\nSCaTSTAMg0AgUJMjrxy9Xt/WaGk9iNG/cguSVCoFhmGwvr7eNufdTkUkxU0Ct9uN4eFh3HTTTejt\n7YXH4yH+PlW6vrCWnoOJRCJv8S7urMsX742kIGqQASlCshyVXI9LbYQEg8Gi1MJOpnM3i9ramQDX\nr1up69ntVIq0Go1GGI3Gks/awlRZlmWRTqcVqykW3xtq25BQK+q62zUUgWQhKXcepSgKRqMRKysr\nxC4sWiEkBUFAMBgETdPgOA52ux0LCwt1P3RJTm0Vx1b4AopEInA6nWBZVuqJ2M40t3YKSVEsb2xs\nYHJyEocPH87bJCAp1bYUrWrjUopyPQeB4hREj8dT0kilWSt9jfbA8zyxz/tqlNoI+eMf/4j5+XkA\nKJvOXeh8TKIplUgul2vK1IxE1ByRrPe4KmWMVKsplotL8Xldah4LgkD8hpHT6cTHP/5xvP76650e\nSsfR3pgqQqmbjsSbN5PJwO12w+fzSc6jJpMJL7/8MpHjFVFSSIptLFwuF6xWK+bm5op2C+uhnQv9\nepGLXEEQsL6+DpqmYTQa4XA4MDQ01Pbr3i7hJjcLcjgcZcVyo6mj7YSE8VVLQRR7DsoXPWI7CIvF\ngmw2i1Qq1bZ2EBqVqdT+oxsRzWlMJlPJjZBcLictzOPxONbX1/NMqVqdYlgvahRd3VwjWQmlxVq1\nmmJRZJZKlf3tb3+LVCqFxcVF7Nixo+5uAxqdQ313hoaqiEajoGkasVgM09PTeemrgiAQG1ETMRgM\nSKfTTf0NeRrnxMRETa0duh29Xo9MJoP19XV4PB4MDw9LbUs6RSuFpCAICAQCcDqdoCiqJrMg0iOS\npIuucimI8nYQ8Xgc2WwWV65cQTqdzmsILo8OqW3hTDKkRyrqpVotuF6vR19fX1HbKkEQkMlkpI2Q\nco3r2z1PtRpJjVJUS5UNh8O4fPkyfvrTn2J1dRXvvvsuDh8+jB07dmBhYQGLi4tYWFjAwsIC+vv7\nkcvlcPDgQUxNTeFnP/sZrl27hhMnTiAQCODAgQP4wQ9+AJPJhHQ6jZMnT+Lll1/GyMgInn76aczM\nzAAAHnnkEZw9exZ6vR7f/OY3cfvttwMAnn/+edx7773I5XL43Oc+h/vvv7/kMXEch09/+tN45ZVX\nsGvXLnzpS1/C448/jh//+Me4cOECTpw4gUgkAp7nsby8jPfee6+l57hTaEJSRShtid4pNzme5+H3\n+8EwjBSBKrWo7obFRKGzbD2Ew2HQNN2RNM5OwrIsotEo/vjHP8JmsxWldHaKVrT/4HkePp8PDMOg\nr6+vJpMkEdIjkqSPrxzydhB9fX3w+/24+eabAVy/XmJ0SOyLKTa1L4wOWa1WGI3GrnhOdRPdnNpa\nikbfsxRFSa11yjWuLzVPTSZTURRTyWi7GkWXGiOSpLgFi6myH/zgB/HBD34QAPDqq6/iqaeewlNP\nPYX33nsPV69exZUrV/DCCy/g6tWrmJ6exsGDB7G0tIRoNAoAuO+++/DlL38ZJ06cwOc//3mcPXsW\nZ86cwdmzZzE0NIR33nkH58+fx3333Yenn34ab775Js6fP4833ngDXq8XH/3oR3H16lUAwBe+8AX8\n8pe/xPT0NA4dOoTjx49jeXm5aOxXrlzB2bNn8b73vQ+nT5/G5cuX8eqrrwIAfvOb32D37t24fPky\nOI7DkSNH2nRG24+67gwNxRDrJNsZ+Uqn03C5XFhbW8PWrVuxZ8+erk9vqDe1led5rK2tweVywWw2\nw+FwYHBwUFULp3KEQiHQNI10Og2LxYLt27cT1ZBYSdfWTCYDl8sFn8+H8fHxhqLMzUYkqwm96wY2\nbyGVugqKMsNqPQCjcUyxv9+N6HS6si1LMpmMZPYjtqIRo0OFLUtIrnEjHbVFJFtxPJVa62SzWSmK\nGQgE4HK5ShqlNFozrPWR7A5IFsdi6w+z2YylpSUsLS3l/dztduPUqVN44IEH8K//+q8QBAEvvPAC\nfvjDHwIATp06hYcffhhnzpzBhQsX8PDDDwMA7rrrLnzxi1+EIAhSxNBsNmP79u2Ym5vDpUuXAABz\nc3OYnZ0FAJw4cQIXLlwoKSRtNhve9773AQD+5m/+Bt/85jexY8cOvPXWW7h06RK+8pWv4H/+53+Q\ny+XwF3/xF606XR2HzFmk0RBKvozaKSTD4TAYhkEikai7gXwnI6e1UKuQFIXF2toaRkdH2yaiO33+\nxOgzTdOwWCyYmZnB4OAgrl69Slzapk6na9qEKplMwul0IhwOY3p6uq65Xmo8rTxHLPsG4vHfwmAY\nRS4XQTj8/zA09H9gMAzV9H1xbt0IyKNDQ0P556ewxs3v90u1QfJ+g6LIbEX0XU2CXm01kkD7smvk\n0fbCeVrJKMVoNJbsKVhq3Jro6g5IPqZQKFRxE/kf/uEf8M///M+IxWIAgEAggMHBQel4pqen4fF4\nAAAejwc2mw3A9fXYwMAAAoEAPB4PVlZWpL8p/474++LnFy9eLDmOUllyH/jAB/Dzn/8cRqMRH/3o\nR/HZz34WuVwO//Iv/1LvaegayJxFGg2jVBTAZDIhk8koMKLSiJE3hmFgsVgajryJQo1Um/RqQjIW\ni4GmaUSjUdhsNqysrLT1JSya2rR7YSbv/Tk6Ooqbb745Tzi3Io20WZoRbqFQCE6nE9lsFjMzM1ha\nWmp68djqiF8qdRUGw1bodD3Q6YBMJoFs1l+XkFSTgGmUSjVu6XRaig6tra3lOXWWalmiNgHVCGqL\nSJJCNaMUMdoeCoXg8Xik2n/5Zkhvb680f9WG2uYcyUJSjEiW4mc/+xnGxsZw4MABvPjii+0dWAEM\nw+B3v/sdbrnlFvzwhz/E+9//fhw4cAAnT57EyZMnsXXrVgQCAfj9fuzevbujY20lZM4ijY7TqhYg\nqVQKLpcLfr8fY2Nj2Lt3b8lmuLViNBq7TkiKLqQMw0Cn08HhcGDXrl0deVEZDAZpx7kdiBG5UChU\nZJ4kR8k0UqWoV0gKgiBFW81mM2ZnZxVtsNzqiCRFGcHzSQCiwM+hnleGWoRkq45BbqNfuPsu7zcY\niUTg8/mQSqUAoGQUs9qCUE3iS03H0i1Ucz4W56rP50M8Hscf/vCHonYP2mYIWWSzWSK8B0oRDAZx\n0003lfzZb3/7W/zXf/0XnnvuOaRSKUSjUdx7770Ih8OSOHa73ZiamgIATE1NweVyYXp6GhzHIRKJ\nYGRkRPpcRP6dcp8Xsri4iCeffBKnT5/G8vIyzpw5A4qi4Pf78YEPfAAAsGfPHqytran6maUJSZWh\n1OJNSSEpCIJkHJNKpepOX62EwWAgtuclkC8ks9ksPB6P5EK6vLxccve3nej1esX7XBYiCIIUkeM4\nDg6Ho2pEjsQel7UKN47j4PF44Ha7MTw83LI05VYLNav1IMLh58DzSQhCFgbDKMxmW/Uvyuh2Idmp\nl3+pfoPA9fMpTz/0er1IJBJSnzZ5BLNS+mE3ozaznW6mlPNxNBrFoUOHpJTuRCKRtxlSmNItb1tC\nKt3+HCsFyRHJSqmtjzzyCB555BEAwIsvvoj/+3//L/793/8df/3Xf41nn30WJ06cwLlz53DnnXcC\nAI4fP45z587hlltuwbPPPosPf/jDoCgKx48fx6c+9Sl85StfgdfrxerqKg4fPgxBELC6uopr165h\namoK58+fl2ov5czMzODtt98uOUa5U/+//du/NXs6iIfMWaTRcYxGY9NtK+R9D3t7ezEzM4OBgYGW\n1HKSik6nA8dxePPNNxEKhTA1NVU2CtcJWinY5I6kVqsVO3bsqDkip9fribuu1dJtU6kUaJrG5uYm\ntm3b1nK32VZHJE2mSQwP/x9kMj5QlAlmsx06Xe0102qJSJIERVElW5YApdMPU6mUFPlMp9Pw+/3S\n97s1/VCNNZJqg6Koipsh8iim3+8vSukubFzfyeut1gg4yUIyGAzWbbT32GOP4cSJE3jwwQexb98+\n3HPPPQCAe+65B5/5zGcwNzeH4eFhnD9/HgCwa9cu3H333VheXobBYMCTTz4pPROfeOIJ3H777cjl\ncjh9+jR27dql7AGqDDJnkUbDKPXAMxqNUiFzvbAsC4ZhsLGx0fK+h/W6orYLsS+gGIUdHR1VpC5O\naVohJOWOpGNjY9i3b1/d6csk9kgsN6ZYLIZr164hkUjA4XBgfn6+LQufdgg1g2EEBkNjzrmakGwv\nldIPE4kE3njjDaRSKQQCgbKtIKxWa8cb2ldDTQt7Nd4f1a6N6A7b09NTMqVbjLjHYrE8Y6rC9jpi\nFLPVc0GN5kHA9Y0nUl3xQ6EQRkdHq/7e0aNHcfToUQDA7Oys5Loqx2Kx4Ec/+lHJ7z/wwAN44IEH\nij4/duwYjh07Vt+gb2A0IalREpPJVFdESBAEBINBMAyDTCYDm83WlgU1aRHJXC4npTX29/djYWEB\nf/rTnzA2VnvbhHaipBCPx+NwOp2ScVAz6cukpraKYxIEAZubm6BpGhRFYWZmpmSv01aPpxmx3foa\nS3Us9rsdsTm9yWSCw+GQPq/UCkL8jjxVtl0N7auhptRWNYlikWbEscFgqGhMJUYxNzY2kEwmpfY6\nYtsSeXsdpeYqyZG7ZuA4jugaSZJaf2lURn13xw2OkhHJWgQax3Hw+Xxwu92wWq2KG4pUw2g0SiYU\nnUSMwm5ubmJiYgIHDx7Mq/kgdcHQrGCTR155nsfMzIwixkEkC0m32w2Xy4W+vj7s3LmzqFdbO8fT\njBBsdTREi0iSRSmr+nKtIOQN7cW+mCzLguf5vMiQvGVJu55vakptJbl1VSO0w5iq0M1TPleTySQ2\nNzfLRtx7e3thNpvrmqscxxGxgaI0JAvkTCZDbLRUoxgyZ5FGx6kmJJPJpCScJicnceDAgY4Uy3fS\nbEc0EXI6nchkMrDb7SWjsKIoIvGh3ahgE+tfGYaRIq+Fu8jNQFpqq5iuGwgEsGXLlpama9cK6UKN\n9PHVyo14DJUa2mcyGSmKub6+jkQi0db6NlI35RpBjUKy3cdTaa6Wi7iL6bXyDZGenp6S72hS393N\nQqqQVMPz9kaDvFmk0RRKvWDLta0Qo0+5XA52ux0LCwsdfRGK7T/aidxEpre3t2oUVjyXJD606xXi\n6XQaDMPA7/djYmICBw4caImgIiUimUgkQNM0wuEwJicnMTAwgPn5+U4PC4AyYruVi3I1CEm1CBZA\nmWOhKApmsxlms7lkZEiMYBbWt4kunfJU2UbT6jQhSS4k1RNWirjzPJ8XxQyFQkgmk1IrLPlmiJg+\nqzZIbf8hpq6r5R6/ESBvZatBBPKbWGxn4PF40N/fj/n5+SIntk7RzoikXESNj4/XbCJDqiEQcF2w\n1ZIaHIvF4HQ6EY/HYbPZcOutt7b05dpJISmPNGezWczMzGBpaQkcx2FjY6MjYypFs0KNZVlkMhlY\nrdaWXEs1CEm10I7roNfry9a3yV0619bWkEgkpM21QrOfai1L1CS+1HQswHUh2Q3Ho9PpYLVaS7bf\nKnQ/DoVCSKfTCIfDDfVwJRVSU3YjkQgx60uN2ujOO0CjLEru4uRyObz11lsIBoPYtm1bUd0fCbTD\nbCcSiYCmaSQSiYZMZEgXkuUEmyAI2NjYAE3T0Ol0bTWU6YSQ5Hke6+vroGkaFoulKNJcrf1Hu2lU\nqIk9PTOZDAwGQ15vN3FxpNQiSROSZNDJKF41l85SvQYB5M1H8Z/BYNAikgTD8zyR4qQeCt2PvV4v\neJ7Htm3b8jZEvF4vkslkyQ0RsYcr6deWxPFpRjvdhyYkNfKQu1Gm02kMDg5i586dxL64WyXS5KJC\ndDscGhpq6DyQLCRLjY3jOHi9XrjdbgwMDGBpaanthjLtrJHkOA5utxsejwcjIyPYs2dPyUJ/iqKI\nE5K1IggC1tfX4XQ6YTabMTs7C6vVCo7joNPp8qJGiUQir9G9mOolF5m12O6TuEjRIItyvQZ5ns9b\ntMtTDzmOg9VqRSqVkuZkvQYqpKAG4SWHpNRWpRBrJHU6XcUerizLltwQKWdO1WlI3eQLBoNFafMa\nZKMJSZXR6Ms0m81K6auieLxy5UrD4qldKB0lymQycLvd8Pl8GBkZwU033VTyxVEPJAtJeeQvlUqB\npmlsbGx0PALdjoikeLybm5vYtm0bDh8+XPEFT/J9UI5cLgev1wuXy4XBwcG8+Sw/v5WiRplMRlrQ\nF7aIKFwgFZqrkLpYudHotihepUX7lStXpPYOwWAQbrcbqVQKFEUVRYV6e3uJFja5XK6rrks11Cgk\nOY6rWsJiNBphNBqLNkRKpXUnk8m2mlOVguTnQSAQ0CKSXYYmJFVIPSlv8XhcMhOZmprKW0yLaaP1\nNpPvRsTzEIlEMD09jSNHjihW+0C6kEylUnjttdfAsmxZ59l208qIZDQahdPpRDKZJOZ4lSabzYJh\nGPh8vpLtaOpBNKwYHBzM+1y03U8kEojH40XmKmLabDQa7dpaIlIXWzcyOp0OfX19FQ1UEokEAoFA\nURsIeapsO5rZV0NNrUyA7qmRrIdmxHG1tG7x+VloTiWPYorzVskWOyQL/lAopAnJLqP73uwaTSOm\nuTEMA4qi4HA4sLy8XPSQMplMyGQyHRpl65HXAFY6D83SyRYl5RDnwLVr15BMJrFv3z4MDg52fGEl\novQ4xJRtp9MJvV6PmZkZ4qPtjcCyLJxOJ4LBYEP1vPVQyXY/lUphc3NTsTRZjeYgOQJRL+WORW6g\nsnXr1rzfl0fVxXkpunEWLtjbFRUCtBrJbqBVjusGg6GsOVU6nZbmq7hGKTVfxShmveecVBd54Hpq\n69jYWKeHoVEHZM4kjaYoF5HMZDLweDzwer0YHh7G8vJySdcykXYY2SiB2Ci+1oep3IV2cHCw5TWA\nBoMBLMu27O/Xg7weUJwDb731VtHuvlrgeR5erxcMw3Ss3rMdRKNRXLt2DSzLYmZmpqN1zeIu/NDQ\nEGKxGHbu3Cn9TFzQixGjetJkNZpD7UKyHPKWJYXPOXlUPZFIYGNjA8lkUooKFZr9KJ3qrzYhSXKk\nq1HafUwURcFiscBisZRssSOPum9sbIBl2byou/w5Wm6TLpvNEiskQ6EQlpaWOj0MjTogcyZpKEos\nFgNN04hGo5iamqo5bbNbhKSYOlrtYZ9MJkHTtORCe+jQobYUvZOQ2sqyLGiaRiAQyKsHFASBiH6N\nSpPJZOByuRRJ7SQVQRDAcRwuX74MnU6H7du3ExVlLbWhVSlNVtyBL9WDUGk32RsNNdWqin3mlKBS\nVF0eFfL7/SVr28T52KhDp9qEl9qOByAreldpvlaqZe/p6ckTmel0mgjDn1Jorq3dBxl3h4aiiO6S\nYvqqXq+Hw+HArl276noBm0wmJBKJFo5UGUTBazabi34mCAKCwSBomgbHcXA4HG2P1nRSSIZCIcmB\n1+FwYGFhIW/BQ4roUIpEIgGn04lIJNLy1M5OwfM81tbWQNM0stks9u/fT2SUtZ5a7Wo9CBOJBJLJ\nJDweT1HjcC1NtjpqS21tdRSvUlRIbFmSTCYRjUaxtrYmbXoULtirOXQqKYpJQLwv1UQ3iONKUfdS\ntcPRaBQcxyEej5dsW9LJOakJye5DE5IqZG1tDVeuXMHo6Ch2797dsOtot0QkjUZjkVDL5XLw+Xxw\nuVzYsmUL5ubmOtbkVq/Xt1VI8jwPv98PhmFgNpsxMzNTFAHqFmpZAAuCIPVGzOVyLat1Bf68SdOJ\ndDSO4+ByueD1ejE6Oop9+/bhlVdeaVhEtmOx0GwkTG5WUYiWJntj0mlRXK5lSWELHZ/PV9RnUJ4q\na7FYVGm2ozZzvm4QkpUoVTvs9XqRy+UwPj6e12LH4/EgnU4DQMlNkXZEZsPhsCYkuwxNSKqQoaEh\nrKysNH3Td4uQlJvZpFIpMAyD9fV1TE5OYv/+/SUjle0eXzvSR7PZLNxutyQ0yvVD7BZE59ZyL3FR\nMNM0jZ6eHuzYsUNqIt3qMbVz8SdvU1IqNb3TC+tytHpMWpps7ZA6RxqB1GOp5NCZzWalORkOh+Hx\neJBKpaRMmlQqlWf2061zUo1mO6TOt2bgOE56fpZ6hlbq4ypuihRGMZV6J4bDYa2PZJfRnU8rjYpY\nLBZFImDdIiSNRiMikYj0crbb7ZibmyNmp7fVqa2JRAI0TSMUCjXcuoTEl6XYS7JwYSI3DBoZGcHN\nN9/cNsHcyrYkhcTjcVy7dg3xeBwOh6NkmxKdTkfktQPqS21VEi1NVt10Yzqo0WjEwMBA0UbXe++9\nB5PJBLPZXLRgNxqNRWY/ZrOZ6GPv9ujdjQLHcRUz1Sr1cZVvikQiEfh8PqRSqaKNulpSuwsRBAE8\nz3ftRsqNina1VIhSLxrShaRYK+ZyuWAwGLC0tERUCwsRURApiTydk+M4zMzMYGlpqaFjrxb56xR6\nvT5PtFWLzLWDVgtJ8bpeu3YNPM9j+/btGBkZKXtdO5lqW41OCclyNJomK7ZU6eY0WVI3GxpBTemg\nYl1lYQRTEIS8Bbt8TlIUVTJ1m4TntxqFpFruGznNGAiV2xSRp3Ynk0msra2VNKiSty0pdx+r8Zyr\nGU1IapSlFQJICeSOnGNjY5iZmUE2myW2hYWSD0We5+Hz+cAwDKxWqyK1n+Uif51GbOsib21RLjLX\nzjG1QkgKggC/3w+n04menh7Mz8/XdF3bGSGtF9KEZCUqpclevnwZPT09WposIahJFJeLrlIUVTHt\nUFysi30xk8kkeJ5veSP7auRyOdWIfKA7o9+1kM1mFTdFqpTaLTeoKnyO/vd//zd8Ph/m5+cxPz8v\nucmXOu+pVAof+MAHkE6nwXEc7rrrLnz961/HtWvXcOLECQQCARw4cAA/+MEPYDKZkE6ncfLkSbz8\n8ssYGRnB008/jZmZGQDAI488grNnz0Kv1+Ob3/wmbr/9dgDA888/j3vvvRe5XA6f+9zncP/99yt6\nntSI9tZTIUo9+Eh7gEajUdA0jXg8junpacmRc3NzE4FAoNPDaymF4nnfvn2KmRqIqbcktccQd+T/\n+Mc/SoZBJLS2UFq45XI5eDweuFwuDA8P152mK6a2kkg3Ccly6PV66PV6jI+P533ebWmyN4L46kYE\nQah7A0+n01VtASH2GCzVyL6VkXUSM1uagcQNViVod0uTSgZV4+PjeO211/D222/j2Wefhcfjwf79\n+2GxWDA/P4/FxUUsLi5i586d2LFjB1544QVs2bIF2WwW73//+3HHHXfgX//1X/HlL38ZJ06cwOc/\n/3mcPXsWZ86cwdmzZzE0NIR33nkH58+fx3333Yenn34ab775Js6fP4833ngDXq8XH/3oR3H16lUA\nwBe+8AX88pe/xPT0NA4dOoTjx49jeXm5beeqG9GEpEZVOrkIEQQB6+vroGkaBoMBDocDw8PDeeMh\nPQVXpJHzGI/H4XQ6EY1GW9bOgqTIcy6Xg9frhcvlAs/zmJ2dxbZt2zo9LInCdNtGyWQyoGkafr8f\nk5OTUl/PehFTWxullfe1GoRkObrRTVZN4kstUS8lI3iVWkDIDaji8XhRZL1wXjYarVKb8CKph6SS\nkHJcFEXB4XDA4XDg+PHjeOONN/D444/jP/7jP8CyLFZXV3HlyhW8/fbbuHDhAiwWC5566ikA16Oq\n2WwWFEXhhRdewA9/+EMAwKlTp/Dwww/jzJkzuHDhAh5++GEAwF133YUvfvGLEAQBFy5cwIkTJ2A2\nm7F9+3bMzc3h0qVLAIC5uTnMzs4CAE6cOIELFy5oQrIKnZ9JGoqj5IJBFBntfujIHUiHh4crtjHp\nZJ/GWqmnDlEQBAQCATidTgBoqAdoPZAgJDOZDBiGwdraGiYmJnDw4EFcu3at4467hTQbkUwmk3A6\nnQiHw7Db7bj11lubWkhqqa3k0YibrNxqvxVpsmq6DmqLrrZDFFcyoEqn01JkvVRdW2HLkkrjVVtq\nq9qEsQip1ykQCEiOrT09PdizZw/27NmT9zu5XA4HDhzAO++8gy984QvYsWMHBgcHpefl9PQ0PB4P\nAMDj8cBmswG4vk4cGBhAIBCAx+PBysqK9Dfl3xF/X/z84sWLrTtglaAJSZWi1CLOZDIhk8m0TUjK\nHUhrNVTphoikKHYrvZTE3pcMw6C/vx+Li4tFL/5Wja1TQjKRSMDpdCISiRRFXMUaSZJodEzhcBjX\nrl1DJpPB9u3bGzZGKqTZ+7yVi/IbVUiWo1E3WflCvpk0WbWIL01IKgdFUbBYLLBYLBXr2uTunABK\nRjENBkPHj0dpSIncKQ1FUUTeQ6FQqGoPSb1ej1dffRXhcBif+MQn8Pbbb7dpdBrlUN8doqEo7RBp\ngiBgc3MTDMOA53k4HI66FtrdEJEUx1gqwpZOp8EwDPx+PyYmJnDgwIG2RuL0en1bz5/ccTaXy2Fm\nZgbLy8tF15uESGkh9UQABUHAxsYGnE4njEYjtm/fXhSlaud4CmnHYkITktVpR5qs2q4DiYvgRiBZ\neFWqa2NZVhKZXq8XiUQCuVwOLMvi6tWrRT0Gu/V6qTUiSerzIBQK1dxDcnBwEB/60Ifwu9/9DuFw\nWBL9brcbU1NTAICpqSm4XC5MT0+D4zhEIhGMjIxIn4vIv1Puc43yaEJSpSgVDWilkOQ4Dl6vF263\nG/39/VhYWGgoAkey4YhIKbEbi8XgdDoRj8dhs9maTnNslHYJNp7n4ff7QdM0ent7qzrOdquQ5Hke\nXq8XDMNgYGAAu3btgtVqbcl4SI76devikSSUSpNVUxRPTZAsJMshbz9SyMWLF1cO3RIAACAASURB\nVDExMYFEIoFQKCT1dhY3SwrnJekiTY0RSVLTWgEgGAxix44dZX++sbEBo9GIwcFBsCyLX/7yl7jv\nvvvwoQ99CM8++yxOnDiBc+fO4c477wQAHD9+HOfOncMtt9yCZ599Fh/+8IdBURSOHz+OT33qU/jK\nV74Cr9eL1dVVHD58GIIgYHV1FdeuXcPU1BTOnz8v1V5qlEddd4iG4rRCSLIsC5qmEQgEMDk5iYMH\nDxLlGNoKRCEpRqlomoZOp8PMzEyReVC7abVg4zgOLpcLXq8Xo6Oj2Lt3b02Os0oZ2yhJJSGZzWal\n4xwfH29LZJn0GkmN1lBvmmw6nYYgCBAEQZE0WQ1l6EYhWQmKokr2GOR5Pi+KGQwGpZYlSqZvK40a\nI5Icxyne+kMpgsEgDh8+XPbnPp8Pp06dQi6XA8/zuPvuu/Hxj38cy8vLOHHiBB588EHs27cP99xz\nDwDgnnvuwWc+8xnMzc1heHgY58+fBwDs2rULd999N5aXl2EwGPDkk09K1/mJJ57A7bffjlwuh9On\nT2PXrl2tP/AuRxOSKkWph7BSQlJMZxTtyB0OBxYWFhR9iZK8667T6eDz+XDlyhUMDAxgaWmpyL69\nUxgMBqTTacX/rnzDoNZ6Vzk6nY642tdSwk1+nNPT01hZWWnbLnazrq0a6qJcmmwwGMTGxgbGxsaI\nc5O9kVFbK5Ny6HQ6WK3WoswMsc2TuPFROC/FKKZ8XrZT2JHWFksJSI6yVquR3LNnD/7whz8UfT47\nOyu5rsqxWCz40Y9+VPJvPfDAA3jggQeKPj927BiOHTtWx6g1yJxNGsRgMpkQi8Ua/j7P85KBjNVq\nxezsbNFupRJ0yl22GqlUCjRNw+v1YnBwkMjoq9IRyUgkAqfTCZZlm9owID21NRaL4dq1a0gmky3Z\nGKl1PKSmtgLk1uLciOj1egwODhLlJqsB1Qj2RtqyUBQlpW+XalkiRjHFvpgsy4LneZjN5rw6TKvV\nCqPRqLgo5ziurr6+3QDpQnJ0dLTTw9CoEzJnk0bTdDoiKTeQGR8fx759+2pKZ2wUMXWUlAekXEzZ\n7XbMzc2B53niRCSgjGur3FjGYDBIxjLNzENShWQkEsFLL70EiqI6nppMcmqrBjlUytbotJtsI8ei\nFtR0LEqnger1emzZsqUoc0cQBGQyGWleiu8dsWVJT09P3txsJrpO4uZ0s2SzWWKPKRgMVnVt1SAP\nMmeTBjHUKyQjkQj+P/beNMax6zzXfTmTNbO6hq4uVpGsobu6Sz2rB7VjHBmG4CudRMaNDds5gSVD\nGQ50YUeAcWAohgc4cGwpv6LEcYDYhi0HcRI5P6wgV9ZxThDhxmm7Fcm2JEdqd3UV52JNnIrcnPZ0\nf3TW1uJYHPYmF8n9AI22q9VsDot7r3d93/e+gUAAHMepkpPXKOR5ailWj0KWZezt7cHv98NqtcLj\n8ShiamdnBxzHde251aMd11ZRFLG9vY1QKKS6sQxLIkmSJOzs7GBrawtmsxlnz57tSDTLUbBstgPo\nc5K9TDNussFgEMViUW+THWA6NU9oMBhgs9lgs9kqHD5JdZ3juIrqerXIkqNmBY+K7OpFWJ6R5DiO\nifuqTnPoQrJP6WRFkrhxBoNBWK1WuN1uOJ3Ojm4iLRZL1yJABEFAOBxGJBLB5OQkzp49W+Fo1+mI\njWZopfJXLBYRDAaxs7OjmWESCxVJ+rOdmpqC1+tFoVBg5mbXrthmea5YRz3U/pzVcpNltTLSKfrp\nu8eCG+hR1XWyNsnBLhGKdAWTHH4YDIa+rEiy1LlFQw5E++k7MSiwt5p0mMJqtaJYLFb9s2KxiHA4\njGg0iqmpKZw7d65r8wRms7njxizZbBbBYBCxWAwnTpzA1atXa570qdE+qhXNCLZMJgO/34/Dw0Ms\nLi7igQce0OzEtptCslAoIBAIYG9vr8QoiMzpsEKrFclkMomtrS1wHFdizU82VMPDw313Eq+jPb3W\nJqujHpIkMXvNoKvr5a2TgiAoVcxUKoVoNIp8Pg/g3n2AxJOR9cmiCGsGnuc1i6NqB+IqrX/ve4/e\n/kbo1EStL2M1M490Oo1AIIDDw0O4XK6m3Ti1oJMVyUQiAb/f35T7bLUcSVY46rkRx12fzwdJkuDx\neLC+vq75Bb8bra20UHa73RWt2Sy12wLNPR9ZlnFwcACfzwer1YqlpSXl4Ife5CcSCWWTb7VaS8Ql\nMbVoFJbbbgeJbm/QarXJEtfOZtpk9Y0mm/RqVIbZbMbY2FhFprEkSXjttdcwMTGBfD5fcl20WCwV\nZj82m60n1iarFUmO45hxstdpDvZWkw6TlOcfLi4udkRMNIrWFUnSvhsIBGC32xUzmWaeH6tCslbl\nj8wFBoNBDA0NYXV1teJm243npQVEKIuiWFcosyYkG4n/IJ9jIBDA6OioMsdKTCvqbfJpU4vd3V1k\ns1nFrIEWmENDQz2zkdJhB9q1s9E2WY7j8NZbb/V8m2y/HbL0qpCshdFohMFgwPT0dMV1jcwIk4O3\nSCSCfD6vXEvLW2VZel9YnZGMxWIVM686vUFvXXl1GkatDZ0gCCgUCrh58yacTidT+Yc0FotFaUdR\nE57nEQ6Hsb29jampKZw/f76l9l2WhWS5OCp/zRcuXOiKiZHWQpI2R7LZbFheXj4ymoY1IWk0Gmu+\nR+XznZcuXYLNZmv4seuZWtBVpHg8XjOTUJblvgtd70W6XZFshWptsqIo4mc/+xmWl5eVjXyvtsn2\n2/eChRlJtan1val1+CFJUklkSSwWQzabVRzbyw8/urE2Wa1I6o6tvQt7q0lHNdpxdMxmswgEAojH\n4zAajbhw4QKTffUEtYUax3EIBAJIJBKqtO+yLCTJjSyXyyEQCCAWi5XMBXYLk8mkiWgTRRGRSATh\ncBgTExNVzZE6/ZxaxWg0VlTii8UiAoEAdnd3NfscLRYLxsfHK4R3eRWpUCjg9ddfB4CKOUzWTur7\nHRbFVLPIsgyTyaSsn/I/Kw+3L2+TVSsWQg36UUgO+vfZaDQqIwDT09PKz0l3B7k2HhwcgOO4ihZu\n+pdWa4PV+I94PK5XJHsU9laTTteQZRnxeBx+vx+iKMLtdmNtbQ1vvPFGt5/akbSad0lDXn8gEIAg\nCPB4PDh9+rQqGzCWN3GpVArZbBZvvPEGPB5PQzOfnUDtaItisYhQKIRoNNqy02y9CmA3oN+jXC4H\nv9+PRCLRcPSO2uuyvIoUi8Vw5coVSJKkzGGWn9TbbLaKOUwWNzq9TL+0UdarrB4Vbl8rFqLaAUcn\n1l+/CUmWzXZaQc0qPt3dUW1tkpZtjuOwv7+PbDYLWZZhs9kq1ma77uisOtEmEgm9ItmjsLeadFSj\n0Y04nQU4OjpaMQunhkjTmnbMdiRJQjQaRTAYxPDwMFZWVjo6C9gNyMyr3++HxWKB1WrFtWvXmBa8\nrZLNZuH3+5FMJrGwsNCW0yyLra25XA5vvvkmstksvF4v1tbWmPkcyfWHPnUvP6kvFApKFSkajSKb\nzSpzPOVOsqy2KbJOL7a2VqPV11HPTZa0IpYbTdFtslq0IvabkCTmXP2CJEkd+c6YTCaMjIxUjAyR\nayNZm/SMOl2VJ+vTbrc3tJ5YvRboFcneRReSA0w+n0cgEMD+/n7dCk0vCMlWzHboCtXMzAwuXrzY\nlVnATlLe1kmMV27evNntp6Y6qVQKPp8PhUJBteoyK0KSOOlubm5CEASsr69jcnJS/Q2CJMF4+zaw\nvw9MTkJaWwNUNGowGAyw2+2w2+0Vp9GkTbHczZNsouhNvt1uZ3JzpKMuaosvg8HQUJtstVbE8vXX\n7PPqRyHZb6+nm5U7+tpYLrBIZEm1vFa73V5h9kOb67B6nUwkEnC73d1+GjotoAvJPqbaBUOWZSST\nSQQCAeTzeSwuLmJ1dbXuDaBXhGSjFUk64qHdClUzEIfNbtxsC4UCgsEgdnd3qx4aEGMbFltemoFE\nXPj9fphMJni93opWonbotpCkDYLsdjtcLhdyuVzLLUFHnU5L//b/IfSTH2EXAiZlI9yh98D0f/13\noME1TLoiWtm8WCwWTExMVBha0Juo8tw34phIb6T6aXPbKqxWIZqlU6+jE22y/SYk+621lVVTGqB2\nZAnJayXrk+7wMJvNGBoaQrFYRCwWw9DQEFMHcLrZTu/C5rdER3XoKAe73Q6Px9NwfIXFYkGxWNT4\nGbbHURdDWZYRi8Xg9/sBAG63u+PxJUTsdrL9hxbN9ebmel1I0u3Jo6OjmrkLd0tISpKE7e1tBIPB\nEoOgeDwOjuM0+TflbBb/+a//L34cF2CWR8Ab8riU+mdcuXYdpmPTRz+ARtTLfas1a0Sf0vdqXIQO\nG4JYrTbZfqzg9ZOQ7MXXQ0c5VevwODw8RDKZRDKZrIgsKTf76fT1UReSvYt+J+1jDAYDCoUCQqEQ\ndnZ2MDMz01KUg9VqRS6X0+hZaosoiorAGBsbw6lTpyo2AJ2iU0KSNk2SJKluLiL93FgykSEcVcUV\nBAGhUAjb29uYnp5uOuKiWYxGY0eNS+jXNzMzU1FJbseQyGAw1K0YcsU83gnEMT7pgc1mhCDa4Y9s\nYSFxiPkGhWQ7FclmoR0TacpP6em4CGLJXz6H2W+wIMDUoFNza63QbJtsLpeDKIoQRbHtNlkW6EXh\nVQ+WK5KtQM+cLy8vKz+njdCqHYCUV9i1ygvWzXZ6l/75luhUsL+/j9u3b7fdvtkLra0EsmGiWzmP\nHz/ekkOn2mgdAUIHzw8PD+PkyZMNi2aTycRkPAmJ2yjfWJH53oODAyaiStSmUCgo88v1Xp+WFVLe\nNIzg5AwuZPZREEdgKeTxq4kJZK2NdTIA6jvvtkKtU3p6g08qmH6/XzGzIJsnQRCQz+c120B1il5+\n7gRZlntOZNVqk43FYojH4zh+/HhFmywA2O32rrjJtopeYWWfauKYNkKjIddHUmGPxWJKXjB9aELW\nqMPhaOv9SiQSmJqaavnv63QPdq9KOm0zNTWF69evt72B6BUhaTabkUgkEIlEkMlksLCw0FAEQqfQ\nSkjyPI9wOKxU5VoxDSKtraxR3nKbTqfh8/nAcRzcbveR8729Rjabhc/nQyqVgtvtxsrKSt3Xp2WF\ndHzYBv6+D+NW+J8wVyji4NgIElMPYq4JZz0WhGQt6s3BCYKgnNCLoog7d+4gn8/DaDRWzGF2O4+w\nEVj9DJqlXyqrwL2DP7PZzJybbKvoM5Lsw/N8ifFOPejrY/kYlCRJytokIpPEOVmt1gqzn0bWJ8/z\nmnYT6WhHf31LdEowGo2q3FysVivTM5IkyiKTyWBzcxNLS0vaOFi2idpCkuQGxuNxuFyutqpyWldL\nW8VoNEIQBGXWU5ZleL1eJj/fdqAdZr1eL86cOdPQ6yOtv60gyzIkSVI25+ViyGgEfvfXL+N7L83C\nnz/AsHkMv/d+D0ZGGn/fWRaS9TCbzRgfH8f4+DjC4TDOnTsHoDTzLZPJVFSQyjf4LG2s++H70m9C\nstYBRDfdZFul3yp4/fZ6APXEsdForBlZUiwWlTECMqdOr0+yNgVBgNPphN1u78l7hM676EKyj1Hr\nhsuqyBAEAdvb20qUxcTEBNMZkGq9j7TocLvdquQGsliRlCQJxWIRv/jFLzA6OtpUq24vQGZZt7a2\nWnaYbaUiKctyiYgkQlQUxRJRaTAYcOwY8P/8DxeyWRfsdqDZA+NeFZK1qJf5RipIHMchHo8rJ/R0\nqDjZ5DdaFVCLfhFg/eR02spracVNFuhMm2y/CS9BEPquQqZ1ldVgMMBms8Fms9Vcn9lsFplMBt//\n/vfx/e9/H4IgYHZ2FplMBt/+9rdx6tQprK2tKWMIoVAIjz32GHZ3d2EwGPD7v//7eOqppxCPx/HR\nj34Ufr8fHo8HL7zwApxOJ2RZxlNPPYWXXnoJQ0ND+M53voNLly4BAJ5//nl8+ctfBgB87nOfw+OP\nPw4AeP311/GJT3wCuVwOjzzyCJ577rm+uF52Cl1I6hxJpw1GjoKej6OjLG7fvs10C247c4gk9iEQ\nCMBiscDj8agaa8GSkBQEQcm6BIDV1VXMzMx0+VmphyzLJbOs7TjMNlORpMUjERYWi0V5jPI/f/dx\nRQwN3fv7gmBUTHoa2QT3m5CsBV1Boud8yAk9mcPc2dkBx3HKho6uHhGjHy02MP0iJPvldQDqi2K1\n3GRbXYMsGyG1Qi+7mNeim+2j5evzM5/5DD7zmc9AFEX8/Oc/x2c+8xlkMhl873vfw+3btxGLxTA6\nOoqFhQW8973vxR/90R8hnU7j8uXLeOihh/Cd73wH73//+/H000/jmWeewTPPPINnn30WP/zhD7Gx\nsYGNjQ3cunULTz75JG7duoV4PI4vfelLeO2112AwGHD58mU8+uijcDqdePLJJ/GNb3wD165dwyOP\nPIKXX34ZDz/8cFfep16kv74lOiX000UduFeJ8/v9yOVyVfMvWa2cEsxmMwqFQlN/RxRFRVRNTEzg\nvvvuq2h3Uuu5dVtIFotFBAIB7O7u4sSJE7h69Sru3r3L5M28lQ0t+SxDoRCOHTvWkoNyOY0c8lQT\nkJVtrPf+f3lFoZ7AJOuFGKA0IzAHBfqEvjxUnBhZcBxXYmRBtyjSc5j9dj1vhX4Tkp24tnWyTbZf\nPhugP2ckBUHQJBarHUwmE8bGxuB2u/EHf/AHJX92eHiIO3fuIJVKAYAS7RWJRPDiiy/ilVdeAQA8\n/vjjePDBB/Hss8/ixRdfxGOPPQaDwYDr168jmUwiGo3ilVdewUMPPaRchx966CG8/PLLePDBB3F4\neIjr168DAB577DH84Ac/0IVkE/TXt0SnArUqAkfFMGiFLMvY3d1FIBCA1WpV8i+r3bBYNwUym80N\nZ/7RrrN01VUrTCZT1+ZgOY6D3+9HKpWqyLpkqVJKaDbSgud5BINBRKNRzM3N4cqVK6p9lvUqkkT0\nkT9vReQ1IjDpfwtAyed1r4opwGKx6AKzDIvFosxh0tAtioeHh4hGo8jn8wBQEnhPNvmNvK/9IsD6\nqerV7TZdlttkWaDfWnUBdsVxPB6vOGgDgLGxMdx///3K//f7/fj5z3+Oa9euKXsjADh+/Dh2d3cB\nAJFIBAsLC8rfcblciEQidX/ucrkqfq7TOOytKB0mISKtU20RgiAgHA4jEolgcnJSCWA/6jmybArU\nSMWUmMqk0+kKUaUl3RBsyWQSPp8PPM/D4/FUNZhhUUjWiiQpJ5/Pw+/3IxaLtR3BU4tq8R/VBKTa\nm+96AhO4tzEIBALKf0Py8gjkOZHnpYvMd6nVoihJUskc5sHBAXK5HCRJqtjcDw8PM7lhbJd+EcRA\n94VkPVppk83lcrhz5w5zbrKtwqroagee55l8TbFY7MgMyUwmgw996EP40z/90wofDC3ucTqNw96K\n0lEVtSqSnRKS2WwWwWAQsVgM8/PzuHr1asPGFM1U/LpBLSFJTFeIK6nH48H6+npHL4ydypEkDrs+\nnw9WqxVer7fCWrz8eWmVk9gqR2U3ZjIZ+Hw+ZDIZeDwenDx5UrMNI93a2gkBWQ96HVut1hJzpPLK\nZekM5rtVTF1g1sZoNCqVyOnpaeXnsiyjUCgoLYrRaBQcx5XMwOXzeYyMjKBYLCpzsb1IL+ZI1oJl\nIVmLWm2ykiTh1VdfxfT0NHNusq3SrxXJTht9NUIymaxakSTwPI8PfehD+O3f/m385m/+JgBgdnZW\n6fKJRqOKj8L8/DxCoZDyd8PhMObn5zE/P6+0wpKfP/jgg5ifn1f8GOj/XqdxdCGp0xBato3Ksoxk\nMgm/349isQi3293S5ttisTA/I0k/P0mSEI1GEQwGMTIy0lVXUq1nJCVJwvb2NoLBICYmJhqqMAP3\nNs+sVSRrPadkMomtrS2Iogiv14tjx45pvmEnra2iKHZVQO7u7irr+MyZMxWfLf1dbmUOkzyGLjAr\nMRgMsNvtsNvtFaf6xOgnFAohnU7j7bffRrFYhMlkqrq5Z11g6hVJNpFlGWazGU6ns2/aZPuxIsnq\na4rFYjhx4kTVP5NlGb/zO7+D06dP49Of/rTy80cffRTPP/88nn76aTz//PP44Ac/qPz8a1/7Gj72\nsY/h1q1bGB8fx9zcHD7wgQ/gs5/9LBKJBADgRz/6Eb761a9icnISY2Nj+OlPf4pr167hu9/9Lj71\nqU9p/6L7CPZWlI6qqHXT1UJISpKkzD/a7fYjq1NHYTabmZ+RFAQBPM8jFAphe3sbMzMzuHjxYtum\nK+2iVQspPR94/Pjxpmc9TSYTc58pXZGUZRkHBwfw+XywWCxYXl6umHnTAlKFJFWnn/zkJ7DZbBgZ\nGVGqVsPDw5qePpODkFAoBKfTiXPnzrW0jnWjH+0gM3CpVApDQ0PKqb0gCMrmPpVKYXt7G/l8vqTi\nRNaQw+Fg5n3VZyTZRJKkmtW7RtpkOY4raZO1Wq0l67AbbbL99PkQWH1NiUQCZ8+erfpn//7v/46/\n/uu/xtmzZ3HhwgUAwFe+8hU8/fTT+MhHPoJvfetbcLvdeOGFFwAAjzzyCF566SWsrKxgaGgI3/72\ntwEAk5OT+PznP48rV64AAL7whS8oVdCvf/3rSvzHww8/rBvtNIkuJHUaQs35QyKkotEopqamcP78\neTgcjrYfl3WzHZ7nkU6n8eqrr8LlcuH69evMnA6qXZHM5XLw+/2Ix+NtzQeaTCbFaIQVSEVye3sb\ngUAAo6OjWF9fx/DwsOb/dnkGJABcvHgRAJT2Ro7jsL29rcRMWK1WDA8Pl4jMdsx+RFFEOBxWDkIu\nXbqkiRGULjDVo7ySZzabMTY2VjFrJEmSMv9GB4rLslxi9EN+73Trn97ayiattIHWi8yh3WTpUHtS\nSadFZi+0yerUJx6P15yR/LVf+7Wa41n/8i//UvEzg8GAv/iLv6j63z/xxBN44oknKn5+//3345e/\n/GUTz1iHho1drI5mqHWCZ7Vam46uKIfjOAQCASSTSczPz+PatWuqCilW4z9I226hUIDJZMKNGzeY\nO1VXa0by8PAQPp8PuVwOHo8Ha2trbb3Wo+YROw1p0/rFL36B2dnZjlWTq0V4lLewVmtvJJuyTCYD\njuOwu7urzC6R+Tnya2RkpO6pP6ku7+3tKe6z3TgIOUpg0r+qtcjS752+AS3FaDRiZGSkIiJAlmXk\n83llc19ePSrPw9SqEq4LSTYRRVG119KMm+zOzo5y0Gi320taZFlqk2UBlvN8k8nkkWY7Ouyif8t0\nGsJisSCTyTT994gBRyAQgCiKcLvdOH36tCZCiiWHT1mWsbe3pxiPkLbdmzdvMicigfbeO1mWEYvF\n4PP5YDQa4fV64XQ6VXmdrHymxWIRwWAQOzs7MJvNOH36dInhiVY0kgFZD7Ipm5ycrJpjyHEcMpkM\nDg4OEAgElMMOuoJpsViws7ODRCIBl8uFa9euMbkBrvWciJg8agazn41+2p0tNBgMcDgcFZ0jsiyj\nWCwqm/vd3V1ks1nFHbK8gmmz2dp6HvqMJJt0ypimnTZZWmQe1SbbT+uMUK/9uNvUq0jqsI8uJPuc\nbs1I0kYyw8PDWFlZqWijUhsWLvwkdD4cDsPpdDZsKtNtGgm2L0eSJOzs7CAQCGBkZASnT59WPey4\n20KStOgmEgksLCzgxo0b2NjY0HwDqEYG5FFYLBZMTExUzCULgqBsxjY2NpDP52E2m2G1WpFMJsHz\nfEmOIQvfu3qQ9638/avmJFsuMomJkSiKfSkw28VgMMBms8Fms1VUj3ieL9nYh8NhFAoFxcWTrmA2\n2p6oz0iySbdFSittssQFmRaZZB3202dDYNVoBwBSqVTF9UOnd2BzVekwR6NCslgsKvOPnWz96zaF\nQgGBQAD7+/tK21+t9q5eP+2kMz6npqY0/Yy7Ff+RTqfh8/mQzWYrWnS1dJLtdoQHcE88B4NB5PN5\nrKysYGpqCgaDoaSt7PDwENFoVHFfJJsxUsUcGhpifiNWz0lWEARsb28jHA5jZmam551ku3HNsVgs\nGB8frzCfIusom81WdfEs39zTn43e2somrEZlNNomS65npE3WarWiWCxiZ2en6jrsRXieZzL6gxzg\n9fr7O8joQrLPUXNGsp7ZTiaTgd/vx+HhoWbh641A4hA6dYNOp9Pw+/3IZDJYXFzEyspK3X+bzHGy\neEE/inw+j0AggIODA01mXKvRyfgPWZaRSCTg8/kgyzK8Xi8mJycrvkNazG2yICCTyWTJay/feNVq\nKyMGLcToZ29vr8SghZ7BZH1DRhsJzc7OVhwI6UY/7VNvHdFzmPF4HNlsFpIkwWazYXh4GNlsFgC7\nm+Jm6Dch2Wuvpd46JNfCQqFQt02WtP73wsEwyxXJXj9cH3TYXFU6zFHNyIbMxvn9fgCA2+3G+vp6\nVy8I5Hlq4SJJKH/dHo+n4czAXhSS5JAgnU7D7XZjdXW1Y5uGTrS20vOsdrsdq6urdduw1RKSpJW4\nmwKSXstWqxXLy8tNt6DXM2jJ5XLKHGYsFlM2ZHa7vSKqpJubHEEQEAqFsLOzU9dIqFedZHtho0a3\nvNLIsoxCoaBUMJPJJOLxuLIxptusiSMx668V6D8hyfIBUTMYjUZlXbndbuXn1dpkA4FAhZtseZss\nK7AqJPP5PGw2W7efhk4bsLeqdFRFrRsq/Tgk+iAUCmFsbAynTp2qONXrFqQFVwshSc99joyMtPS6\nWXWWBUqruXR1TpIkeL3erhwSaNnaKkkStre3EQwGMTEx0fA8a7tCks6AJP+7GwJyb28PgUAAw8PD\nOH36tOrxJfTcEm1MRDuAchyHSCSiRJWQylO52Y9W0E60LpcLV69ebWlDXE9gkt91J9nWMBgMiiNx\nPB4vMY4iG3uO4xCLxRAMBmtu7B0OB3MCk7Xn0yrdnpFUG0EQKl5Pq22yR7VrdwpWq/jkO63Tu+hC\ncgAwGAyqWD9LkoSNjQ3s7u62FC7fCbQQanTuJcnNa/UEjWUhSSJAiMtu2zbPDAAAIABJREFUI9W5\nTjwntSuSpPpEchCbXcetCslqGZCdFpDkMCQUCsHpdOLcuXMdn2GmHUDLjTGKxaJSwYxGo+A4TtkA\nlVcw26k8FQoFBINBxGIxLCwsaOZEe5TRD13J1NJJthcqko1Q/jpqGUbRG/tUKlWysafbrYnY1MV7\ne5C2z35BFMWmqndHtWs34iardZssqxVJXUj2PuytKh3mIHOAuVwOdrsdN27cYPbG26y7bD2y2WyJ\nY6caM4Fq5TWqjSiKKBaLePXVV3Hs2DGcO3euwuq/G5AqqRrQhkjtzHiaTKa688LlNJIBqTXETTgS\niWB6ehqXLl1ibuNHO4CWbyyIwOQ4Dvv7+/D5fCgWiyWtjURo1ouYyOfz8Pv9SKVSWFxcxPLycleu\nZa04yZK1U94iW+1x+pVGBXG9jT1ptybtiblcDpIkwW63lzjJ6jmEjdNPra1A9YpkK9Dt2ke5yWrd\nJisIApPGh3r0R++jXyUHgFYqkrIsKxc3o9EIj8eDQqGA6elppjctalT8yKB9sViEx+NRNffSbDYz\nkYtIoPMRDQYD1tfXK073u4ka73s2m4XP50MqlYLb7T7SEOkoGq1IdiLC4yhINX13d7fu7B/r1Gop\nI1EldGtjPp9XsjDJL5PJpFQ43W43Tp06xWSFrp6TbCNzmOQxygVmv1Qk243/IJEP5W3cpN2aVI4i\nkYhSObJYLFXnMHXepRfNdurRbEWyWbrRJstqRTKRSOhCssdhb1XpdBXa9n5iYgJnzpxRbrqRSAQ8\nzzN5qkVotSIpyzJ2d3cRCARgs9ng9Xo1EVSstLaSamsymVRcdt95552+2GwSDg8PsbW1hUKhAK/X\nizNnzqjy+o5ykmXBgZW0bh4cHGBhYaHl2T/WMZvNNSMmiLjc2NhQqpcWiwV7e3vgOE6pYDocjp7Y\nBLdj9MPzvJKL2ctzmFrFf9Dt1vSmtlrlyO/3g+d55bCivHLUT9fQRunHGcludeRo1SbL6oxkLBbT\nW1t7HF1IDgCN3NjoaIe5ubmqc2Nqto1qhcViUU7vGkEQBEQiEYTDYUxOTjZsuNIqZrO5q+9hKpVS\nbM29Xm9JtbUTDqlaI8sy4vE4tra2YDKZqsZYtEutiiQLAjKbzSIQCODw8LCrrZvdhhyU8DyPtbU1\nOJ1OpU2abMTS6TR2dnaUSAmHw1Exh9kL710tgSmKomKYRWZMWXKSbYVOV1brVY4EQSjZ1EciEeTz\neRiNxoo5zF45rGiVfmtt1boi2QrttsmSeXPW3IITiQROnTrV7aeh0wZsfVN0Ok4qlVLmHxcXF+tG\nO1itVuaFZKNCLZ/PIxgMYn9/H3Nzc7h69WpHTuvMZrMSvt0pSJuy3++HxWKBx+OpKq5YqZa2Aqko\n+/1+DA0NYW1tTTMn4XIhyYKAzGQy8Pl8yOfz8Hg8WFtbG8jKSCqVwtbWFgBU7Sqgo0pmZ2eVn9Oz\ncxzH4eDgABzHQZKkiixM0irLKuQwxefzwWaz4fTp0yXRLL3sJMtSi67ZbMbY2FiFGZkoiiWxN7u7\nu8o1n8xhDg0NKRViltdSo/TL6yCw2gZajaMOO8haLBaLCIVCuHv3LgB23GT1Gcnepze+KTptUX7j\npds4rVYrPB4PJiYmjrxBWyyWpkxGuoHFYqkrhohxUCaTUWVerlk6KdboeIvx8XGsr6/XjXhguSJZ\nawNJR9E4nU6cP39e85YkIiRZEJDJZBJ+vx+SJCkHBKxstDsFHVVjNptbzsKsNzuXyWTAcRxCoRA4\njoMoirDZbBUVzG62jpFMUJ/PB4fDUTPShRUn2VZod0ayE5hMprq5qtlsFplMBjzP4+c//zkkSYLN\nZqvamtgr9JuQ7JfXYzablTbZUCiEs2fPKp0ZrLjJ6jOSvY8uJAcIQRAQDocRiURaauO0WCwdr6Y1\nS7WKJB26bjAY4PF4MDk52ZUNSSeEZHlcyeXLlxuKK2FVSJIsSfrGTr/GTkbREEGbSqWwvb3dlZNc\nUnHy+/0wm81YWlrqakRLt6C/1zabDadOnarYvLcLPTtXnoVZKBSUCub29raShWm1WisqmFquTVmW\ncXBwoFTj19fXW2rP7wUnWa1mJDsBnas6Pj6ORCKBixcvlsTeZLNZ7O7uKmuJuBLTbrLtxN5oRb+Z\n7ajl2soS9GGsWm6yamSz6kKy99GF5ABQLBZx584dxGKxtmIPLBYLDg8PNXiG6kHPcZKKXCgUwujo\nKNbW1lTfaDaLlkKSRBvEYjG4XK6mP+duz2/WgpjbmEymkllel8uF69evd+SGT2+cHQ4HPB4PMpkM\n9vb2lBk7coMl4kHtfDpZlrG3t4dAIIDh4WGsra3VrTD3K3Sr9vDwMM6cOaPpXHM1DAYD7HY77HZ7\nxSaoWCwqFUwiCojZT3kFs15UyVEQAenz+TAyMtKygDwKtZxkgfadi1lqbW0Hek6tXuwNz/NK1SgW\niyEUCqFQKChCgBaZamzqW6XfzHZYnJHsBI22yarpJhuPx0vErE7vMXjflAFEkiRMTEzg5MmTbd3E\ne8Fsx2w2o1gsYnNzE9FoFLOzs7h06VJDFblOoIWQTKfT8Pl8yGazcLvdLX/ORKixhslkQjqdRjQa\nRTqdhtvtrjvLqybVMiCNRiNmZ2erztgRAUEEpizLbQtMSZKws7ODYDCIiYkJnD17lomMz05Dt+SP\nj48z+z5YrVZMTk5WFQX0DGYgEEChUCiJKiFrpJ77Jy2kR0ZGuvo+NOMkSyKo2jH66YXW1kZo1PDE\nYrHUdCUuN40i126Hw1FSwXQ4HJqLPNYMXNql3yqSanxv6DbZ8sdup002l8sN5IFoP6ELyQFgaGgI\nx48fb/txWDfbIU6NmUwGLpcLDzzwAHM3A7WEJG2ooVa7LoutrclkEqlUCnfu3MHKygrW19c7spFs\nNgOy1oxduYkLLTCJiQtdpaL/DVEUEYlEEIlEMD09jUuXLg1kfp0kSYhGowiFQpicnMSFCxeYORhq\nBovFgomJiQoDIDoLM5FIIBwOI5/Pw2AwlFQvh4eHkU6nFSF97tw5ZqOYGhWY5GfAvfehWpss/Z3o\n5dZWmnaFV72ICDKHSaqY2WxWmcMsb5MdxKpbI/TLOiNoaR7UbJvsD3/4Q/zjP/4jlpaWsLq6CgDY\n3NzE0tJSxfXiiSeewD/90z9hZmYGv/zlLwHcq2B+9KMfhd/vh8fjwQsvvACn0wlZlvHUU0/hpZde\nwtDQEL7zne/g0qVLAIDnn38eX/7ylwEAn/vc5/D4448DAF5//XV84hOfQC6XwyOPPILnnnuuLw6q\nOo1+FdFpGFbNdhKJhGL17/F4kEgksLi42O2nVZVGw+xrIUmS4k46PDyMU6dOqeZOyoprKz3zRXIC\nV1ZWOjIHqLaBTj0TF7qCSVxCZVmGzWZTKg6sVdQ7CTFSCofDfS2k62VhEmOWaDSKeDyutEEWi0VE\nIhHN2qi1op7AJL/XapGVZRmiKJZ8P3vhNVdDqwoefb2pNdObzWYRjUaRzWYhCAIsFktFWyKLc5id\npN9eO/mcO0mtNtkLFy7gySefxNtvv4233noLmUwGf/iHfwifzwcAWFpawunTp7G2tob3vve9+OQn\nP4nHHntM+fvPPPMM3v/+9+Ppp5/GM888g2eeeQbPPvssfvjDH2JjYwMbGxu4desWnnzySdy6dQvx\neBxf+tKX8Nprr8FgMODy5ct49NFH4XQ68eSTT+Ib3/gGrl27hkceeQQvv/wyHn744Y6+T/2ALiQH\nALUuiixVrOg2N5vNhqWlJWUjRuytWaTVz4I2SpqamsLFixdVr0Z0+/MlLZyBQACjo6M4c+YMhoeH\n8fbbb2v+vDrtwEobbxAKhQICgQD29/eV1shsNos33ngDkiQpcyh0BZO1irsaiKKIcDiM7e1txUip\nlxws1cJoNCKTySAQCMDpdOLGjRuw2Wx126jpqJJeWiP1jH7o7gtyIEOuB+T3bjrJtkKnW0GPmukl\nFUxyoEWbq9Ais17LdT9BquX9AmtxJhMTE7hx4wbW19fx4osv4h/+4R8A3HuePp8Pt2/fxjvvvIN8\nPo/3ve99JX/3xRdfxCuvvAIAePzxx/Hggw/i2WefxYsvvojHHnsMBoMB169fRzKZRDQaxSuvvIKH\nHnpIGTV46KGH8PLLL+PBBx/E4eEhrl+/DgB47LHH8IMf/EAXki3AzsrS0RTSMtTuY3QbQRAQiUQQ\nDocxOTmJc+fOVcwH0eYsvU6hUEAwGMTu7i7m5+c1zbvslpAkwiEcDlcVyVo+LxYiPHK5HPx+Pw4P\nD7G4uFg1kqY8hiIejys5h3QMRS/kHNaC53mEw2Hs7OzgxIkTuHLlClObn05Bz8ROTk7i4sWLJRXp\no6rcpE2WtDWKolj1EKIX3ttkMomtrS3YbLaS+KJ6TrLAvWsKPdPMmsBkaaaQVI2qtVwTgUlcqknL\ndbl7Zz8Jr34xdKLheZ7J73ssFiuZJTebzVhdXcXq6ip+4zd+AwDg9/tL/s7u7i7m5uYAAMePH8fu\n7i4AIBKJYGFhQfnvXC6XMhpS6+cul6vi5zrNw97K0mGeblxoabfOEydO1BVUpEWT5c30Ue8hx3Hw\n+Xw4PDyE2+3GjRs3NN94mM3mjgrJYrGIYDCoCIdanymJ/1AL2vSD/O9uCMhMJgO/349cLge32421\ntbWaz+GoGIpqOYe9Ih7IOtjf34fL5cLVq1eZ/u5qBT0LeuzYsaZbeekNfr01EolElHgJMjdHm/2w\nUP0lFUir1Vo1D7NdJ9lWjH7UhCUhWQuz2YyxsbGKkYJqc9+5XA6vvvpqVfdOFq859eiXQ2iabrS2\nNkIikagwJWuGbty3dSrprW+4TsuoUZEE3q0OdermQBxJOY5r2K2TuMuyOldW7z0kweqiKMLj8XTM\nXIY8r07MSJIKXCKRwMLCwpGmSGpVJMvz74Du3IhSqRR8Ph8kSYLH44HT6Wz5OdAta+VGB2QmKpPJ\nVIiH8gpmNzZ7pJU3Ho9jYWEB165dY35zrQV0TJEWs6D11gjJL+Q4Djs7O+A4DjzPK3Nz9CFEJ+bm\nEokEtra2YLFYWs4FbcZJtlsCsxeEZC3KK+I8z4PneVy4cAH5fF6Zw4xEIiXundXmMFmEtTZQNWD1\nNcVisaYzJGdnZxGNRjE3N6dkZQPA/Pw8QqGQ8t+Fw2HMz89jfn5eaYUlP3/wwQcxPz+PcDhc8d/r\nNA97K0uHaYhI0/KiRMxWAoFAS46kFouFCdOYWpCKKXkPST4gCVZfXl6uMN7oBFq3ttIxJR6Pp24F\njoa0KrdKtQiPTgtIMudFDIS8Xq+mn3GtmSgiHo6qThEBocUpNsk7TaVSNVt5BwFaQM7MzHR8FrRe\nfiEtMEnUSKFQgNlsrqhgtpOFSSAtrGazuWUBeRSNCEwAVQUmUDqH2e567WUhWQ6p4NFdEzTkmkPa\nZPf29pQDC7PZXDGHqcZ6aod+rEjyPM9kVFIrFclHH30Uzz//PJ5++mk8//zz+OAHP6j8/Gtf+xo+\n9rGP4datWxgfH8fc3Bw+8IEP4LOf/SwSiQQA4Ec/+hG++tWvYnJyEmNjY/jpT3+Ka9eu4bvf/S4+\n9alPqf4aBwFdSA4Ial2YiZDU4qJENlbBYBBjY2NYW1traUNhNpuZjikhlT/iShkKhZR8wE4Hq9No\ndfMmVQZZluH1epuOKWlV4NbKgOwkJPMvEAjA4XBotkluFFo8VBOYpIIZjUaRyWQgCAKsVmtFBbMV\nwUPH83g8Hpw6dWog25JoN9puCMhGqBdKTgRmPB5HKBRCPp9XjFnoCqbD4Tjy8yUC0mQyYXV1VTUH\n6mZox0kWaM3opx+FZC3oa06t9ZTNZpXom0KhUBIpQUSmw+HoyHvGavWuHVhtbY3H43Urkr/1W7+F\nV155BQcHB3C5XPjSl76Ep59+Gh/5yEfwrW99C263Gy+88AIA4JFHHsFLL72ElZUVDA0N4dvf/jYA\nYHJyEp///Odx5coVAMAXvvAFRbx+/etfV+I/Hn74Yd1op0UMTbY79s9E9YBBhEu73L59G9PT0023\nI9SjWCwiFAohGo1idnYWi4uLbbWl+nw+2O12ZSCbNd58802YTCYkEgkcP34ci4uLzLT53Lx5Ezdu\n3Gj7cYiA8vl8iqtuq/Ed0WgU+XweXq+34X+72wY6tGHKxMQE3G43kyfCjUBXMInQ5HleaVejBWa1\ndUzPgnq9Xhw7dmxgBSQxeTh+/DgWFhb6ZsNKR5WQdZLL5ZS5TXqdOBwOpNNpbG5uwmQyYWlpqSsC\nslVqGf2U76XqCUxi6tEPrXSHh4eIRCI4ffq0ao8pimLJHGY2m0UulwOAqnOYalYQ4/E44vE4VlZW\nVHvMbnP79m2cOHGiIxFazfCVr3wFly9fxoc//OFuPxWd6jR0o+6Pu5jOkai1cbNaraplSXIch0Ag\ngGQy2dCsXKOwWpHMZrOKYdDc3Jxqr5cl6KqyWlXWRltbWRCQdLVpamqqL7IPrVarEkdCQ1cwd3d3\nldgAi8WCkZERmEwmJJNJAMDy8nJbs6C9THmcST+60ZpMJoyOjlYIQkmSlJbGTCaDcDiMw8NDAMDY\n2BiGh4fBcRwAqC4ItKKW0Q8tKI+qYpIKUT9UJrVoBTWZTBgZGano3pAkqWQOMx6PI5vNKu7V9KHF\n0NBQS1W4fq1Isvia4vF4ydy2Tm/C3srSYRrS2toqsiwjmUzC7/eD53l4PB6cPn1a1Q2mxWJRNics\nQMxVCoUCPB6P4obH6qapFVdeQRAQCoWwvb2NmZkZXL58WTWzo6NaW1kQkHR0xaBkH9Zqfzw4OMDW\n1hZEUcTw8DB4nsevfvUrmM3mihbZfg4+F0VR6bSYm5vrSwF5FEajESMjI8oBk8lkwuXLlzEyMlJS\ncSL5hZIkVc3C7IX3jb7u1JrD5Hke29vb2NnZwcmTJyGKIjNOsq0iSVLH7mV0yytNLeMoIqBocXnU\ndadfZyRZvB8lEglVu9t0ugP7V2cdVVBzRrIVkSZJkmIo43A4sLS0pJnZCDGz6SbEMMjv98NkMsHr\n9Sob7lwu1/XnVwuj0djUxoDkXO7t7WF+fh7Xrl1TfdNXLf6DtJF1W0AWi0WlyjzI0RWyLCuOw2az\nGWtraxVtVDzPK5WpagYutMjsZYFJDlXoWJtBXBPAvbZHMh9dfs2vlYVJKk6ZTAaJREKJsyFmUPQc\nJoub41qQToW5uTlcu3ZNua6x4iTbKiwIr3rGUeS6k81mEYvFEAqFlDnM8hZZh8PBbPWuHViNQztq\nRlKnN+ivb4uO5jRbkRQEAeFwGJFIBMeOHcP58+c1nxVrt2raDiQLLhgMYnR0FKdPn65oz2FB6NaC\nVP+OuukQ45RkMgm3240HHnhAsw0O3drKSgZkLpdT2rIXFxexvLzM3AavE8iyjFgsBp/Pd6SZkMVi\nwcTERNXgczJbF4vFEAgEKhxCiXjotqNjPWgBOT8/P9ACksxASpLUlAs17fxZK86G47gKM6hyJ1lW\n2snp+8HMzExFVfooJ9nydllAOyfZVmFBSNaj1nWHzPVyHIdUKqXM4hcKBTgcDuTz+RKR2cvXd3IY\nwRrJZFIXkn2ALiQHhE7PSObzeaVSUy9sXgu6Ef9Bt3aSLLharZ1msxmFQqGjz69RzGZz3TZSUmEo\nFArwer2qtyVXg4hbUn3spoAkxjEkwmRQnUeJmZLf78fIyAjW19dbnoU1m801BSYRDrFYDMFgUHEI\nLa9gdlNg8jyvVOUHuSoN3BOQpK15aWmp4jNtlVpxNkDprO7e3h58Ph+KxWJFpbuTBxGyLGNnZweB\nQABTU1NNt7rX2vSXO8nSHRntOsm2iiiKTIqUo6g117uxsaFUu0nbdS6XgyRJsNvtFXOY/Va97CTk\nIEint9G/ATpNcVS17/DwEH6/HxzHwe12Y3V1teM3mU6a7dCCudHWTtYrkuXPjWQg+nw+GAwGLC0t\nVczFaQWZ1yQxAWRT2Ei0gJqkUin4/X4IgtB0rmk/IUkSdnd3EQwGMT4+jnPnzsFut2vyb5nNZoyP\nj1dUs0RRVCqYiUSiolWNrkzZ7XbNPidaQC4sLODatWs9uaFWg0wmg62tLQiCoKqAbIRas7qkpbG8\n0k0OIrRYJ7Rb9cTEhOpmW2R9la+zWk6ytMgsb5Gt9jitIElSX4kBSZIwPDyM8fFxTE9PKz8nbdek\nirm9va20XVssloo5TIvFwsQ9ohXPg05QzelYpzfRheSAoHaOJA09D2g0GpV5wG5dvDoh1DKZDHw+\nHzKZTNOCmXUhSbeR7u7uwu/3Y2hoCKdOneqYTT992m61WnH+/HlkMhkkk8mSrDF6M6h2ZYrM/dHr\nWqu5XtYhLXqhUAiTk5O4cOGCamZKzWIymWoKTCIckskkIpEI8vm8YtBBVzDbEQ7FYhHBYBD7+/u6\ngPwvAcnzfEcPmBqhXksjqWDS68RgMFSY/DSaXUjugT6fD6Ojozh//rxmByzVqOUkC6ChOUzyGK0I\nTNZbW5ul1owk3XZdnsFLz2GSTg2e55V8VVpkanm4VQ1WPx8yt8miyNVpDl1IDhAGg6HtEyDa+EQU\nRWX+Y2xsrOo8YDcwGo2anHTRhiKyLMPj8bSUice6kOR5HqFQCKFQCE6nsyNzrYRaDqzVWpDoDWG1\nyhQRl822tJGqQiAQgMPhwMmTJ5lY192AjjOZmZlhOs7EZDJhbGyswuSHzjhMpVLY3t5WMg7LK1P1\nKt3EWCkWiw28gOQ4DltbWygWi8wJyKM4ap1wHId0Oo2dnR1ks1kAUMQAuZ7QM3PxeBybm5sYGhrC\n2bNnmcuLPWoOs12jH1aFSqs0+3oMBkPNqrggCMqaKj+0oOcvmzm0OArjnTswvvEG5JERiO95DwSr\nlcn220Qi0VPXDZ3asLe6dJhHkiRsbm4iGo0qUQesbi7VoLwyt7q62lawL6tCkud5ZQPlcrk6+rm2\nEuFRb0NIm7fQs3Xl8RO0wKTbNsfGxnDfffcxtynsFMQki/6O95JDJk29jENSwTw8PEQ0GlUEJl3B\ntFqt2N3dRSKRGGhjJeBdAVkoFLC0tFThkNnL1FsnJKqEzGFms1kIggCe52G1WnHixAlMTk721H1Q\nLYEpCEJffR/UdG0lUV/l9yiSr0pE5t7eHnK5HGRZhsPhqKhiNipsja+9Buuf/ilgMgGCAPP/+T/I\n/K//xaSQ1B1b+wf2VpeOZrRbkeQ4TjEasVgseOCBB5g+iWx3NoAEiYfDYVUdZ1kTkvScp8PhwMrK\nClwuV0f+bS0yIGu1PhLzlkwmUzEzZTAYkM1m4XQ6cebMGYyMjAxkyw2pRu/u7vZ9dIXRaKwpHLLZ\nLJLJJHw+H7LZLMxmM6xWK2KxGPL5fEkFs5820bXgOA4+nw/5fB5er3egZoTpFvqZmRkcHh5ic3MT\nNpsNLpcLsiyD4ziEQiFlZs5ut1c4DrO4ma9GPYFJfifX7VgshmQyiRMnTigjLyw4ybZDJyqsJF+1\nvNNFlmXkcjlFYCYSCWSzWYiiqLgT0yKz/HDP8vd/D9npBP7rmmbw+2H82c9gOXlS09fTCrFYrK8O\nogaZ3riy6XQNek6MGI1kMhnMzc0xvcEks36t3LxJCxu9mVazGkPPIXYTsjlMp9PKnGc4HNZ8AL5b\nGZDl5i2k6ra9vQ2n04nZ2VnkcjlsbGygWCxWVDBZihVQG3rub9CdR4vFIsLhMFKpFNxuN2ZnZ2Ew\nGBSBSQ4jdnd3G2p97GWy2Sy2traQy+WUCuSgCMhySKSJLMtYXl4uqTKVm7KQqJJMJoNIJAKO4xSH\nStpFllS8ewHa6CeZTCpi+sKFC3A4HEw5ybZDN81pSDfE0NBQRfwNcSfOZrPY3d1V1hRxJx4aGsLC\n4SFMNhtMAAz3HhBSPs/kIUYikdArkn0Ce6tLRzOauTiSNj8yJ0ZngUUiEfA8z3SrG6n6NXMBJRXX\nVCqFxcVF3LhxQ5ObXbc3YqTSwvM8vF4v1tfXleekZTQJ3SbVzQgPWjQRp91qookYKGQyGcWJkcQK\n0POXvSwwC4UCAoEA4vE4FhcXB3ruL5/Pw+fz4fDwsGq0C11FmJ2dVX5OWh9JOzUtMB0OR8k66RWB\nmc1mlWqs1+ttaRa8X+A4Dpubm+B5HsvLy0c60taKKqHFAFknmUxGuZeWVzCtVitz7zkR0wAqMmOb\ncZIlYk0rJ9l+w2AwwGazwWazVVTxeJ5XDrj2L17E2D/+I/JjYzDxPCwGA8KTk5D/y23Wbrcz8/4m\nEgm9Itkn6EJSpwRSpYlEIjXbOY+KAGEB8hwbcc6jhZXH48GZM2eYu4G3C+2sazab4fV6q26ItKiW\nlm8kyk+mO0U+n4ff70cymWxINNVyfaQFJp1bZ7FYKmYwWRWYuVwOgUBAqbqtrq723ZpvlFwupzgw\nezwerK2tNfVe0K2PNPRsHcdx2N/fRzabVeagyjMOWdjg5XI5bG1tgeM4LC0tDbSAJNXYfD6vyjzo\nUWKAPrTy+/1K2315BbPTrp/Avfdic3MTxWIRKysrDblXd9NJdpCwWCzvdtr8/u/DtLiI0Zs3IQ0P\n4/DXfx2i0QiR57G5uYl8Pg8AJXOYpALa6Q6UeDyOhYWFjv6bOtqgC8kBot7Np5k8RIvFgmKxqNXT\nVAWLxVJ3DpEOVLdYLDWFVa8jSZISjD06Onqks66aQpIVAUkqzSTbtLzS1Cz1BCZdleI4rqTaQIvM\nblXzSaWJ47iqVbdBghaQXq8Xp0+fVvW9qCUwyRwUWSsHBwfgOA6yLMNut1dUMDuxwSt/L6ampgZ2\nXeTzeWxtbSGTyXRMTNe6ppC57mqZqeXt1Fpk65IqfTqdxvLysmqtiFo7ybaKJEm9ve6NRiTe/2tI\nv/c8Ju2TGLI44NjawtjYmNIqK0kS8vl8ScZqNpuFJEmw2WwVc5hatcXG43FcuHBBk8fW6Sy6kBxw\nDg8P4fP5kMvlGs5DtFqtzFckzWZz1ecoSRK2t7cRDAYxMTGB++6ydseJAAAgAElEQVS7D0NDQx1/\nfmTmSqtTVtooaGpqChcvXmyoOms2m9sWktUMdLpxmkzWNpnt1Xq+y2KxwOl0Vliak3Y2MldH2uSI\neQLdJquVwCS5p4VCoeXYmn6Bbtv0eDyqC8ijoOegaEjgOe04TDZ4xLyFrk6pITBpoaCFmO4lCoWC\n0rHAyntRPtdNqBdpQ4uAVud1eZ6H3+9HLBaD1+ttukrfKo0KTPIzQF2B2aqvAiv8OPxjfOuNbwEA\nhsxD+PTVT0MUSl8TOYQYGhqqOdubzWYRjUYVd2KLxVLhJNtu67Xu2to/9O43RqdpyJeezskzmUzw\neDxwOp0NXxR6pbWVrkgSN8rt7W3Mzs52PbKEzHCq/RzI/N/Ozk5LRkEmk6llR1ktHFhbeQ7EHMpo\nNMLj8XS90lwrY6xYLCqiIRqNIpPJVBhytCswiZgWRRFer3egc7uIuVQul2Ny7o8OPC/f4NECMx6P\nl7iD0uJyZGSkIYFJC8hW2nn7CTof1OPx4OTJk8y/F/WiSmoZQpF26nrVbkEQEAwGsbu7C7fbjZWV\nFSbei0adZGu1yDbqJCsIQs+ajO1xe/jWG9/ClH0KNrMNyUISz732HH5v7vcaEse1ZnuBe98Rsq5I\nBwUxpCvPw2y09TqZTOozkn2CLiQHCFEUlaD58fFxnDlzpqLtqhEsFovSa88qpCKZy+Xg9/uVfnxW\nIkvUFpLkdSYSibZeZyutrawISDIDarfbcfLkybotvCxgtVoxOTlZcjOlDTkymUyJwCRtR3QFs9YG\ngcz9AsDS0lJDM039Cl2N7cXoinoCs1AoKAIzHA5XxE/QItNsNitzwqlUqqOVJhbheV4x3eqXfNBa\nhlDl7dTV2hkLhQJSqRRcLlfPmG7RTrI01aJKGnGS7eWK5EHuAABgM9sAABO2CYTSIaQL6bY7Xchh\naLXWa5KHSSrj+Xy+pOuCnsOkP6d4PF7iTKvTu/TmN0anJQRBQKFQaLsa1wutrTzPIxKJIBqNMnni\nrlaWZDqdLmnTa/d1NvO8WBCQxF04GAxibGwM6+vrXWlVVotahhxEYJKNIB0pYLPZFMFA3g+r1YqV\nlZWKisUgkclksLW1pbgTN9N10QvQFYTyqIDy+Il0Oo1cLgdJkuB0OjE/Pw+r1drTG+dWEQQBoVAI\nOzs7WFhYwNWrV3tCNLVDrXZqSZIQDAYRCoUwPDyMiYkJ7O3tIRqNKgJTjc6ITnOUwKzlJJtIJGAw\nGCAIQs85yU45ppDNAj/bKgKCHaMzCcxMj8EiWzT7jpvNZoyNjZVE4QDVjcZu3ryJv/zLv8Tc3BxW\nVlaQTqexsbEBq9Wqyn3q5ZdfxlNPPQVRFPG7v/u7ePrpp9t+TJ3GMDSZGadtwJyOppDNaLtkMhls\nbm7i/PnzKjwr9ZBlGbFYDH6/HzzPw+Fw4Pz580xuHt955x3Mzs623NqRSCTg8/kgSZKqVRZRFPEf\n//EfuH79etU/J9cLURS7GuEhiiKi0SjC4TCOHTuGxcVF2Gy2jj4HFiCiYXt7G5FIBAaDAWazWTFu\nKTf5YaEarzXpdBpbW1sQBAFLS0sD3c5L5v4SiQTcbjecTqeyuSOHEnS1uxdFQ6OQufHt7W3Mz89j\nfn5+IL4P1ZBlWXGcPnbsGDweT8nnXX5wRX7Rs930erFYLEzeZxsllUrh7t27ivGezWZTRGY5RFR2\na/a/Fvv7BvzPr/4Uvxr9BoxGQCo68Ln/9mksT+zjypUrTHw+oiji7t27eOutt/Anf/IneM973oPb\nt28jnU5jdnYWZ86cwenTp3HffffhPe95T1OPe/LkSfzzP/8zXC4Xrly5gr/927/FmTNnNHw1A0FD\ni2awjiIHHLUuJKzNSNLOpCMjI1hbW4MkSQgEAkxcPKvRSkWSzLb6fD7YbDasrKxUnAS2i9FoVE5t\ny/9tFjIgSTxNNBrF7OwsLl++3Hcb3kYhm0Gy7i9fvqxUHGq1PZJWtvIZzH7YUNPzoEtLS12fje0m\ntIAsn/url29Y3k5Nz+t223G4VSRJQiQSQTgcxtzcHK5evdoX670VZFlGPB7H5uYmRkdHcfHixaoH\ncHRnRLV5OSIs6fgjs9lc0U5ts9mYvQcD94y37t69C0EQcPLkyaqVsWpOsvSBKqCtk2yjvPGGESMH\n/w3/ffgCinIKYm4Kb/6rA8v/9z4zn4HJZMKpU6dw8uRJPPfcc/jmN78J4N172TvvvIN33nkH//qv\n/9qUkHz11VexsrKCpaUlAMDHPvYxvPjii7qQ7BC6kBwwSAhwO7AiJOnMy3Jn0lwup0rrqFY0IyQl\nSUI0GkUgEMD4+DjOnj2rWftm+Q2HlQgPYiK0v7+P+fn5gd4MkvbVQCCAiYkJnDt3rsKR96i2x0wm\ng0wmg1AopAhMrZxBtSaVSsHn80GW5b6N8WmUYrGozIS73e6GjGPq5RvSValqjsMsZ6aS62YwGMTs\n7CyuXLkycG28NMlkEpubm7DZbG25ldcyDyNZmGQGMxgMIp/Pw2QyVVQwu5GFSVMoFLC1tYV0Oo2V\nlZW6nUGtOMmS1thuCEwbxmCTx5CWAIOBzSbCXC5Xcs8yGAyYnZ3F7OwsHnzwwaYfLxKJlGRSulwu\n3Lp1S42nqtMAg3tV1WkZo9HYthhth0KhgEAggP39fZw4caJq5mWt+A9WaERI0kJ5enoaly9f7lj7\nZjUB2Y1TVpJvSkyEesUEQgvIxjgUCuHYsWM1qwn1qCcw60VPdCPb8ChSqRS2trYA6IZCtPMoiXFS\nY6NezRCK/Hu0MyhxcayWmdppgSnLstKhMjU1hfvvv7/nqqhqkk6nsbm5CQA4deqUZiZktbIwRVFU\nBGYymUQkEikxZKEPrhwOh6bXd0EQlL1Du2ZTajrJ0o/XKhcvSvjBD2REIoDVagDHAR/+cJHJ+2Us\nFtMdW/sIXUgOGGpUJLtFJpOB3+9HOp1WrMlrXSTVMrPRCrPZjFwuV/XPyKZwb2+vplDWCnLT29vb\nU1qTunEj4jgOfr8fHMc1XFnpV0RRRCQSQSQSwczMjCbtvI1ET2QyGcRiMXAcB1mWlTgBeiPYibWS\nTCaxtbUFo9GI5eVl1du7ewlaQHbSebReVYocRpA2fNL2WN5O3W4OXTmkPc7v98PpdOLSpUvMVUk7\nSTabxebmJorFIpaXl7tWqTeZTDUNWYjATKfT2NnZUaJK6MxCcnjVzrqWJEk5lHW5XJoaLDVj9EOP\nkRCR2arAPHZMxuc/X8T//t8mZLMGXL0q4syZPH71K/YOUeLxuKpCcn5+HqFQSPn/4XAY8/Pzqj2+\nTn10IanTMqRSpfW/QaIMRFGEx+PB+vp6Q+1aLFNN6GazWSUQe3FxEQ888EDHRBztwLqysqK0JhUK\nBWUT2Ikqw+HhIfx+P4rFIjweD3NZf52Engc9fvx4V1rz6glM4sqXyWSUbDEiMMsrmGqs40Qiga2t\nLZjNZqyurg60Iy3P8wgEAjg4OGAqusJiscDpdNZse8xkMtjf34ff71euLe3O1ZHoH5/Ph7GxMZw/\nf76i1XuQoNs2l5eXmY27MRqNNbMwyx0/s9lsVQOxo9rv6er0zMxMV0ci6O8n/RzqOckCpVVM0iZb\n/niE2VkZjz327r6C4wQm27nj8XjF7G07XLlyBRsbG/D5fJifn8ff/d3f4Xvf+55qj69TH/ZWmI6m\nqG24o5WgkGVZmQOz2+1YXl7uq9Y1WkgSk5B8Pg+v14vTp0937MZfLcJjenq6RDTQm0DaXIE24iBC\ns9WbFnGhNRgMAz/nxvM8QqEQdnd3mZ0HpeMEqglMuipFNoFEYJI106jAjMfj8Pl8sFgsmrbm9QJE\nQJLsw16JrqjV9igIQkk7dSAQKBGYtGgoF5jEOGZrawtDQ0M4e/YsHA5Hp18aM/A8D7/fj1gs1tMZ\noUajUfnsacrb7+PxeEVuKv2LtL6Pj48zXZ2uJTCB6kY/5QKz3hymILApJBOJhKpC0mw242tf+xo+\n8IEPQBRFPPHEE1hfX1ft8XXqo8d/DBiCIDQdOF+NX/ziF1hdXa242LcLaeMLh8NwOp1wu90tmwLc\nvHkTDzzwAJM308PDQ/zqV79SLv6djCmgjQHayYCkjThI6yOda3hU7ASpJAQCAdhsNng8noGuMtGG\nQgsLCzhx4kRPiIRGoKsMZK2Ut7GRNeNwOGAwGBQBabPZ4PV6B15ABoNB7O3t9d3aqIYgCBUxJbRx\ni9FoRDKZxNDQEFZWVlS/D/USgiAgGAxid3cXbrcbc3NzTN7ztILOTSUCM5FIAABGRkYwOjpaUsFk\nVVA2Qz0nWQLp5jo8PMTS0hJT14tvfvObsFgs+OQnP9ntp6JTHz3+Q6cStW4wVqsVxWJRtRs42UTv\n7Oxgbm4O999/f9sXfFL1Y8logVRat7a2UCwWcfny5Y6JJ7UzIKsZcZSHoZPYCVEUS1oe8/k8dnd3\nMTY2hjNnzmjmQtsL0IZCi4uLfWkoRFcZZmZmlJ8TgUk7g6bTaRQKBVgsFkxPTyuteZIk9d37chTl\nArIf10Y1zGYzxsfHK7pQ4vE47t69C0mSMDY2hmKxiDfffJNJZ1Ctoef+5ufnB2ZtlEMMxMghtCzL\nuP/++zEyMlIys1vNFIpeL2rP7GrJUU6yoihib28PwWAQXq8XoijWNPrpxpqJx+N6xbCP0IWkTkuo\nFQFCzwUuLCzggQceUK2NjzxHFoQkyTILhUJwOp04e/Ys3nnnnY6IyE5mQNKuoOVZddlsFsFgEHfu\n3FECrA8PD7GxsdFSy2Ovk8vl4Pf7cXh4OLCGQkRgDg0N4eDgALFYDBMTE3C73QBQYcRBWmrplseh\noaG+e9/oKpPL5RpYkUAgzqOyLGNtba3CuKWeM2j5TB2pePcqsiwrcVDdmp1mCTITmslklJlQQi3X\nYXpcg3TFFAoF5UCCXi+9dCBhNBqVw5bx8XHlQL5bTrK1ULu1Vae7DO7VZ0BRe0ayVUj2W6FQgMfj\n0WQukAXnVjLvFo1GMTs7W3Jh1/q5sZIBSZvGzMzM4MaNG4q4JwKTjhIgLY/lMQK9vgEk0I60Ho+n\nZ2eZ1IA2ShkZGcH6+npJdXpkZASzs7PK/5ckCdlsFplMBul0GtFoFLlcriJKoFfXiyAICIVC2NnZ\n0QUk7n1XNjc3IQgClpaWas5O13IGFUVRWS+pVKpCYNIVKdbXC3Gl9fl8OHbs2MDHmgiCAL/fj4OD\ng6ZnQuvN7JIDiUQigVAohHw+X9JRwep6yWQy2NjYgMlkqsgJbcZJtprIVFtg6kKyv9CFpE5LtCIk\n6U2jxWKBx+PRdC5QrappK5B2xYODA7hcLly/fr2k0qrl5rCagU43NqPFYhGhUEiJMal2ck5v6Mpb\nHmsJBnqerpdOjDOZjHJ44vV6mXVT7ASyLCvunSMjIw0bpRiNRuWzp6HXy+HhYcV6oQ8lWNsAAqUC\nklWDpU6SzWaxtbWFfD6PpaWllqMCTCZTTWdQIhjK10t5tmG3K97EVGhzcxOjo6Mt5cf2E3RL78LC\ngqqGU7VaqukDCXq9AKi6Xjp5vy0UCtjc3EQ2m8Xq6mpTpoS1jH7ouct2nWSrobZrq0530YXkgKFm\nRZJUjo6CBKkHAgGMj49jfX29I+YI3ahIchwHn8+nZF2urq52JcID0K599Sjomb9W57pqCQb6hk6f\nGJtMpgoHWVZmXkj1XZIkeL3ejpkqsQid9Tc2NoZz586pEtVQT2CSane1ihS9ZrpxICGKotKxoAvI\ne9eO8jZFLT6TetET1Q6wAFSteGt9bU8mk9jc3ITNZquoMg0aJMrD7/djdna2o9+VegcSpKOGzGHm\ncrmSnF06BknN5ysIguLgvLS0hOnpadW+K/TeQW0nWeCekJyamlLluep0H921dcCQZRnFYrHtxyFz\nKPUGpnmeRzgcxvb2NmZmZrC4uNjRk9RAIACTyQSXy6X5v0Wsxnmeh9frxdTU1JEX9Zs3b+LGjRtt\n/9usCEgy75rJZLC4uIjZ2dmOPQ/SkkS7yJZnYNJB6J0gmUxia2sLRqMRXq+3r+JrmoWO8xkfH4fH\n4+lq1h99IEG7gtItbFpWvGkBeeLECbhcroEWkIVCAT6fD6lUCl6vV9VNsRrQgoGsl2quw2pVpDKZ\nDO7evQsAWF5eHmg3a1mWEYvFlCgPr9fLvPNqeQwSWS8kqoSuYA4PDzc14ypJEra3txEKheByuTA/\nP89E+3ujTrJGoxHvfe978dZbbzH1Hdepiu7aqlNJJ2Yk8/m8kmdF5ny6YQZgsVhUEc21IDc4n88H\ns9ncUv5hO06UrAjIdDqtZEtqNe96FLVakmhTBdq1T80MTBrShub3+2GxWLC6ujrwm0ASCO50OnHh\nwgUm2vJqVRho0xZS8S4UCorApNdMea5hI4iiqByuzc3NDXwFslgswu/3Ix6Pw+Px4NSpU0xuLumK\nd/nMbrnrMBGYtEs1qUgdda0nLb2FQgHLy8sDnacL3DugvXv3Lmw2W0/lhNI5uzQkC5NcYyKRCDiO\nU2Kzyg+x6BlYMhq0ubmJqakp5kyWjnKSJYeJX/nKV5BOpxXfBp3eR69IDiDFYrHipKiVx3jjjTdw\n5coV5WdEUGSzWbjdbszOznb1pGxvbw+pVAqrq6uqPq4kSdjd3YXf78fo6Cg8Hk9LGXevvvoqLl68\n2JRhgloZkGqQSCTg9/sBQPN5V7UhGZh0BbM8A5PczBvZ6JObvN/vh8PhgNfrHehsO0mSsLOzg2Aw\niMnJSbjdbiYEZKsQgUmvFzrXkF4v1QQmiSaIRCKYm5vDwsLCQAtInueVGfLFxcW+yz6kc1PJeslm\nsyUtj3QFUxAEbG1tIZ1Oa9rS2ysQkyVRFLGystL3h3GkU4y+xnAcp7jOWywWZDIZOBwO5f3opfWR\nzWbx53/+53jxxRfx2c9+Fh/+8IeZqKLqHIlekdTRDlKRpCswwD1BwcpN0GKxqDojSTaDoVAIU1NT\nuHjxYlvtec3kXKqdAdkqpArr9/thtVp79ibfSAZmKBQCx3GQJKmkHYn8bjQalZm/QCCAkZER3Hff\nfT1zaq4FtIA8duwYLl26xHwbWiPUcgWlXR5jsZgSI2A2mxWRkMvlEI/HMTc3x1wVodPQpkJqG6Ww\nBN0iTVPe8ri3t4dEIgFBEDAyMoLJyUnlkEvtmbpeoF6URz9jMBhgs9lgs9lKXnMul8OdO3eQz+cx\nOzsLURSxsbGBYrGoXGPoe1IrXRJaIooi/v7v/x5/9md/ho9//OO4detWTx8o6lRHr0gOIDzPK9Ws\nVpEkCf/2b/8Gm82GoaEheL1e5gQFqZCeO3eurcchoeBknmlhYUEV2/U333zzyPetWoQHoF6LcqOQ\ntpRgMIiRkRF4PJ6BMX4g7Uh0BZO0yAqCgKGhIZw4cQJOp3NgMjDLoed2pqensbi42BcCslVIy+bO\nzo5iysLzfNUKJiumUFpCt/TOz8/D5XIN5PeEQOeEut1uHD9+HIVCoaTinc1mlUOs8mzDfhOY5VEe\nMzMzff+dqAfP8/D5fEgmk1heXq7qcMrzvDLnTe5JdJcE/avTTtWyLOPHP/4xvvjFL+L+++/HF7/4\nRUxPT3fs39dRjYYWjS4kB5B2hKQgCIhEIgiHwygUCrhx40ZXTTPqkc/n8Z//+Z+4fPlyS3+fBMbH\n43EsLCxgfn5e1Rv422+/jbm5uaotoawISOK4GwqF4HQ64Xa7mf28OwERTOFwGJOTk5iZmSlpk+33\nDMxyygWk2+0e6Gw7SZKU6+Ps7CwWFxdLKpCCIJSIBY7jSkyhyl2Hex36/dBbekujKxoR1PQhFhEL\nHMepYtrCAuVRHidOnBjoAwZJkhAKhbC9vQ23291Syzc950234ZO5zfIoJLXf742NDXzhC18AADzz\nzDM4ffq0qo+v01F0IalTHUEQSnKAGqFQKCAYDCqZgC6XC6+99hrTgdmCIOD111/HtWvXmvp7mUwG\nW1tbyGaz8Hg8mrmP3rlzB06ns+SkjhUDHbqCMDMzg4WFhb7Y2LYKPeNGHIhrCSY6QoBsAHs9A7Mc\nURQVQX3U+zEI0IK6lfeDNoUivxeLRVgslopDiV74HpIDqGAwWFVQDxqyLCsRWGq8H6QNv/xQggjM\n8goma+89HeVx/PhxLC4uDvQBA+n4IdEmWrwf9H2JdpIF3nUepn81u6+LxWJ49tln8frrr+OP//iP\n8b73va8n7206JehCUqc6zQhJjuPg9/uRSqWwuLhYcmL42muv4ezZs8z2vMuyjJ/85CcNR2wkEomS\nvD+tZz23trbgcDgwNzfHjIAkbbx7e3uYm5uDy+VibhPSSQRBQDgcRjQabfv9KI+cIBEltCMkLRZY\nvAnTgnp2dla1Nu9epV0BeRQ8z1eIBZ7nq1YwWfgcaJfeqampga9Qkxlqn8+HY8eOwePxaPp+lM95\nE8FAu4LSArPTnw2Zsd/c3MTExERPRHloTSKRwN27dzE6OoqlpaWOvx/lxlDklyzLyqEEvW7KBW6h\nUMBf/dVf4W/+5m/w6U9/Gh//+McH+lCgz9CFpE51RFE80oSGOHLWy0V88803sbS01JJjaac4KqtR\nlmXs7+/D5/PBZrN1NO8vGAwCAObn57suIAuFAgKBAOLxOFwu18C3GNGCen5+XvW2ZppaGZh0NarT\nGZjl0BXq48ePY2FhYaAPGOiKWzdaessdHjOZDHieh9VqrahgduJ50YJpcnISHo9noAUCMaHb3NzE\n6OgovF5vV0cCiCto+aFEI7ETakFHeSwvLw+0KRlw75B+Y2MDBoMBKysrzLl8///svXl4XHXd/n/P\nlmWSaZNM9m22hLZZrNAVZbtEQZBLBAoPKrQ+P0EFwT4Coi10g9qN3aKAwmNR0BZ9xEKp/apgvVCh\n2IIkXYBk9kz2mcy+nTnn/P4on8OZyWSf5UzmvK5rLnSSZs4kZ8753J/3+33fydqqT58+jQcffBBV\nVVVobW2FUqnE66+/jjVr1uD+++8X3HsQmTOikBRJzkRCkiwGLBbLtETVmTNnUFNTI2hntYmEJFkI\nkoB0nU6XUfMY0srS09ODiooKlJaWQqVSZbwNKRgMwmKxwOfzQaPRoLq6Oq8FZDQa5WIJsj2zw293\nJA8iFtKRgZkMmqZht9tTUpGdD/BdaYVYcUsmFpKdM6kSCyT2xmw2Y8GCBdDpdILtUMkUbrcbRqMR\nhYWF0Ov1gjYlSxY7QaKQUrUpkW9RHlPBd6ZtbW3NuaxQmqZx5MgRPPPMM2BZFvX19bBarfB4PKiu\nrsaSJUvQ1taGtrY2XHDBBXm9npgHiEJSJDkMw4CiKO7/k3knu92OsrKyaTtyknYMfkCz0Hjrrbfi\n5jhJq6LD4eAqCZla+CSL8EgUC8mMFPhxE6nC5/PBYrEgHA5Dq9UmrTjnE+FwGFarFWNjY2hubkZt\nba1gb4B8c5/EysJsMjCTwY9pIDPR+dyulBhrotFocqrilpibSgRmYrvjdDclSMXNZDKhpKQEOp0u\n7ytMfr8fvb29AACDwZDzgom/KZGs6s0/b5J9FvI1ymMiaJqG1WrF8PBwzjrT2u12bNmyBU6nEw89\n9BA+/elPx319ZGQEp0+fxunTp/Hhhx/i0UcfFex9VGRaiEJSJDlESPJjLcjA+0wWR1arFTKZDI2N\njWk82rnx73//G0uXLgUA7iJOIjwyVVkhzqvEhRWYvIU1saWE/JdlWSiVyjixMFM3ULfbDbPZDJZl\nodPpkjrG5hPEmdfr9UKr1ebkzR0YPxtFzpnJMjCTwReQ6W7pzQX4M3+5KCAnI7Ealazdkb8pQa6X\nY2NjMBqNKCoqEnzFLRMEg0GYTCZEIhEYDIacqzDNlMQKJolCIq34xcXF8Pl88Pl8MBgMOXtNTRUs\ny6K/vx82my1no2+8Xi8eeeQR/O1vf8PWrVvxpS99Ka//pnmEKCRFkhONRnH69GmMjY2hsbFx1ovF\n/v5+RCIR6HS6NBxlajh+/DgUCgUCgcA4s6B0k+oIDzIUz69GhUIhLvyav+jjBxMTgwOLxYKCggJo\ntdpxwer5BjGRIs6887UiO1EGJsuyKC4u5s6ZwsJCOJ1ODA8PczOyooA8KyDzbeZvonm6aDQKiqKg\nUChQV1cHtVotSEfQTEEqbkQwpducTehEIhGYzWYMDw9DqVRCIpEgGo2OM4bKl+xUvrEQuYYIqQ1+\nOlAUheeffx6/+MUvcNttt+HWW2/NufcgMidEISmSnFgsxsU6zOViPjIyApfLhUWLFqXw6FKD1+uF\n2WyG0+mETqeDVqvN2I0rmYBM52uT3KhEsxaZTAaZTIZAIICSkhIYDIaMGQkJFZ/PB7PZjGg0mhFn\nXqHCsiyCwSA8Hg/6+/vh8/kgl8uTxk3M1wzMZPBt+MvLy6HVavN+5s/n88FoNIJhGGg0GgCI25Sg\naZprq57M3XG+QFEULBYLd28RK26TR3kkRtvws1MTXWT5G6C5jNfrRU9PT84aC7Esi7/85S/Yvn07\nLr30UmzYsGHeV9pFkiIKSZHkkB3nueLxeGC329HR0ZGCo5o7ZG7HbDZDIpFAp9NheHgYlZWVqKys\nzMjrCyHCg+8oWVJSApVKxWWOkbmoVM3S5Qoejycu2iXfW3qj0ShsNhtGRkbiTIWmm4FJqpjzYdEH\nfCIgrVYrNyee7wKS5OnGYrFJN6EmyjRkGGZeCUx+27dGoxH0HHUmmGuURywWGzeDyReY/HMmV641\noVAIRqMR0WgULS0tOdn5c+rUKdx3331Qq9XYuXMntFpttg9JJHuIQlJkYqLRKGb4tx9HMBjEhx9+\niHPPPTdFRzU7+FUEpVIJnU7HGR0YjUaUlJSgtrY2ra8vBAHJz/irqqpKOvPKb1ubaJaOPJRKZc4v\nlEg2qFQqzWi0i1AhrrROpxNNTU2oq6ub1t84WQZmOByGTCbLmQzMZPCdqol7c74LSDLzFw6HYTAY\nZr3pQtqqE6tR5FrD35hQKpWCFZgMw3AGbbk645Zq0hnlQamCpX4AACAASURBVOKQ+OcNudYkCsyi\noiJBXGtIldrlcsFgMECtVgviuGbC4OAgtm/fDqPRiF27dmH16tU59x5EUo4oJEUmJhVCkqIovPfe\ne1i5cmWKjmpmMAwDh8MBu93OtaEl3tBsNhskEgmamppS/vpCEZAURcFut2NoaGjWEQ2Js3R+vx/B\nYBAAxhn8COXmPRH8ynRBQUHcxkK+Eo1GuYVOKl1p+RmYZNFHqgqJVW8hzRgmCkitVpvVnD8hEAqF\nYDabEQgEoNfr09b2ncxMLBgMztgYKt2wLMtFRNXU1KC5uTlv50EJgUAAvb29YBgm41EeNE2Pq2Am\nCkxy3mTqHsXfZCAeDEK+NyYjGAxi7969OHjwIDZu3Ig1a9bk/UaJCIcoJEUmhqIoTgDNFpZl8dZb\nbyXNaUwnpMWov7+fu8FPtEgdGBhAOBxOmSEQ+bwIQUBGIhHYbDYu87Curi7lu/qJrY7k5p1o8COE\nShTJtCOVaa1Wm/cByZFIBBaLBWNjY9BoNKipqcnIIkEIGZjJYFkWIyMjsFgsggiKFwLEJMXj8UCv\n12fNeGoqY6jEebp0ncdkk8FsNkOtVuekSUqqEXKUB/EISKxgknZ8/nmTqnlv/jlSXV0NjUYj2Ir6\nRNA0jf3792Pv3r1Yu3Yt7rzzzrzvxhAZhygkRSYmFUISAP71r39lTEiSRfHo6CjnNjvVInRkZARj\nY2M455xz5vTayTIgsyUgg8EgrFYrvF4vmpubMyYO+PANfsiD79DHr0SlexHGry4tWLAgaWU63wiH\nw7BYLHC73dBqtaipqRHETnkmMjCTQTYZzGazKCA/hl+lFrJpDMuynFs1v4LJdx4mYmGu7fhk5k88\nR85CURSsVitGR0eh1+tRVVUlyHMkGfx2fH4Fky8wZ2Mo5na70dPTg9LSUuj1+pwTXyzL4h//+Ae2\nbNmCFStWYMuWLRnxkBDJSUQhKTIxsVgMNE3P+edkQkgGAgGYzWb4fL4Zmxy43W709/ejra1tVq89\n0wzIdOL3+2E2mxEOhwUbWUFRVJxQ8Pv9iMViSVvW5ioU+CHx5eXl0Gg0eb/wIwLS4/HkTC5mqjIw\nJ/rZRECWlpZCp9Pl/SYDXxyQ66nQz5FkEOdhfiWKCEylUhl3zkwlMMnMX0FBAQwGQ95nYzIMw3X9\n8M245gMMw4yrYBJDscTzpri4mHvfpK2XZVm0trbmZLdLT08PNm/eDADYvXs3Fi9enPbXpGkay5cv\nR0NDAw4dOhT3tUgkgrVr1+LEiRNQq9U4cOCAaO4jLKZ1Y8jvhn+ROSOVSkHTdFraOjweD0wmEyiK\ngk6nQ3t7+4wXPHK5HBRFzfi1J4rwyMaCy+12w2KxgGEYaLValJeXC3bhp1AoUF5eHmfQkSgU7HY7\nJxT4WYZkZ3iqBQvDMOjv70dfXx/UajXOO+88Qc3fZYNQKASLxQKfzwetVotFixYJ9hxJRCKRoKio\nCEVFRVCr1dzzia2OTqczaQZmsvOGOEqazWaUlJSgs7Mz7wVkLBaDzWbD0NAQmpqasHLlypwWB/zK\nUnV1Nfc8ydsl15uhoSGEQqFxArO0tBQMw8BoNAIAzjnnnLyfpebPhdbW1mLlypU517I5FVKpFCqV\natzfmj/G4fP5MDAwwJ03ZJSloaEBNTU1OXctcTqd2LVrF06cOIGdO3fikksuydj94YknnsCSJUvg\n9XrHfe25555DeXk5ent7sX//fvzwhz/EgQMHMnJcIqlDrEjmKTRNIxaLzfnnnDhxAu3t7SmrBPEX\ngDKZDHq9fk75RZFIBN3d3Vi+fPm0X18I84/EMMZisUAul0On0+Wklfhk8FvW+AY//KgJvnkCMVdy\nOByoqalBU1NT3s8uEYMUv98PrVabU61nsyWxEsU/b0gQutfrRUlJCVpaWnKycpBKaJqG3W7HwMBA\nXruOEoHp9/sxNjaGkZERLg5JpVLFtVWT8yhf4Ed5EOO6fN+co2kaNpsNg4ODqKurQ1FREVfJ5BvR\nzaTynWkikQh+/vOf48UXX8Rdd92Fm2++OaMbA319fVi3bh3uu+8+PProo+Mqkpdffjm2bt2K888/\nH7FYDLW1tRgZGcmrz57AESuSIumnoKAAFEXNWUgyDMNFeJSWlmLJkiUoLS2d8/HJ5fJpCWYhCcjh\n4WFYrVaUlJRg8eLF83YhTBb+SqVyXEWBiASSVerz+RCLxVBaWoq6ujosWLBgzq7DuUwwGOQcNnU6\nHZYsWZI3N99klSjSwmo0GiGTyVBeXo5oNIru7m5IpdJxzsO5kks3F/iOknV1dfOyujQTpFIp5HI5\nXC4XfD4f2traUFFREbcxwa9EkesTf0MrVWYtQoIf5fGpT30q56ptqYZfla2vr8eqVauSikP+xkQg\nEMDQ0BAnMFM9uztTGIbBK6+8gj179uCaa67BW2+9lZV1xP/8z/9gz5498Pl8Sb/ucDg4R325XI6F\nCxfC6XSKM5s5higk85RU3QwVCgWi0eis/z3JPrTb7VCr1Tj33HNTOucmk8kmNRUSioDkz/uVlZXl\ndSseaT0qKipCMBhEJBKBTqdDTU0N1+o4MjICs9kMiqKgUCjGGbXMV5t+Mi8cCoWg0+lyMq8slfCj\nXoqKitDZ2TluwcQ33RgbG4Pdbp8XGZgTQVq/7XY7ampqsGLFinn7eZguJOfP6XRCp9Nh8eLF3N9Z\nIpFw50FNTQ33byZqdZwvApMf5SG29Z7F6XSit7cX5eXlWL58+aQdL8S5PPF6w2+tDgQCGBkZiTOH\n4pv8pDo/lWVZnDhxAps2bUJLSwsOHz6M+vr6lP38mXDo0CFUV1dj2bJlOHr0aFaOQSQz5PfdRWTO\nKBSKWc0gUhTFtY2QWYzJLto07UMs5oJcXg2ZbO4CSygCkghph8OBqqoqcd4PZ90krVYrnE4nGhsb\n43aECwsLsXDhwnHfT1ocHQ4HAoEAaJpO6gQqpLajmUCMloioTlfGXy7hcrlgMplQWFiIJUuWTLjj\nLpPJks5E8TMwR0dHYbVaEYlEoFAoxkXb5EILNamk2Gw2VFZWTrkQzgf47YnNzc0wGAzTvgZIpVLu\n78+Hb9bi9XrjBCZfJAg1czcSicBoNCIQCKClpSVunj1f8fl86OnpgUKhmHNVdiKBmeg+zJ/5TjQV\nm43AtNvt2LJlC1wuF37yk59g6dKls34PqeCf//wnXnnlFRw+fBjhcBherxc33XQTXnjhBe57Ghoa\nYLfb0djYiFgsBo/HEzcnL5IbiDOSeQrLsnOqJBJsNhskEgnXnjAVxFXS5XJxER5TXTDd7tfhcDwE\ngIZUqoRGsxNK5fRdWImzrJAyICmKQl9fHzd/0djYmPdVg3A4DKvVmpLMQ2Lwkxg1QQw3Eo1ahLbY\nI/j9/jjDKSEbLWWKsbExmEwmFBQUQK/Xp7xlS6gZmBPBz7SrqKgQ59sQ39abqbnQieIm+K3V/Jnv\nTH+OcznKI12Ew2EYjUaEw2G0tLSM26TMBHxTMX68DU3T4yqYydzOvV4vHnnkEbzxxhvYtm0bvvSl\nLwnu73r06FE8/PDD42Ykf/rTn6K7uxtPP/009u/fjz/84Q946aWXsnSUIkkQZyRF0k9BQQECgcCU\n30cqKsQUZLquktHoIByO3ZDJFkIqLUIs5oHVeh8WL/4dJJLpnb5SqZSbk8x2hEckEoHNZuOyMPN9\nbgn4xDCGOI6ec845c/7b8J1A+fMWZB4qWbtaYhUqm3N0Pp+Pa90lFch8hwhIhUKBRYsWpWSGOhkK\nhQJlZWXjTL74le/+/n4uA7OoqCju3El1BuZEkLlQk8mEhQsX4txzz825TLtUw59vy3Rb70SVb77A\ndLvdcDgcnMBMFAnpEJiJUR657tabCmKxGJdJbTAYshqlJZFIUFxcjOLiYlRVVXHPJwpMu92O119/\nHc8++yxqamrQ2toKiUSCN998E7fffjvefvvtnOhA2Lx5M5YvX44vf/nL+OY3v4mbb74ZLS0tqKio\nwP79+7N9eCKzQKxI5impqkg6nU6MjIxMmEc0NjYGs9kMmqZnNdPl978Hq/WHUCg+mV2JRgewaNF+\nKBSTD2ST9tWuri4wDMM586lUqoxXoUg8g9frRXNz85yqbfMF/rxftnMx+Ys98ohEInFzdJloc/T5\nfDCZTNznRWw7Oxt/YzKZIJfLodfr0yYgZ8NEGZikmjCXDMzJXpO09ZaUlIjZmIivyqrVami1WsEv\nqmmajssyJNccIjD5585sNrUSozyam5vzftOSOH/39fXlbD4mTdM4cOAAfv3rX6O4uBjV1dVcq3JD\nQwPa2trQ3t6O9vZ2rFixItuHK5LbTOuiIwrJPCYajc7Z+dLr9cJqtaKzs5N7jmVZjIyMwGKxoKCg\nADqdbtYtI9FoP3p61kEmK4dUWgia9gFgsGjR/0EqTb5QSMyABDAuLiAUCsXdsInATHVLmN/vh8Vi\nQSgUgkajEduJEF9t02q1gp73i8ViceKStDkWFhaOq2DOZZHm9XphMpnAsix0Ot2cIm/mC0RAkhig\nXDIDSczAJDN108nAnIyxsTEYjUYUFRVBr9dDqVSm+Z0IHxJboVKpoNPpUmrWlg1omo4Tl4FAIM4c\nii8ykwlMfqVajPI4C1mTmEwmVFVVQaPRCKItfaacPHkS999/PyorK7Fjxw5otVruayzLor+/H6dP\nn8bp06fhcDiwZ8+e7B2syHxAFJIik5MKIRkKhXDmzBmcd955YBiGM3tYsGABtFptSuaXXK7XMDDw\nBABAIimARrMdJSWfHvd9MzXQ4e8I+3w+TiQkuoDORiR4PB6YzWYwDAOtVivOtuGT38l8EEv8Nkfy\nYBiGM00gj6ls3z0eD0wmEwBAr9dnZUZHaHg8Hi7GI9cE5FRMlYE5kRMo+Z0IsSqbLUhsRUFBAQwG\nw7wX1cQcin/uRKNRyGQy7pwBgKGhIRQXF8NgMOR9pRo4uyHV29sLpVIJg8GQk+3fg4OD2L59O4xG\nI3bv3o1Vq1bl/XpCJCOIQlJkciiKmjQaYzrEYjEcP34ctbW1nPOoRqNJ+cWaokYRizmhUNRBLl8Q\n97VUO7BOJRJIi2xiJYG0nFksFsjlcmi1WlEY4JP2ZplMBp1OhwULFkz9j3KQxCoUEQkAxomESCQC\ns9kMqVQKvV4/b38nM4GIaolEkne/E37UBKlChUIhsCwLiqIgl8vR1NSEqqqqvMjAnAy/34/e3l4A\ngMFgmFcbDbMhFothdHQUFouF65agaRpyuXzc7O58iLeZLsFgEL29vaBpGq2trTm5+RIMBrF3714c\nPHgQGzduxJo1a3KuFVckpxGFpMjkzFVIkpgGs9mM1tZWNDU1ZbRdJJMRHkQkkMolv5JAqq5erxcl\nJSXzrooyG/j5foWFhdDpdDl5I08FRCSQTDGn08ltTCxYsCCugplPCz2C1+uF0WgEcFYY5JOAnAi/\n3w+j0YhYLIa6ujpIJBLuujOfMzAnIxQKwWg0IhKJwGAw5HRHQ6oIh8MwmUxJozz47sPkv9FoFHK5\nPOm5M1+IRqMwm83weDyciUuuQdM09u/fj71792Lt2rW48847c7KSKpLziEJSZHJisRhomp7xvwsG\ng7BYLHC73WhubobVasVnP/vZNBxhAhQFSCRgZTJBRHiQ4G+r1YqioiIUFxcjHA6Pu1kLKSog3fDn\nY0tKSlLW3pzrEFGtUCig0+mgUqniWqv5rWqJ505JSYngjUNmA38uVGzrPUswGITJZEI4HIbBYJjQ\nbImfgUmEQi5nYE4Gqd57vV4YDAZBz1RnirlEeSQTmKTqTa43uSgwaZqG3W7HwMAAtFotamtrc+48\nYVkWb775JrZs2YKVK1diy5Ytca7jIiIZRhSSIpMzUyFJHCXD4TC0Wi2qq6shkUjwr3/9C+eff376\nLtoUhQ/v/C6Kj7wGVgIErrsRrTt2QiKVZuVGQdM0+vv70dfXh8rKSmg0mnE3XIqixrXH0jSNwsLC\nOHOfqWbocgWWZTE0NASr1crNx+b7fM5sq7L8c4cs9GKxGJdjmOmYiVTDd6Y1GAyigMQnETiBQAB6\nvX7WYomcO3yRKeQMzMmgKAoWiwVOpxM6nY673+QzNE2jr6+Pi/JIpeto4rkTCAQQjUY5zwD+uSOk\nzQmWZTE4OAiLxYK6ujo0NTXl5HXxo48+wubNmyGRSLB79+4JnfBFRDKIKCRFJmc6QpJlWW7GDUDS\nUPRjx45h2bJlaVmYsCyLExs2QPXC0xgqVkDKAtVhCp7vbcJ5d/9Pyl9vMiiKQl9fHwYHB1FbW4vG\nxsYZ3VBJVEBieyzLsuOqCNkIrJ4NDMNgcHAQNpsN5eXl0Gg0Oe+aOFf48QzFxcXQ6XRzrsqSuB7+\nxkQgEADDMHNyAc0kfAGp1+vF1kTEV9t0Ol3aInCSnTvZzMCcDJqmYbPZMDg4iObmZtTV1QnyfM4k\n2YzyiEajSSuYBQUF486dTAtMl8uF3t5eLFy4EDqdLqcqqASn04ldu3bh3XffxY4dO3DJJZfkxL1f\nJC8QhaTI5NA0jVgslvRrJJfLYrFwi+GJ5v7ee+89LFq0KKWuefwIj7+uPg/Vow4EC88KlIWhIE4Z\nOnH9X/+WstebDDILOjo6isbGRtTX16f0Jp5otMGfgyopKeHMfYS0E8zP46qqqkJzc3NO3sRTCcuy\ncDqdMJvNUCqVGWnrZVkWoVBonMEP3wU025sTfr8fJpMJsVhMFJAfE41GYbFY4HK5slZtIxtbiVUo\nvrFYqjMwJ4NhGPT19cHhcKChoQGNjY2igEyI8tDpdIK5B5DNCf65k6z6nQ6B6ff70dPTA5lMhpaW\nlpx07I1EIvj5z3+OF198EXfddRduvvnmrG/iiIgkMK2bkrB7W0TSSrKFC5n7s9lsKCsrQ2dn55QX\naYVCAYqiUnJMiRmQEokEQyWlaB5iEPz4ewoYFsPF6TfkCIVCsFqt3CyowWBIy8JGKpVyi30+/AzD\noaEhGI1GzpUvWy2O/NaqmpoaLF++XDALm2xBFntmsxklJSVob2/P2MKGCEalUonq6mruef7mhMfj\ngcPhQDgcjjvX+AY/6YAISIqioNfrJ5z3yyf4s20ajQatra1Zqz5IJBIUFRWhqKgobg4r0X3Y6XRy\nGZhKpTKuCpWK6je/2lZTU4MVK1YIvu02E5DYiuLiYnzqU58S3KhAQUEBKioqxpnZ8KvfAwMDXGs+\nP3uX/Hemf+dIJAKj0YhgMIjW1tacbItnGAYHDx7EQw89hGuvvRZvv/12TgphERGCWJHMYxiG4QRg\nLBaD3W5Hf38/qqurk879TcSHH34ItVo9p6HwyRxYf/X8X9Cy62aoQzFAAthLCzC69SBuvG7FrF9v\nMvx+PywWC4LBILRa7YyMDNLNZC2OiRUofg7dXCHnx+DgIOrq6tDY2Jj3iz2+sVBpaSl0Op3gFnuJ\nkLBz/oNkpya2V8/27xsIBGAymRCNRqHT6XLSNTHVxGIx2Gw2DA0N5Wy7JsMwXPWbVKGmk4E5EeTz\nYzabUV5eDq1WG3fPCYeN6OvbjlhsBBUV16Kq6r8Fcx1OJ4FAAL29vWAYJmdjKxLh37f4FUwiMBMr\nmInXnlgsBqvVipGRkRmbCwkFlmVx/PhxbNq0Ca2trXjwwQdRX1+fttcLh8O46KKLEIlEEIvFsGbN\nGmzbti3ue/bt24cf/OAHaGhoAADccccduOWWW9J2TCI5h9jaKjI5LMvC5/NxF2jSTjTTBSSZBaur\nq5vVMUzlwMqywC9eeAvHX3sOrESK86+9Df/f9efO+LWmwuPxwGKxIBaLQavV5pQ7IAk65wuEUCgE\nqVQaJxBUKtWMKlAURcFms2F4eDgtbb25CL/te74YC/HnoMiDzNAlVr8nEkBEQEYiEc4wJt/hO0k2\nNjaioaEh5wTkVEyUgUmuPfzrD8nAdDqdMJlM3AZM4lx1NOpAd/dy0LQfAAOpVIm6urvQ0LAhO28y\nA0wW5TFfIe3VfHHJn99VKpWgKAputxtNTU1oamrKyc+PzWbDli1b4Ha7sWfPHixdujTtr8myLAKB\nAEpLS0FRFC644AI88cQTWL16Nfc9+/btw/Hjx/Hkk0+m/XhEchKxtVVkcqLRKN59911oNBq0tLTM\n+gJdUFAw49bWmWRASiTAt24+H9+6+fxZHd9UxzE2NgaLxQKpVAqdTpeT7TIkz7KkpAQ1NTXc8/yI\nCX5oNXHi4z/4AjESicBms8HpdKKpqQmrVq3KyRt4KuE70y5cuBBLly6dN8ZCBQUFKCgoiFu88mfo\nSItjMBjkqt9EIMhkMgwMDCASiXAVyFzZgEkX/Hm/+vp6rFy5ct5uwEzUmk+uPYFAAGNjY7Db7QgG\ng5wTaG1tLWfcRsYYCE7n78EwYQBn7w8ME8Tg4JPzUkjy3Wn1ej2WLFmSN58ffnu1Wq3mnmcYBgMD\nAzCbzSguLkZZWRmGhobQ39+fdH5XqJ8tr9eLRx55BH/729+wbds2XHnllRn720okEu4zSVEUKIrK\nm/NKJLOIFck8hiwU53pxGRoags/nQ0tLy5SvB0AQGZCkrcpqtaK4uBharXZetBBNl8T2WL/fD4Zh\nuE0BiqLQ2NgotrDiE3t5q9UqOtPik+q3y+VCX18fIpEI5HJ50vZYUoHKF8iMud1uR21tLZqamvL+\n8wOcHRfo7e0FAGi1WkgkkqQZmEQYUNQLGB3dDeCTDUqZbCGWLevP0jtIPfx581xtd04HHo8Hvb29\nKCoqgsFgiLvWJm5ukY0KmqbjuifIpmq2BCZFUXj++efxi1/8ArfddhtuvfXWrHgJ0DSNZcuWobe3\nF9/97nexe/fuuK/v27cPGzZsQFVVFc455xw89thjaGpqyvhxiggWsbVVZGoikcicf4bL5cLQ0BCW\nLFmS9OvkHKNpmvvf2RKQDMNgaGgINptt3rQlpoJgMAiz2Qyfz4eKigrI5fK4Gah8FAjkXLFaraio\nqIBGo0FhYWG2DyvrkHMlGAxCp9NBrVZDIpGAYZhx7bGRSAQymSxugZdrQefTgW8YU1VVBY1Gk/cm\nVMBZwzKj0YhIJAKDwTCpYy8/x9Dr/RB+/41g2RAkEhZAEUpL16K+fktOZGBORjajPIRMKBRCb28v\nKIpCa2vrhC7xyeAbRPHnd5M5ECuVyrT9vlmWxZ///Gf8+Mc/xqWXXoqNGzcKosPJ7Xbjmmuuwd69\ne9HR0cE973Q6ufv5M888gwMHDuCNN97I4pGKCAxRSIpMTTQaxQzPgXH4fD6YzWZ86lOfinueOK8S\nF1YgewKSpmn09/ejr68PlZWVaG5uFkUBPjEWCoVC0Gq1SXPsJhIIcrl8XHtsLi/wCPxsTLVaPSPj\nqflMKBSC2WyG3++HXq/nBORU8N2H+Tl0U7VX5wKk3dlisYjnCg9+PuZMzhU+weAp2O2bQFGjKC7+\nIuTyryEQCMbN0OVKiyMg7CiPbEJRFMxmM9xuNwwGQ1yL61yZicCca8RNd3c3Nm3ahMrKSuzYsQNa\nrTZl7yMVPPDAA1AqlbjnnnuSfp2maVRUVMDj8WT4yEQEjCgkRaaGoiiuzXS2hMNhnDp1CsuWLQOQ\nPMIDSB43km5isRj6+vowMDCA2tpaNDY2ijdvfCL+KYqCTqfjZpVmAqkg8B80TSeNJ8mFli0yl2Oz\n2VBZWSmKgo/hC0idTpd0s2E2TNRenWjwo1QqBXf+8B1HSRi6uDEVP++XznzM6WRg8lscs33+8KM8\nEts18xWGYTineI1Gg7q6uoytEUj+bqLJD8uyKC4ujuvAmer6Mzg4iAcffBAmkwm7d+/GqlWrBNGt\nMzIyAoVCgbKyMoRCIVx22WX44Q9/iKuuuor7noGBAc4k8eWXX8bu3bvx9ttvZ+uQRYSHKCRFpiYV\nQpJhGBw7dgyrV68WxPwjcHaRarPZODfahoYGQe9WZwqPxwOTyQQA0Ol0KQ+HJws8n88Xd5NmWXZc\ne2xRUZEgbrj8uTaxLfETwuEw1+6cSgE5GYkZhvwFXjrjbWZyfHzHUb1eL4oCnK1m2Gw2DA4OZnXe\nb6rzJ9UZmFNBojxYlkVLS0tezeFPBH/mvKamRlCtvURgJlYwWZaFy+XC66+/jo6ODnR2dsJgMODn\nP/85Dh48iI0bN2LNmjVZ37Dg09XVhXXr1oGmaTAMgxtuuAGbN2/G5s2bsXz5cnz5y1/Ghg0b8Mor\nr0Aul6OiogJPPfUUFi9enO1DFxEOopAUmZpUCEmWZfHmm2+ira0NJSUlUCgUWRMI4XAYFosFbrcb\nzc3NqK2tFdTFPRsQZ1qz2Qy5XA6dTocFCxZk9BgSIwL8fj/C4TBkMtm4eJJMiTiGYeBwONDX14fq\n6mo0NzeLAhLxAlIoOar8DMPJ4m3I/GU6jtflcsFkMqGoqAh6vV4MEUe8Oy2JjxLi9XY6GZikgpmK\nDYp8jPKYDi6XC729vViwYAH0en3OdHyQudY33ngD3d3dePfdd2E0GiGXy7F69Wp0dnaivb0d7e3t\naGlpEe8jIvMFUUiKTE0sFgNN07P6t/wIj6GhIYyNjcW1p6lUqrj2kHQuRgOBACwWCwKBADQaTdpa\nqnIJUj2xWCwoLCyETqcT3I44f36OPCiKStoem6pda5qm4XA44HA4UFNTg6amJvHGj082YTweD3Q6\nnSAE5FTw423IIxqNxhn8kMds/8ZutxtGoxEKhQIGgwElJSUpfhe5B1lY22w2bhMmF+ejZ5OBORmJ\nUR658BnKBIFAAD09PZBIJGhpacnJzxDZMN+6dStWrFiBLVu2oKysDEajEadOncKpU6dw+vRprgJ9\n6NAh1NbWZvuwRUTmgigkRaZmNkJyqgxIfnuI3++Hz+cbVz0gInOuO5JerxdmsxmxWAxarVbMsMMn\n81sWiwUlJSXQ6XQ5VT1hWXbc/ByZfyouLo47f2ZSPeDb7YvRDJ9AjFE8Hg+0Wu282IShKGqcwJzp\nBoXX64XRaIREIoHBYJiRi+R8hT8bWl5eDq1WmzNVSVRQGwAAIABJREFUpZnA36Ag/w2Hw5DL5XHm\nLOQeRub9BgYGxCgPHpFIBCaTCX6/H62trSkfpcgUH330ETZv3gypVIrdu3dj0aJFk35/LBaDVCoV\nzwGRXEcUkiJTQ9M0YrHYlN+XigxImqbHVZ+i0Wjc4k6lUk1pjkBaNS0WC6RSKbRabc7eoFIJcZC0\nWq1YuHAhNBrNvIo2IfmF02lv5Buf0DTNLfLq6urEbMyPiUQisFgsGBsbg1arRU1NTc4LyMmYaoOC\nnENSqRT9/f1gGAYGg0EQ9v1CgMyGlpSU5O1saCwWG7dBEQwGEY1GoVKpUFNTgwULFsypAj4foGka\nVqsVw8PDaTVdSjdOpxM7d+7Ee++9hx07duCSSy7JyfchIjJLRCEpMjUMw4CiqAm/nu4MSP7izufz\nxZmzKJXKuPbYwsJCrlWzqKhIkK2a2YAfV5GPeYf86gE5h6LRKCcWQ6EQqqurc2omJ53km4CcCmLQ\nMjo6ir6+Pu7ckcvl4wx+hGIQlUlIQHxBQQEMBkNOdTekC36UR0VFBRoaGsa5yFIUhYKCgnEZqvN5\nE4tlWTgcDtjtdkHPzE5FJBLBM888g9/85je46667cPPNNwvGEEhEJIOIQlJkaiYSkokRHkBmXVj5\nsys+nw9OpxOBQIBzFysrK+NE5ny+MU8GPxuzqqoKzc3NolDC2aoBqUBWVFSgqKiIO5f48QCk+i3E\neIl0EI1GYbFY4HK5oNFoUFtbm3eiKBmhUAgmkwnBYBB6vZ5rj5/IIEoqlY4TB/Nx48bv98c5joqt\nvWeZSZRHsgp4LmZgTkWisNZqtTlZkWUYBgcPHsRDDz2Ea6+9Fvfcc4+4cSKSz4hCUmRqEoWkkDIg\naZrGwMAA+vr6oFar0dzcDKlUikAgwFWe/H4/d2NONPeZr+KAP+snmsV8AkVRsNvtGBoamjDyhVSf\n+OcPcW9M1h47H4RWNBqF1WqF0+kUBSQPYi7k9XpnFG9CWvT5LY6kiplo8JOLm1yhUAhGoxHhcBgt\nLS3i2MDHpCrKg5+ByY8oEWoG5lR4vV709PSgsLAQLS0tOdnyzLIsjh8/jk2bNqG1tRXbt2/n8hVF\nRPIYUUiKTA1pLZ3KQCeTxGIx9PX1YWBgYFpCKTE7zOfzjRMHfHOfXF1EUxSFvr4+DA4Oor6+Hg0N\nDTm5UE01FEXBZrNheHgYjY2NaGhomPHii2GYcbNPkUiEEwclJSVcBTNXRDtfQIpROJ8QjUZhNpvh\ndrtTai5EUdS4GXB+9Ym/ySXE6hMxXfJ6vdDr9VCr1Tl7rUwl/CiPdBrGJN7H+BmG2cjAnAqy4RCN\nRtHa2pqzFWubzYYtW7ZgbGwMDz30EJYuXZrtQxIREQqikBSZmpGREQwNDaGpqQkymSyrAjIajcJm\ns2FkZGTCitJMoGkawWAwrvoUiUTi5lbIQ4gLOwL/99LY2Ij6+npBH2+m4P9empqaUF9fn/LF1XTF\ngZAqBxRFwWq1YnR0VBSQPPi/l0xVZierPhEH4kxFJE0EP7Iil41RUo1QojwSM1QDgUBaMzCngvxe\nXC4XDAZDzm44eDwePPLIIzh69Ci2bduGK6+8Miffh4hIGhGFpMjUHDt2DD/+8Y9htVpRXFyM9vZ2\ntLW1oaOjAx0dHSgrK0v7xTUcDsNqtWJsbAxNTU1pt05PZu5DFnb89thM3JQnIxKJwGq1wuVyZeT3\nkivwK23Z+L0kigO+QVRie2wmzVmIUBoZGREjCHjEYjHOQVIov5fEiKRstFjTNA2bzYbBwUHB/F6E\nAN/lWci/l8lmeGeTgTmd1+vr64PD4UBzczPq6+tzUnhRFIV9+/bh2WefxW233YZbb701Z7pMREQy\njCgkRaYPy7Lwer3o7u5GV1cXurq60N3dDa/Xi8bGRnR0dKC9vR0dHR1obW1NyYU3EAjAYrEgEAhA\no9FkdSc8MVrC5/ONM9YgIjPdNx1+MHxzczNqamoEuZDJNHyzGCFW2iZa2MlksrhFnUqlSuk5xG/t\nTVdlNhfhC4LZtjxnmolarBPPoblk8DIMA4fDgb6+vpR0fswXWJbFwMAArFYr6urquC6dXGM6GZik\ngjmdUQ+WZTE8PAyz2Yzq6mpoNJqc/L2wLIs///nP+PGPf4zPf/7z2LBhgxjtIyIyOaKQFJk7DMPA\narWiq6sL77//Prq7u9Hb2wu5XI5FixZx4rKjo2PaQtDr9cJisSAajUKr1Qq6NYbkhvHbYymKimtt\nVKlUKTH3CQaDsFgs8Pv90Gq1WWulEhr8uAqNRpNzwnqic4ifnzob50ZRQCaHpmk4HA44HA7U19ej\nsbExJxe+fJLlF1IUBYVCMe4cmmhumi+Uampq0NzcLM5YY/44jk5FsnMoGo1y5xBfZJL373a70dPT\ng9LSUuj1+px1J+7u7samTZtQWVmJnTt3QqPRpPX1wuEwLrroIkQiEcRiMaxZswbbtm2L+55IJIK1\na9fixIkTUKvVOHDgALRabVqPS0RkhohCUiQ9kLas06dP4/333+eql8PDw6ipqUF7ezva29vR2dmJ\nxYsXc201R44cwTPPPIONGzem1bQg3fBbG/ntsQA4U5aZtBT5/X5YLBaEQiHodDpBC+tMwm95nm95\nh/z8VH57LH92jpxHiS3WsVgMNpsNQ0NDOVNpywQMw6C/vx92ux21tbVoamqa90Ip2TlE0/S4TYpA\nIACr1Yry8nJotVoxJuhjZhLlMV/hz4EToRmJREBRFORyOerr66FWqyfdpBAqg4ODePDBB2EymbBn\nzx6sXLkyI/cQlmURCARQWloKiqJwwQUX4IknnsDq1au57/nZz36Grq4uPP3009i/fz9efvllHDhw\nIO3HJiIyA0QhKZJZWJbF4OAg3n//fbz//vs4efIkTp8+DbfbDYZhUFNTg+uvvx5XXXXVvFz8Jral\n+Xw+RCKRuKoBEQcymQxerxdmsxmxWAw6nQ7l5eXzRijNBX5rbypdNXOBxBZrv9+PUCgEqVSK4uJi\nxGIx+P1+NDY2QqPRzLvP0GxgGAaDg4OwWq2orq5Gc3PzvKwoTRey0eXz+TA8PIyRkREAQGFh4bj2\n2GzPgWcLkpEJYE5RHvONaDQKk8kEn88HjUYDuVyekxmYgUAAe/fuxSuvvIL77rsP1113XdaulcFg\nEBdccAGeeuoprFq1inv+8ssvx9atW3H++ecjFouhtrYWIyMjefl5FBEsopAUyR40TeN3v/sdHnvs\nMXR2duIrX/kK3G43V73s6+vDwoUL42Yv29vbUVJSMu8upBRFxbU1ut1ubnausrISlZWVWXVtFAqh\nUIjL9cs3ATkZxCxmYGAACxcuhEKhQDAYjGtLm05r43yDZVkMDQ3BYrFArVZDo9GIlbaP8Xg86O3t\nRUFBAQwGA5RK5Tj3T/4mRTrMWYRIOByG0WhEMBjM6a6YVEOMl4aGhibt/phuBma2spxpmsZvf/tb\nPPnkk1i7di3uvPPOrLXj0jSNZcuWobe3F9/97nexe/fuuK93dHTgyJEjaGxsBAAYDAYcO3YMlZWV\n2ThcEZFkTOsmkB8rDpGM8uabb2L9+vX43Oc+h5dffhn19fXjvodlWbhcLm728sUXX8SpU6cQDAah\n1Wq59tiOjg7o9XrB7XjOBIVCgfLycgBn41ZKSkrQ3t4OhULBVS4HBwfjFnX89tj5vjgOhUIwm83c\nbOjixYvn5SJ2pvDNYhoaGnD++eeP+xzwWxsdDgf8fj9omk4aLTFfqpcsy2JkZARmsxllZWU499xz\nc3Z2K9WQShvLsjjnnHPisv34grGmpoZ7nsQk+f1+jI2NwW63cwY/iTFJuVrp5UdW6HQ6cf78Y/hz\ns/X19Vi5cuWk1wmJRIKioiIUFRXFCZ7EDMyRkZGMZmCyLIs333wTW7duxcqVK/HGG29kXZDJZDL8\n5z//gdvtxjXXXIOTJ0+io6Mjq8ckIpIOxIqkSMoZGhqCQqFARUXFjP8tTdMwGo1xs5dmsxlFRUVo\na2uLM/fJhVZQlmXhdDphNptRXFwMrVY7aRsVTdPjcguj0WjczJNKpRJUbuFsCQaDMJvNCAQC0Ol0\nqKysFPzfMxPwBeRszGLIoo5fBc90tEQ6IJ8lk8nEmX/k40xbMkg4fDgcRktLS0oqbRRFJTX44V+L\nyPkk1I2+xCiPXI2sSAdOpxO9vb0oLy+HTqdLyybBdDMw5xKV9NFHH2HTpk2QyWTYvXs3Fi1alPL3\nMVceeOABKJVK3HPPPdxzYmurSA4gtraKzA9YloXP58PJkyc559ju7m643W40NDSgo6MDbW1t6Ozs\nRGtrqyAqeKRqYrFYUFpaCq1WC6VSOeuflSz7kuz28quXmcwtnC2BQABms1k0F0qApmn09fWhv78/\nLfEDyaIlSCxA4iaF0CpPLpcLJpMJRUVF0Ov1s/4szTcikQjMZjO8Xi/0en1GPkuktZF/LgmltZHA\nsiz6+/ths9lyOsojHfh8PvT09EChUKClpQXFxcUZP4ZUZGA6nU7s3LkT7733Hnbu3ImLL75YMPeR\nkZERKBQKlJWVIRQK4bLLLsMPf/hDXHXVVdz3/PSnP0V3dzdntvOHP/wBL730UhaPWkRkHKKQFJnf\nMAwDu93Otcd2dXWhp6cHUqkUixYt4iqXHR0dGXP8ZBgGQ0NDsNlsWLhwITQaTdpu1Ik3Y5J9mSgM\nSktLBTE3RwRkOByGTqdDRUWFYG782YQfV5GNRS/ftZE8+KYa/OpTpoWB2+2G0WiEQqGAwWBASUlJ\nRl9fqJBWTafTCZ1Ol/V54sTWRlIFZ1l2XBU8nZtd+RLlMRvIfCipWgsxQ3GiDMxdu3ZBpVKhra0N\nS5YswZkzZ3Dw4EHcc889uOmmmwS3SdDV1YV169aBpmkwDIMbbrgBmzdvxubNm7F8+XJ8+ctfRjgc\nxs0334z33nsPFRUV2L9/P/R6fbYPXUSEjygkRfIPsqAh0SSkejk8PIzKysq42cslS5akbFHDMAwG\nBgZgt9tRUVEBjUaTtbmtiYQBf25OpVKlZVYlGX6/HyaTCdFoFHq9PidakjMBX0AKLa4i0VQj01Vw\nr9cLo9EIiUQCg8EQN+uXzxBTlMHBQTQ3N6Ourk7QLe6Jm12BQCBuFpwvMAsKCuZ0HolRHsmJxWLc\npoNer8/JEQKXy4V3330Xr732Gk6cOAG32w2lUgm1Wj3OsI/4EYiIiMwZUUiKiBCIwyO/evnBBx+A\noigYDAauctnZ2YnGxsZpL85omkZ/fz/6+vpQVVWF5uZmQbTWJsKvGJD2WP7cXGL2ZSrw+Xwwm82g\nKIqrQIqcXVw7HA709fUJTkBOxUQtaTKZLKkwmCl+vx9GoxEMw0Cv1wuyapIN+OfMbOZmhQa/8sSf\nBed3U5Aq+FQVRTHKIzn8c6apqQn19fWC3nSYCJZlcfz4cWzatAmtra3Yvn076urqAJwVmKdOncLJ\nkye5/1522WXYuHFjlo9aRGReIApJEZGpoCgKH374YVz10m63Q6VScbOXZKdTpVJxO7lutxuPP/44\nVq9ejUWLFqGxsTEnW6gSF3Q+nw/RaBQFBQVxrbEzyQrz+XwwmUygaZrLxxSJX9jV1NSgubk5ZwTk\nVMRiMQQCgTiDn0RjlsnOo0AgwFWtDQaDGMvwMXxXzfl2ziRjom6KZOcRRVEwGo0IhUIpMxiaD5D5\nfJPJhKqqKi4PMhex2WzYvHkzPB4P9uzZg6VLl2b7kERE8glRSIqIzAaWZTE2Noauri7OOfbkyZMI\nBAKor68Hy7L44IMPcNVVV2Hjxo3zUihFo9E4UUCywvhOeyqVKq6t0ev1wmQycdUkcWF3FoZh0N/f\nD7vdjurqajQ3N+fkpsNM4ZtEJZ5HpM26oKAALpcLkUgELS0tYtX6Y/gRJ+Xl5dBqtYLsdMgEieeR\n1+vF2NgYKIqCSqVCRUUFt+GVqXZ9oULae5VKJQwGQ87G4ng8HjzyyCM4evQotm3bhiuvvDLn2nGn\nC8uyIOvwfD53RQSJKCRFRFLF6OgoHn30UfzhD3/ARRddhOrqapw+fRomkwkFBQVoa2vjnGM7Ojrm\npZEMy7JcWyMRmaFQCMDZipRMJkNzczNqamryQihNRb4KyKlgWRZut5vLDi0qKgLDMEnn5nJ1ITwX\nSMRJSUmJGHHCgx/lodFoUFtbm9Tgh7Tr88+lXHCzngvBYBC9vb2gaRqtra05295LURT27duHZ599\nFrfffjtuueWWeX3NHBgYQGFhIbeBRlHUvH6/IjmHKCRFROaK2+3G9u3b8cYbb+B73/sevv71r8dd\n6FmWhd/vx6lTp+KyL8fGxlBfX8+Z+3R2duKcc86BQqGYNwsat9sNk8kEAKipqeF+Fz6fb5zrp0ql\nymocQCbhGy9VVlZCo9GIi4OPiUajMJvNcLvd44LhJ5qbUygUnCgg8SS52qo3GR6PB729vSgoKIDB\nYBAjTj5mplEek0VL8DcpZjvHKyTI58nj8eR0RZ9lWfz5z3/G9u3b8YUvfAEbNmzIi/nob3/72zAa\njfjrX/+K7du34y9/+QvWr1+PCy+8EFVVVdk+PBERUUiKiMwVn8+H1157Dddff/2MzC3IPBxfXH74\n4YeQSCQ455xzOJe5zs5O1NTU5JTAGhsbg9lshkwmg16vT+qoSVw/E9tjSbUgseo0H8Q1wzAYHByE\nzWYTBWQC/LgKUk2a7t88sT1WiLmFc4FvMNTS0iI61H4Mv703FVEeZI6Xfx6RChCZuyTnktA3KvjV\nWa1WO6PPk9Do7u7Gpk2bUFlZiZ07d0Kj0WT7kNKKw+FAQ0MDAHBO5l/5yldQVlYGg8GAd955B83N\nzdiwYUOWj1RERBSSInPAbrdj7dq1GBoagkQiwbe+9S2sX78eLpcL//Vf/wWLxQKtVouXXnoJ5eXl\nYFkW69evx+HDh6FUKrFv3z6cd955AIDnn38e27dvBwDcf//9WLduXTbfWtYgsz4kmoQIzMHBQajV\nak5ckmiS4uJiQS0OXC4XzGYzFAoFdDrdrBa8DMOMM/eJRCLcYo5v8JMrrpR8AalWq6HRaHK+0pEq\nYrEYrFYrhoeHUxpXkZhb6PP54toac2GjIhQKxeX6iTPFn8Cf9Ut3ey/ZqOBfl2iaTmrwk+2NCpZl\nMTg4CIvFkpXM2VQyODiIBx54AGazGXv27MHKlSsF+TlNJbFYDN///vdx2223wePxoKSkBN3d3fj2\nt78Ni8WCyspKHDlyBL/5zW9wxx13YOXKldk+ZJH8RhSSIrNnYGAAAwMDOO+88+Dz+bBs2TL88Y9/\nxL59+1BRUYEf/ehH2LVrF8bGxrB7924cPnwYe/fuxeHDh3Hs2DGsX78ex44dg8vlwvLly3H8+HFI\nJBIsW7YMJ06cmJcGNbOFZVkMDw9z5j5dXV04c+YM52DJz77UaDQZXcwQ4yGTyYTCwkLodLq0zN9Q\nFBVXvSSLOb65D6k6CWWxQRZ1VqtVFJAJ8PMOGxsb0dDQkJHzNnGjgrQ18mMlSHtstqrFkUgEZrMZ\nXq8Xer0earVaMOd0thFKlMdUOap8cZmpa5LL5UJvby8WLlwInU6Xs9eaQCCAn/zkJ3j11Vdx//33\n49prr826QE83DMNAIpFAIpFgy5YtePzxx7F48WJs2bIFV155Jerr6/HII4/gq1/9Kvr6+vDiiy9i\ncHAQjz32WLYPXSS/EYWkSOq4+uqrcccdd+COO+7A0aNHUVdXh4GBAVxyySX48MMP8e1vfxuXXHIJ\nvvrVrwIAFi1ahKNHj3KPZ555BgDGfZ/IxMRiMXz00Udx1UubzYbS0tI4cdne3o4FCxakdDHDsixX\ngSwqKoJOp0NJSUnKfv50jyEUCo0z9yGmLPzsy0wuqvgCkrTc5eqiLtXQNA2HwwGHwyGovEOKosbF\nkyTO8aa76sRv79XpdKiurhYF5MeEw+GciPLgG44RcRkMBiGVSsdteqWqEu73+9HT0wOZTIaWlpac\nnZ2laRq//e1vsXfvXnzjG9/AHXfcMe/NtGia5q5/pI362Wefxa5du7Bt2zZ8/etfBwD87ne/w913\n3w2bzQYA+Otf/4pf/vKX+NGPfoTOzs6sHb9I3iMKSZHUYLFYcNFFF+HkyZNobm6G2+0GcPamWl5e\nDrfbjauuugo/+tGPcMEFFwAALr30UuzevRtHjx5FOBzG/fffDwB48MEHUVxcjHvuuSdr7yeXIY6X\nRFiSh9/vR3NzM+cc297ejpaWlhnP+rAsC6fTCbPZjOLi4qwIyKmgaTquUuDz+eIyC/nZl6kUBSzL\nYmhoCBaLhYtkmO8LoenCz8isra1FU1OT4OfMpqo68Tcq5uL6ya/OprK9dz5AxLXL5YJer0dlZWVO\nimuapscZ/EQiEchksnEGP9OthPPFdWtra86az7AsizfffBNbtmzBqlWrsHnzZlRWVmb7sDLK3r17\nceDAAdx44434yle+AofDgW9961t48803UVpaCqlUitWrV+Nzn/scduzYAa/XC5qmxc4tkWwzrYux\nsO/0IlnH7/fjuuuuw+OPP44FCxbEfY20aohkDolEgvLyclx88cW4+OKLuecZhoHZbEZXVxfef/99\n/PGPf4TRaIRCocCSJUs459j29vakizWGYfD3v/+ds81vb28X7M63TCbDwoUL4xZWZP6UVJycTicn\nCvgzcyqVasaVAiIgrVYrysrKcO6554oC8mPIfKjVakV1dTWWL1+eMwZDEokERUVFKCoqilvY8l0/\nPR4PHA7HrFw/+eK6vr4eK1euFER1VggkRnm0tLTk9L1EJpNBpVKNmxuPxWKcsBwaGoLJZIoz+OE/\nyLkRi8VgsVgwOjoKvV4f52yca3z00UfYtGkTZDIZfvWrX2HRokVpf82J/B34HD16FFdffTV0Oh0A\n4Nprr8XmzZvn/NokxojQ1dWFrVu3QqvVYvPmzfjTn/6Eu+++G7/61a+g1+vx9NNP495770U0GsWz\nzz6Lb37zm2BZlltrsSybs397kfxBFJIiE0JRFK677jp8/etfx7XXXgvgbMzDwMAA19paXV0NAGho\naIDdbuf+bV9fHxoaGtDQ0ICjR4/GPX/JJZdk8m3kBVKpFAaDAQaDAddccw2AszehQCCAU6dOoaur\nC3/605+wZ88eOJ1O1NXVcdmXIyMjePHFF9HW1oann35asAJyMiQSCQoLC1FYWDihKHC73ejr6+Nm\n5vgVp2ROjWR21WKxYOHChfj0pz8tCsiP4Vdn1Wo1li1bNm/ae/mCkQ9x/fT5fBgeHuZEQaIpi1Kp\nxPDwMCeuV6xYIfjqbKYg0TgkymO+i2u5XI6ysrJxrbp8J2KHw4FAIACaprkqeVVVFdra2lBaWpqT\nQmJ0dBQ7d+7Ef/7zH+zcuRMXX3xxxt6HXC7HI488Eufv8IUvfAFtbW1x33fhhRfi0KFDKXtdvogM\nhUIoLi6Gz+fDH//4Rxw5cgSXXXYZli5diocffhgvvPACdu7ciZtvvhnvvPMOjEYj3nrrLRw7dizu\nZ+bi314k/xBbW0WSwrIs1q1bh4qKCjz++OPc8z/4wQ+gVqs5sx2Xy4U9e/bgtddew5NPPsmZ7Xzv\ne9/DO++8A5fLhWXLluHdd98FAJx33nk4ceJEzuZdzQdIpeTpp5/Gr371K1RUVECpVCISiaC1tZVz\nju3s7ERtbe28bMOjKGpcpEQsFkNxcTFKS0vBMAxGR0dRXl4OnU4nhsJ/DD+SoaysLO/be0klnLRY\nj46Owuv1QiaTYcGCBViwYIEgjaIyDTlvTCYT1Gr1nKM85hMsy2J0dBS9vb0oKytDeXk5NxseDAbH\nGfyUlpYKztGbEA6H8cwzz+C3v/0t7r77btx0001Z3ygg/g5f+MIXuOeOHj2Khx9+eM5C0u/3o7S0\nlJuF7O/vx/3334/i4mKsWbMGF110EW6//XYEAgG88MILoGkaTz31FIaHh/HAAw/gn//8J6xWK66/\n/nru8xCLxcSNJxGhIM5Iisyef/zjH7jwwgvR2dnJCYkdO3Zg1apVuOGGG2Cz2aDRaPDSSy+hoqIC\nLMvijjvuwJEjR6BUKvHLX/4Sy5cvBwD87//+L3bs2AEAuO+++/Df//3fWXtf+Q7DMPi///s/PPTQ\nQ1i1ahXuvfdeNDU1cQviM2fOcM6x3d3dGBgYQHl5Odra2jiB2dbWNi8XxQzDoL+/H1arFXK5HAUF\nBYhEIpBIJHGLOJVKNW+qb9OFzM6aTCaoVCpRXCfgcrlgNBpRUlICvV6PwsLCcTNzfKOoxPbY+fZZ\n4uN2u9HT08P9bsTz5hM8Hg96e3tRVFQEg8GQ9HfDMAwnLIV6LjEMg4MHD2LPnj1Ys2YN7r77bkF0\ntvD9HfijOUePHsV1112HxsZG1NfX4+GHH0Z7e/uMfnZXVxcuvfRSjIyMAADOnDmDe+65B2vXroVC\nocC2bduwY8cOLFmyBJdddhmefPJJfPGLX8S3vvUtaLVabNy4Me7n8Y15REQEgigkRURE4nn99dfx\n6quv4t5770V9ff2U3092y8nsZVdXF06fPo1IJAK9Xs+5xpJokly8EZL3aDabk4okmqa5SAkygxmN\nRlFQUDDO3CcX3/9UEJFEMv2Ki4uzfUiCgQiBgoIC6PX6KY2p+OcS35QlMUe1pKQk56sSJMpDIpHA\nYDBkLcpDiIRCIfT09CAWi6G1tXVWmbzJzqVoNMpF3fBFZrqqvyzL4t///jc2bdqERYsW4cEHH0Rd\nXV1aXmum+P1+XHzxxbjvvvu40RyC1+vlWtgPHz6M9evXo6enZ1o/l6ZpSCQSSKVSfOYzn8GXvvQl\n3HfffXjrrbfw6quv4uqrr8amTZtQU1ODxx9/nOvgeu6553D11Vejr68PTzzxREbmRUVE5ogoJEVE\n+NA0jeXLl6OhoQGHDh2C2WzGjTfeCKfTiWXLluHXv/41V4Vau3YtTpw4AbVajQMHDkCr1QIAdu7c\nieeeew4ymQw/+clPcPnll2f3TWWJWCyGnp6mZ8KFAAAgAElEQVSeuOql1WqFUqlEe3t7XAVz4cKF\ngqy48AVkaWkpdDrdjEQS39yHPBLb0FQq1ZwcP7OJ2+2G0WictkjKJ/x+P4xGIxiGQUtLy6yEAB/+\nzBx5MAwzLp5EqVQKvtU8V6I8sgFFUTCZTPB4PDAYDFCr1Wl5jUSBmWyWd64bXzabDZs3b4bH48Ge\nPXuwdOnSFL6LuUFRFK666ipcfvnluOuuu6b8fq1Wi+PHj8/ITfbUqVPYv38/nnrqKdhsNnR3d+OW\nW25BWVkZduzYgQsvvBAAMDg4CIVCga997Wv44he/iO9///uzfl8iIhlGFJIiInweffRRHD9+HF6v\nF4cOHcINN9yAa6+9FjfeeCO+853vYOnSpbjtttvws5/9DF1dXXj66aexf/9+vPzyyzhw4ABOnz6N\nr371q3jnnXfQ39+Pz3/+8/joo4/mZRVqNrAsC6/XGycuu7q64PP50NTUFOcc29LSkrUZKX7ESUlJ\nyYwF5FQ/m7Q08rMv5XL5uOxLoc6Ieb1eGI1GSKVS6PX6OYuk+UQoFILRaEQ4HE67SGJZFuFwOC7m\nJhgMQiKRjGtpTFVm4VygKApmsxljY2M5HeWRDhiGgc1m41xq6+rqMvq74c/y8qNuGIbh5sKJuJxq\ns8Lj8eDhhx/G3//+dzzwwAO44oorBPV3nsjfgc/g4CBqamogkUjwzjvvYM2aNbBardN+H+vXr8ff\n//53rF+/Hjt27MAXv/hFPProo1i3bh0uu+wyfOMb30A4HMYtt9yCz3zmM7j99tuxb98+PPTQQzh1\n6pToxiqSK4hCUkSE0NfXh3Xr1uG+++7Do48+ildffRVVVVUYHByEXC7HW2+9ha1bt+L//b//h8sv\nvxxbt27F+eefj1gshtraWoyMjGDXrl0AgA0bNgBA3PeJTAzDMLBYLOju7sb777+P7u5u9Pb2Qi6X\nY/HixVz2ZUdHR1qt7vkCUqlUQqfTZWyOhx8DQERBLBaLqzipVKqsVpx8Ph9MJhMYhoFer8/Z3Lp0\nEIlEYDab4fV6odfroVars7YQZBhmXMWJOBHPNrNwLiRGeWRaJAkZlmW5eJyamho0NzcLauORZVlu\n/pKcU8FgEMDZlvZ//OMf6OzsxLnnngutVovnn38ezz33HG6//Xbceuutgmy/nsjfwWazAQC+853v\n4Mknn8RTTz0FuVyO4uJiPProo/jMZz4zrZ8fiURw55134t5770VLSwtsNhs6Ojpw6tQpOBwO7Nq1\nC1KpFGfOnMGVV16J7du3o7i4GJFIBE899RS+853vCGLjR0RkGohCUkSEsGbNGmzYsAE+nw8PP/ww\n9u3bh9WrV6O3txfA2eypK664AidPnkRHRweOHDmCxsZGAIDBYMCxY8ewdetWrF69GjfddBMA4Jvf\n/CauuOIKrFmzJmvvK1chlbvTp09zs5fd3d0YGRlBbW0t2tvbuQrmokWL5nTjZVkWLpcLJpMJxcXF\n0Ov1gjCCIFb//PbYQCAwruJEzH3StfAIBAIwmUyIRqMwGAxiKyIPiqJgsVjgdDqh0+lQXV0t2AUg\naWnkn0+JmxWk6pSKzYrEKI+mpiZBiaRs43K50NvbiwULFkCv1+eUQRdx9j5y5AhOnjyJrq4uzoTs\n0ksvxXnnncdt/pEIsPlEovENv4Lo8/mwatUq/P73v+ciRb72ta8hGo3i97//PbxeL7q7u9HQ0MCN\nxIgVSJEcZVonrfC2k0REUsyhQ4dQXV2NZcuWxWVaimQPIpZWrFiBFStWcM+TgHsiLn/605/igw8+\n4GbRiLFPZ2cn6uvrJ10QMwwDl8sFi8WCoqIitLW1CWrOTyKRoKioCEVFRaiqquKe51ecXC4XbDYb\nZ8iSmH05l4V7KBSCyWRCMBiEwWAQI3l40DQNm82GwcFBNDc3w2AwCH42UaFQjMssJJsVRFg6nU4E\nAoE5zfImRnksX75csG3a2YBvMtTe3i6oa850kUqlaGpqwurVq3Ho0CG0tLTgpZdeglqtxpkzZ9Dd\n3Y1Dhw5h165dGB4eRkVFBR577DFBzUnOBXJdPXbsGFauXMl9LiiKgkqlwhVXXIEf/OAHeO211wAA\n7e3t2LRpE/79739jxYoV+OxnPwvg7LVcIpGIIlJkXiMKSZF5zz//+U+88sorOHz4MMLhMLxeL9av\nXw+3281lNvX19aGhoQEA0NDQALvdjsbGRsRiMXg8HqjVau55Av/fiKQGqVSK+vp61NfX44orruCe\nj0aj+OCDD/D+++/j7bffxi9+8Qs4HA6UlZXFOccSsXj48GHs3LkTd911Fy6//PKcWsxJpVKoVCqo\nVKo4B8TEEHNiyEJmnIjInCpj7v9v797DoqzTx4+/B4ejKALKQSblMIqKaIqobZaWoV/dVnc1DTug\nma1pbtauld/ylKWoa/vVPGRbanZQc0ujjMx2FWzXBNMU1FTOAuKBM8NxmHl+f/ibZxlBCw/A4P26\nLq6uHh6GzzMMOPdz35/7rqqqIiMjg7KysmYv02xpLJmYnJwcOnfuzMCBA206y1b3ZkXdRiJms1nd\ny1taWsr58+epqqpSO1lePVLCoqioiNTUVNq2bcvdd98tozzqqK6uJi0tjfLycrp162bTmf0LFy6w\nePFiMjIyWLFihVUwdfXNP4D8/PxW1c35hx9+YOHChTg4ONC3b1+Cg4OJiopSn4O33nqLe++9lxdf\nfJGff/6Z4OBg4uLi6j0vLf3mkxC3gpS2ijtK3UHEEyZMYPz48WqznT59+jBz5kzWrVtHcnKy2mxn\n586d7Nixg5MnT/LYY4+pzXaGDx9OSkqKTb/RtGWWPY91m/v88MMPXL58mbvuuoshQ4YwePBgevfu\nTUBAQKv8OVn2ONUtZ7TMmLs6IFAUhczMTIqLiwkICLit+1FtjaIo5OXlkZWVhZeXF127dm2R+79u\nt9raWrU81pIVr6mpoU2bNupoiYCAADp27Ngqf59uhMlkIjMzk8uXL7f48udfUl5ezttvv81XX33F\nvHnzGDdu3B0VDFlKUP/3f/+XRx55BJ1OxxNPPIGnpycff/wxWq1WLXvNzc3l9OnTJCUlWXVilTJW\n0YrIHkkhrlY3kExPTycyMpLCwkL69evHxx9/jKOjI1VVVTz55JP89NNPeHh4sH37dgIDAwFYsmQJ\nmzZtQqvVsmrVKqusmWg+//73v3n99dfx9PTktddew8HBwWrvZUZGBs7OzureS8tokg4dOrTKf/RN\nJpMaWJaUlFBQUEBNTQ0uLi54enpazb68k94oXs1SppmRkYG7uzv+/v42tZftdrOM8igvL8fb2xvg\nmh0/LeNJWuPvU0MURSE3N5fs7Gz8/PzQ6XQ2+7tkMpnYunUr69atY/LkycyaNQtHR8fmXtZtZTab\nsbOzw2w2A7Br1y68vb0JCwvjwQcf5H/+53/4+uuviYiIYPHixb9448TyeEK0IhJICiFaN5PJxJgx\nY2jbti0LFiygd+/eDZ6nKAplZWVWY0mSk5MpLS3Fz8/PqrlPt27dWsWeL6PRyLlz57h06RJdu3bF\n29sbo9FYbwSAoij1mvvcCV0FCwsLSUtLo23btgQGBkqZZh2/ZpRH3VE3dbPhGo2mwfLY1vJ6ssyf\nTU9Px8PDA39/f5v9e6EoCt9//z0LFy5k0KBBLFiwoFGzFFuL6upqZs6ciV6v54UXXmD27NkcPHiQ\nY8eOqZUJMTExDB8+HFdX13pfL1lI0UpJIClEa1VcXMy0adM4ceIEGo2GTZs2ERwczKOPPkpmZib+\n/v7s2LEDd3d3FEVh9uzZxMbG4uLiwgcffED//v0B2LJlC2+++SYA8+bNY/Lkyc15WTfk/PnzdO7c\n+Ya+1jLfLSkpSc1gpqam0qZNG4KDg9XMpaU7oS28WajbKEan0+Hn5/eLTYkqKiqsymMt4ySubu7T\nGso9S0pKSE1Nxd7enqCgIJvaP3u71X3t3OgoD5PJVG88iaVZ1NUBpq29nkpLS0lJScHR0RG9Xm/T\nNx/OnDnD/Pnzsbe3Z9myZQQHBzf3km6rqxvfFBUV8fLLL/Pkk09y//33s3fvXj7//HN+//vf4+7u\nznPPPceaNWvQaDQsWrQInU7HypUrcXd3b+YrEaLJSCApRGs1efJk7rvvPqZNm0ZNTQ0VFRUsXboU\nDw8P5s6dy7JlyygqKmL58uXExsayZs0aYmNjSUhIYPbs2SQkJFBYWMiAAQP48ccf0Wg0hIWFceTI\nkTv+H0rLvsNTp05Z7b+8fPkynTp1olevXmr2skePHr+62+XtZjKZyMnJ4fz58/j5+eHn53dT+9jq\nZi8te+Zqa2vrNfexlXJGg8FAWlqa2gG4Xbt2zb2kFsNsNnP+/Hmys7Pp3LkzOp3ulu+BrNssypIN\nr/t6qlse29JKBCsrK0lLS6OmpoZu3brZ9GsnPz+f6Ohojh07RnR0NEOHDrWJ39+bUTdjmJeXh5ub\nG1qtlqVLl3L+/Hn+/ve/A7Bw4ULMZjOvvvoqn376KYcPH+bo0aM8/fTTTJs2rTkvQYjmIIGkEK1R\nSUkJd999N+np6VZvACyd43x9fcnLy2PYsGGcOXOG6dOnM2zYMCZNmmR1nuXj3XffBah3nrBmGS5u\nyV4mJyfz888/U1tbi16vVzOXoaGhv5gFvJXqdhr18fG5rUPPFUWhqqrKKntZUVFRr5zRMvuyJbAE\nAVVVVQQFBd3xN0rqunqUR1OXaVpeT3VvWFheT5Zy67Zt2zZbubVljmhhYSFBQUE2XfZZVVXFu+++\ny7Zt2/jLX/7CE088cUc1TLp8+TJ/+tOfKCgooEuXLrz88svU1NTw5ptv8thjjzF27Fji4uJ46qmn\niI6OJjIyErDe+yj7IMUdRuZICtEaZWRk0KlTJ5566imOHz9OWFgYq1ev5uLFi+q4CB8fHy5evAhA\nbm4ud911l/r1Op2O3Nzcax4XDdNoNPj6+uLr68vIkSPV40ajUe3ed/jwYTZt2kROTg7t27e3au4T\nEhKCq6vrLXszXHcgvJeXV5PM89NoNDg7O+Ps7Gw1iLxuOWN+fj6ZmZnU1NTg4OBglb1s27Ztk715\nra6uJiMjg9LSUhlz0oCWMMqj7uvpWrNUi4uLycnJUcutry6PvR2vebPZTE5ODrm5uXTp0gW9Xm+z\nrx2z2cyuXbt46623GD9+PIcOHcLFxaW5l9Xk/vrXv/LAAw8wffp0+vbty8qVK1m4cCEjR47kb3/7\nG2PHjqWgoEBtuFVbW0ubNm2ws7NTO7VKEClEfRJICmFjamtrOXr0KGvWrGHQoEHMnj2bZcuWWZ0j\nQ5Cbjr29PaGhoYSGhvL4448DVzItRUVFavZy69atnDhxgoqKCvz9/a06xwYGBjYquLJkRrOysvD0\n9CQsLKzZs39t2rShffv2tG/f3up4dXW1mm3Kzs7GYDCgKAouLi5WAeatLA82Go1kZWWRn5+Pv78/\nwcHB8rtQh8FgICUlBTs7O3XuaktTd5ZqXUajUR1PcuHCBQwGA7W1tTg5OVkFlzfajVhRFC5dukRG\nRgZeXl42PUdUURQOHz7M/PnzCQ4O5ptvvrGaS9saXZ0x3LFjB3q9nv79++Pi4sKFCxcYPXo0wcHB\nLFy4UB3v8f333zNw4EDc3d1Zv349PXv2tHpcW30NCNEUJJAUwsbodDp0Oh2DBg0C4JFHHmHZsmV4\ne3uTl5enlrZaMkZ+fn5kZ2erX5+Tk6PuoYuLi7M6PmzYsKa8lFZLo9Hg4eHBsGHDrJ5Tk8lEWloa\nycnJHD9+nM8++4z09HScnJzo2bOnuvcyJCQEDw8PqwDIbDazdetWdDodvr6+9OvXr8W36Hd0dMTR\n0RFPT0/1mNlsVmdflpSUkJubS2Vl5U1nm+o2iunSpQsDBw6UDEIdlZWVpKenU1lZiV6vp0OHDs29\npEazt7enQ4cOVmtXFMXqhkVBQYHajdhyw8Jy0+J6NyyKi4tJSUnB1dWV/v37N/vNmZuRlZXFwoUL\nKS0tZd26dfTp0+e2f8/s7GyioqK4ePEiGo2GP/7xj8yePdvqnOs1frsVrv59P3bsGOvXrycuLo60\ntDT1eRk+fDgABw8e5De/+Q0bNmwgOzsbvV6vrhOQG1BC/AqyR1IIG3Tffffx/vvvExwczKJFiygv\nLwfA09NTbbZTWFjIihUr+Prrr1m7dq3abOf5558nMTGRwsJCwsLCOHr0KAD9+/fnyJEjeHh4NOel\n3XEURcFgMHDixAmr2ZfFxcV07tyZkJAQNBoNsbGxhISEsHz58laZWaitrbXaK1c321S3e+zVzVjq\n7hG9XY1ibNmvGeXRGlm6Eddt8FNVVYWdnZ3VzQo7OzuysrIA0Ov1LTJD+2uVlJSwcuVK4uPjWbx4\nMaNGjWqyn3VeXh55eXn079+fsrIywsLC+OKLL+jVq5d6zrUav90oRVFQFEX9e2AwGFi5ciVTpkzB\n39+f6upqBg0axKpVqygpKeGLL75g/PjxRERE8OKLL5KUlMRnn32Gj4+P+piWMlYhhDTbEaLVOnbs\nmNqxNTAwkM2bN2M2m5k4cSLnzp2ja9eu7NixAw8PDxRFYdasWezZswcXFxc2b97MgAEDANi0aRNL\nly4F4LXXXuOpp55qzssSdZjNZj799FOWLFmCs7Mz/v7+pKWlYWdnR7du3aya+3h5ebXK7NsvNWMx\nm82UlpbSqVMnAgMDbXae3+1wK0Z5NBfNmTNo165FU15O7ZNPYn7ggVv22LW1tZSXl1NcXMz58+ep\nqqrC3t6+XjfiptzPe7OMRiObN29m48aNzJw5k2eeeabZR6uMHTuWWbNmERERoR67VuO3G7kxVjfg\nq6ysJDExkaFDhzJq1ChGjRrF9OnTcXR05JNPPmHt2rX88MMPbNu2jS+//JLs7GwGDBjAkiVLbPrG\ngRC3mQSSQghhi/7zn/+wcOFCfHx8WLhwId26dQP+G1j9/PPPVtnLixcv0rFjR6u9lz179mwxo0lu\nJUVRuHjxoloS7OzsTGVlJdXV1Wpzn7ofthIM3CpNMcrjdtKcPYvTffdBeTkaRUFxdqZm0yZMY8bc\nksc3mUxkZWVx6dIl/P398fb2RqPRWJXHWsaTmM3mBseTtJTfKbPZzLfffsvSpUsZMWIEc+fOxc3N\nrbmXRWZmJvfffz8nTpyw2jf98MMPM3fuXIYMGQLA8OHDWb58uXpj80asXLmSw4cPU1hYyObNm8nL\ny+PVV19lzZo1BAcHc/HiRYYMGcKf//xnZs6cSWlpKUajUS23lwykENckXVuFEMLWGI1GPvroI1av\nXk1ISIjV5yxdLvv372+1t8jSJMTS3Ofvf/+7OpokMDBQ7Rrbu3dvunTpYrPZy8LCQtLS0mjbti39\n+/ev12m07qzCnJycesGAJdvk7OzcYoKBW6XuKI+OHTs2SRff20G7YYMaRAJoKiuxf+ONmw4kFUXh\n/PnznDt3js6dO9fbQ9vQfl7LTFlLNvzChQtUVlZiZ2enjiexfDg4ODTpayopKYn58+fj5eXFzp07\n6dq1a5N97+sxGAyMHz+eVatW1Wu+dSuVlZUxY8YMHBwcePTRR1myZAmffPIJr7zyCr169WLLli28\n+uqrpKWlER4ezv79+5kxYwbt2rVDo9FgNpvRaDQSRApxkySQFEK0CP/3f//H+++/j0ajITQ0VL27\nHBkZSUFBAWFhYXz00Uc4ODhQXV1NVFQUR44cwdPTk08//RR/f38AoqOj2bhxI23atOHtt9+2GtVh\nC+zt7dmwYUOjvkaj0eDt7U1ERIRVKZnRaOTs2bMcP36co0ePsmXLFs6dO0e7du2sgsuQkBD1DVZL\nVFJSQlpaGlqt9rqdRh0cHPDw8LDa56soirpXrqysjLy8PDUYuHr2pS0GXtAyRnncKqZyA/ZXVUqZ\nqipv6jELCgpITU3F3d29UQG2RqPBxcUFFxeXa467KSgoICsri+rqauzt7etlxG91iemFCxdYvHgx\nmZmZrFixgvDw8Bbze2s0Ghk/fjyPP/4448aNq/f5azV+uxE1NTWcPn2a/fv3q9199+3bR2JiIi+/\n/DLR0dGMHDkSg8HApk2b6mU9bfVmmhAtjZS2CiGaXW5uLkOGDOHUqVM4OzszceJERo8eTWxsLOPG\njSMyMpJnn32Wvn37MmPGDNavX09SUhIbNmxg+/bt7Nq1i08//ZRTp04xadIkEhMTOX/+PA899BBn\nz56Vu851KIpCcXExSUlJamnsiRMnMBgMdOnSxapzbFBQULPutTIYDKSlpWE2m9Hr9fXGQdwMy145\nS2Mfg8GA0WjE0dHRqrnPjY6SaAp1R3nYeqMYiy3rpxP1vx/TtvbK/xvs4bNH+jDx/R8a/VhlZWWk\npKRgb2+PXq/H2dn5Fq/WWt2MuKU8tra2tsHy2Ma+psrLy1m9ejW7d+9m3rx5jBs3rkW9LhVFYfLk\nyXh4eLBq1aoGz7lW47cbUV5ezgsvvMBvf/tbfv/731NeXs7vfvc7+vXrx6JFi2jXrh2HDh1i8ODB\n6tdIGasQjSKlrUII21FbW0tlZSX29vZUVFTg6+vLvn372Lp1KwCTJ09m0aJFzJgxg5iYGBYtWgRc\nGX8ya9YsFEUhJiaGyMhIHB0dCQgIQK/Xk5iYyD333NOMV9ayaDQa3N3dGTp0KEOHDlWPm0wmMjIy\n1PLYnTt3kpaWhoODA7169bIKMD09PW9rFqSyspK0tDSqqqoICgrC3d39ln8PrVaLm5ub1Z6yhkZJ\nGAwGALWU0RJkOjo6NlsmyPL8VFdXExQUZJOjPK7lb6VFfPkovLkPnI3wXn/4wN/IxEY8RlVVFamp\nqVRXV9OtW7fbWmJZ17Uy4nUbRl26dImKigoAq/LYdu3aNfiaMplMbN26lbVr1zJlyhQSEhJa5Nif\n//znP3z00UeEhoZy9913A7B06VLOnTsHwLPPPqveHNTr9Wrjtxvl4uJC9+7dSUhIIDw8HD8/P3x9\nfSkqKuKbb75h4sSJahBpCSAliBTi1pNAUgjR7Pz8/JgzZw5dunTB2dmZESNGEBYWRocOHdSMmE6n\nIzc3F7iSwbzrrruA/wYEBQUF5ObmWt2Brvs14vratGmDXq9Hr9erZWmKolBeXs7Jkyc5fvw4X3/9\ntTpaxtfXl5CQEDXA7N69+03vE6uuriYjI4PS0lICAwNve8B6NY1Gg5OTE05OTnTs2FE9bhklUVZW\nRlFREdnZ2VRVVaHVaq2yl7ejlLGumpoaMjMzKSoqIigoqMmfn6ZgyunPHv997Jn+/8tZa+1xy+v7\nq762traWjIwMCgsLW8yoE8u+ZmdnZzp16qQeN5vNanlscXExOTk5fPXVV8TGxtK9e3dCQkJo27Yt\n27dvZ8iQIezfv9/qNdnSDBkyhF+qcNNoNKxbt+6WfD+NRsPUqVNZvnw5TzzxBAaDgdDQUIKDg/nh\nhx/o27cvwcHBABJACnEbSSAphGh2RUVFxMTEkJGRQYcOHZgwYQJ79uxp7mXd8TQaDa6urgwaNIhB\ngwapxy2dQY8fP87x48dZtWoVZ86cAaB79+5Wo0m8vb1/sQTPaDSSlZVFfn4+/v7+BAcHN3sAUFfd\n/ZR1GY1GNdN0/vx5DAYDJpMJZ2fnerMvb+Z6rh7l0a1btxb1/NxKo9u/xPq8OBSfI6DYQeldDKto\nuFTSwmw2k5OTo95gCg8Pb1Flnw2xs7OjXbt2VuXa/fr1Y+bMmezZs4fPPvuMCxcu4OTkRHx8PFFR\nUYSGhqofPXr0aJGZyabk6enJihUriI+Px87Ojvvuu4/Tp0/zj3/8445/boRoKhJICiGa3T//+U8C\nAgLUO/bjxo3jP//5D8XFxdTW1qLVaq0aM1iaNuh0OmpraykpKcHT0/OWNnMQ12ZnZ4dOp0On0/Hb\n3/4WuJK9rKmpUUeTfP/996xfv54LFy7g7u5uNZqkV69eODs7YzAYWL58OefPn2fx4sX1Omm2dPb2\n9ri7u1uV3tbt9GkwGBrs9GkJMh0cHK77+FeP8hg4cGCrz64seLUN34/4F6nFZ8GuFp82PXj7X6YG\nz7V0K87IyKBTp06Eh4c3+/zEm5Gfn090dDTHjh0jOjqaoUOHotFo1I6zlv3M3333HadPn2br1q0E\nBQU197KbXd0S/R49ejB//vxmXI0QdxZptiOEaHYJCQlMnTqVw4cP4+zszJQpUxgwYAAHDhxg/Pjx\narOdPn36MHPmTNatW0dycrLabGfnzp3s2LGDkydP8thjj6nNdoYPH05KSkqrf/PdklnGUlj2XiYl\nJXHy5EkuXLgAwMCBA/nDH/5A//796dq1q00Fko1h6fRZt7lPTU0Njo6OVqWxluY+dUd5dO3a1WY7\nyt6I2lo4dswOkwnuvttMQ8ml4uJiUlNTcXFxISgoyKYzUFVVVerfsjlz5vD444/L3ywhRHP7VWUv\nEkgKIVqEhQsX8umnn6LVaunXrx/vv/8+ubm5REZGUlhYSL9+/fj4449xdHSkqqqKJ598kp9++gkP\nDw+2b99OYGAgAEuWLGHTpk1otVpWrVrFqFGjmvnKhIXJZGLbtm289dZbjB07ltGjR5Oenq52j83K\nysLV1VVt7mPJYLZv377VlnJamvtYAsySkhKqq6txcHDAy8sLd3d3XF1dcXJyarXPQWNUVFSQkpKC\n2WymW7du9cqNbYnZbGbXrl2sXLmSRx55hL/85S+4uLg097KEEAIkkBRCCNFSJCYm8txzzzF06FDm\nzp3bYOMQRVEoKSmxGk2SnJxMWVlZvdEker3epssYr1ZWVkZqaip2dnZquaIlc1lWVqY296nb5fN2\nN/dpSWpqakhPT6e0tBS9Xm/VGdXWKIpCYmIiCxYsIDg4mDfeeANfX9/mXpYQQtQlgaQQQoiWITs7\nG41Gg06na/TXms1mMjMz1fLY5ORkUlNTsbe3p0ePHmqA2bt37xbRqbMx6o7y0Ov1VuNIrmY0GuuV\nx9bW1uLk5FSvuU9rKRGu22jI398fHxNdG/8AABsASURBVB8fm/r5Xi0rK4sFCxZQVlbGihUr6NOn\nT3MvSQghGiKBpBCi9dm0aRN+fn6MHDmyuZdSz9SpU9m9ezdeXl6cOHECgMLCQh599FEyMzPx9/dn\nx44duLu7oygKs2fPJjY2FhcXFz744AP69+8PwJYtW3jzzTcBmDdvHpMnTwbgyJEjTJkyhcrKSkaP\nHs3q1att+k31zVAUhYqKCnU0iSWDWVBQgI+Pj9VokuDg4JseTXKr3apRHlfPKSwrK6OiogKNRtNg\nc5+W9Bxcj6Io5OXlkZWVha+vL3fddZdN7xssKSlh5cqVxMfHs3jxYkaNGmUzPwshxB1JAkkhROsz\nfPhwnn32WSZMmAD8d9j07t276dChA0OGDGm2tR04cABXV1eioqLUQPLll1/Gw8ODuXPnsmzZMoqK\nili+fDmxsbGsWbOG2NhYEhISmD17NgkJCRQWFjJgwAB+/PFHNBoNYWFhHDlyBHd3dwYOHMjbb7/N\noEGDGD16NM8//7zsAb2K2WzmwoUL6miS5ORkTp8+jaIo6PV6q9Ekvr6+TZ65a6oMm8lkUmdfWoJM\ny97Lus19XF1dW1yAVlBQQFpaGm5ubgQGBtp0oyGj0cjmzZvZuHEjzz33HNOmTbtjypGFEDbtV/3D\nJH/NhBA2o7KyEo1GQ15eHvHx8fTo0UMdGfLRRx8xcOBAfvOb32BnZ4eiKJjNZjQaTZMFC/fffz+Z\nmZlWx2JiYoiLiwNg8uTJDBs2jOXLlxMTE0NUVBQajYbBgwdTXFxMXl4ecXFxREREqHvAIiIi2LNn\nD8OGDaO0tJTBgwcDEBUVxRdffCGB5FXs7Ozo3LkznTt3Vp8bRVEwGo3qaJKDBw/y7rvvcv78+QZH\nk9zs3MeGXD3KY9CgQbf1ddmmTZt6cwrhSibUEljm5ORQXl6O2WyuN/vS2dm5yTNmBoNB7bIcGhqK\ns7Nzk37/W8lsNvPtt9+ydOlSRowYwb///e/rli0LIYQtkkBSCGEzLl68yKFDh+jXrx/79u3DYDCw\nc+dO2rdvT3l5OX369FHfnGs0mgYzLZYAU1EUtFotNTU1vzjP72bXbGmk4ePjw8WLFwHU4ekWOp2O\n3Nzc6x6vu7/Qclz8Mo1Gg4ODA3379qVv377qcUVRKCgoUPdefvDBB5w6dYrq6mr8/f3p3bu3GmT6\n+/vfUOau7qzDjh07MmDAgGbNsDk4OODh4WHVrMZSJmwpjT1//jxVVVXY2dnVa+5zO9ZeVVVFWloa\nlZWVdOvWzeYDrqSkJF577TV8fHzYuXMnXbt2be4lCSHEbSGBpBDCZpw+fZqOHTvy17/+FYApU6YQ\nGxvL7373OwwGAzqdjtraWj788EPeffdddDodf/rTnxg2bJj6GFcHmKtWraK2tpYXXngBFxcXzGbz\nbcsUaTQa2RfVgmg0Gjp27MiDDz7Igw8+qB6vra0lNTVV3Xu5bds2srKycHZ2VvdeWjKYbm5u1/yZ\npqamUlRUhKurK/369Wuxsw4t+ynbtm2Lt7e3ery2tlZt7nPx4kXS0tIwGo04OTk1OPuysWpra8nM\nzCQ/P5/AwEA6depk078feXl5LF68mMzMTP76178SHh5u09cjhBC/RAJJIYTNOHnyJPfddx9wZVxC\n//79SUtL4+LFi7i4uODp6UlMTAyrV6/mu+++IyYmhnXr1nH//fdTU1PDN998w5o1awgKCuLBBx8k\nMjKSiooK2rVrp85vu9YbYkVRbuhNobe3N3l5efj6+pKXl4eXlxcAfn5+ZGdnq+fl5OTg5+eHn5+f\nWgprOT5s2DD8/PzIycmpd7649bRaLT169KBHjx48+uijwJWff2lpKcnJySQlJbFz505ef/11ysrK\n8PPzs8peFhcXs3DhQnx9fXnnnXdo27ZtM1/RjdFqtbi5uVllCBVFsZp9mZ+fT3l5ORqNBhcXF6vy\nWEdHxwZ/Z8xmM7m5ueTk5KDT6Rg4cKBNd5ktLy9n9erV7N69m3nz5jFu3LgmuZ6GmnvVFRcXx9ix\nYwkICABg3LhxLFiw4LavSwhx55BAUghhMw4ePKjuiSwvLyctLY17772X06dPo9PpKCoq4sSJE0yd\nOhUvLy8eeugh4uPjSUhIID09nTVr1rB27VqOHj1KWVkZ1dXVFBcXExwcDFxpllNVVcWIESPqfe+r\n3xCnpKRw9uxZfvvb3153zWPGjGHLli3MnTuXLVu2MHbsWPX42rVriYyMJCEhATc3N3x9fRk5ciSv\nvvoqRUVFAOzdu5fo6Gg8PDxo3749hw4dYtCgQXz44Yf86U9/uunnVPw6Go0GNzc3hgwZYtXQyWw2\nk5WVRVJSEvHx8SxatAiTyURAQABOTk68//776mgSW8+4wZXnwcnJCScnJ6tZoGazmfLycgwGA0VF\nRZw7d47q6mrs7e2tspeVlZVkZWXRsWNHwsPDbbrxjMlkYuvWraxdu5annnqKhISEJs06T5kyhVmz\nZhEVFXXNc+677z52797dZGsSQtxZbPcvuBDijmIymcjOzqasrIzPP/+c77//nurqakaOHMm6devw\n9/enQ4cO5OTkqGM0qqurCQoKIiEhAYPBwNNPP82AAQMYMGAAAMePH1f3fK1atYoffviBiIgIALXE\nVVEUkpKSyMvLIywsjE6dOqEoCu3atcNoNKrrUxSFSZMmER8fT35+Pjqdjtdff525c+cyceJENm7c\nSNeuXdmxYwcAo0ePJjY2Fr1ej4uLC5s3bwbAw8OD+fPnEx4eDsCCBQvU/Wzr169Xx3+MGjVKGu20\nAHZ2drRv354DBw5w8OBBNmzYwIgRI6iqquLUqVMcP36c7777jr/97W9cvnwZLy8vq9EkPXr0uGbm\nzpbY2dk12NzHaDSqmcu0tDQURcHBwYHy8nKysrKsZl/aynOgKAoHDhxg4cKF3HPPPcTFxeHp6dnk\n62iouZcQQjQlGf8hhLAZP//8M2lpaXz99ddUV1ezaNEiunTpQkREBBMmTOCPf/wjI0aMYMaMGfzh\nD39g5cqVnDt3jvHjx7N161aioqK49957qaiowMXFhf3797Ns2TIKCwuZPHkyY8eO5a677lKb8bRp\n04adO3fy5ZdfUlpaytmzZ5k8eTIvvfQS8fHxBAQE4OXlRZs2ba7ZhKTuY4nW5+eff+axxx5jzpw5\nTJo06boljYqiNDiaxGQy1RtN0rlzZ5su97SorKwkJSVFvcZ27dqhKAqVlZVqeazBYKCyshI7Ozva\ntm1rVR57Oxth3YgzZ84wf/587O3tWb58Od27d2/W9WRmZvLwww9fs7R1/Pjx6HQ6OnfuzMqVKwkJ\nCWmGVQohbJDMkRRC3BkOHTqETqdDp9Nx8OBBZs+ejbOzM23btuW1115jyJAhhIWFsWrVKnWPJcDm\nzZs5dOgQX375JbGxsfTr1w+j0Yi9vb2akZw/fz4XLlzgvffeA66U1CqKwjPPPMOIESPo1asXU6ZM\nwcfHh44dOzJq1CgmTZqEk5OTzWRYrqehfVgvvfQSX331FQ4ODgQFBbF582Y6dOgAQHR0NBs3bqRN\nmza8/fbbjBw5EoA9e/Ywe/ZsTCYT06ZNY+7cuQBkZGQQGRlJQUEBYWFhfPTRRy0ueLges9mM0Wi8\nqZLGmpoazpw5ozb3SU5OJjc3Fzc3N6vmPiEhIbRt29YmXldGo5H09HRKSkoICgr6VRk7k8mkjiax\nfNTU1ODo6GjVPfZGm/vcjPz8fJYuXcrx48eJjo5m6NChLeLncL1AsrS0VO28Gxsby+zZs0lJSWmG\nVQohbJAEkkKIO1NVVRWnT5/GwcGBXr16ARAfH8+cOXPw8/MjJCSEJUuW8MYbb6DVagkJCWHTpk18\n/vnn9TKH6enprFy5Eq1WyzPPPENoaCiZmZm8+uqrzJo1i9/85jcAZGVl8dBDDzF06FBWrFjBv//9\nb9555x3y8/N5+umnmTp1qk0FSBYHDhzA1dWVqKgo9c3q3r17efDBB9FqtbzyyisALF++nFOnTjFp\n0iQSExM5f/48Dz30EGfPngWge/fufPfdd+h0OsLDw9m2bRu9evVi4sSJjBs3jsjISJ599ln69u3L\njBkzmu16WwpFUSgsLFRHkyQnJ3Py5EkqKyvx9/e36hwbEBDQYjLelhL0vLw8unbtiq+v700FXIqi\nqLMvLdlLy82cq5v73I6bN1VVVWzYsIHt27czZ84cHn/88RbzXMP1A8mr+fv78+OPP1rtbRVCiGv4\nVX9MZY+kEKLVcXJy4u677wb+22116NChfPXVVyQnJ5Ofnw9cmann5ubGmDFj+Oc//0l0dDRz5861\nagASGBjI+vXr2blzJxERERw9epTS0lJKSkrQ6/Xqea+88gpRUVG89NJL7Nq1i4MHD7J+/Xq8vb2Z\nNWsWgwcPVtdkSxrah1W3GdHgwYP57LPPAIiJiSEyMhJHR0cCAgLQ6/UkJiYCoNfrCQwMBCAyMpKY\nmBh69uzJvn372Lp1KwCTJ09m0aJFEkhypamNp6cnDzzwAA888IB63GQykZaWpmYvd+zYQUZGBk5O\nTvTq1csqwHR3d2+yrJmlbDczMxMfHx8GDhx4SwIujUaDo6Mjjo6OVllNs9mszr4sKSkhJyeHqqoq\ntFptvdmXN9LQx2w2s2vXLlauXMmECRM4dOiQ2tnZVly4cAFvb280Gg2JiYmYzeZm2csphGi9JJAU\nQrRqdd9I+/j44OPjo/6/JZsG8Je//IVt27ah1WrV4LOgoICFCxcybNgwAgICCAgIoKKigry8PJyd\nnfHy8qKoqIjIyEjuuece5syZg5OTEzt37uTMmTMkJibSo0cPPv/8cx5++GGbDCR/yaZNm9QRGbm5\nuQwePFj9nE6nIzc3F4C77rrL6nhCQgIFBQV06NBBfaNf93zRsDZt2tC9e3e6d+/OhAkTgCtBXFlZ\nmTqaJCYmhiVLllBcXGw1miQ0NJRu3bpdcz/vjSosLCQ1NZX27dsTFhbWJJl3S8mmq6ur1XGj0ajO\nvszLy8NgMFBbW4uzs7NV91gXF5cGy2MVRSExMZEFCxbQs2dPvv32W6u/GS3JpEmTiIuLs2ruZWkA\n9uyzz/LZZ5/xzjvvoNVqcXZ2Zvv27S2iHFcI0XpIICmEEEDXrl3VfXuWN1sODg6EhoYSExNDfn4+\nzzzzDHq9nl27duHm5kZxcTGRkZEMHz6cl19+GbjSXMTBwYH33nuPbt268dNPP/HQQw+pI0ZakyVL\nlqDVann88cebeyl3NI1GQ/v27bn33nu599571eNms5ns7Gy1PPabb74hJSVFDUYtmcvevXurmavG\nMBgMpKamotFo6N27d4vI2Nnb29OhQwd1zy5cCQ6rqqrU8thLly5RUVHB/v37+emnnwgJCaFv3774\n+fmxdu1aysrKWLduHX369GnGK/ll27Ztu+7nZ82axaxZs5poNUKIO5EEkkIIcQ3t2rVj+vTpTJ8+\n3er4qFGjGD58OD///DP79++nrKyMvXv3MnToUKZNm8bdd9/Nxx9/zJo1axg+fHgzrf72+uCDD9i9\nezf/+te/1ADEz8+P7Oxs9ZycnBz8/PwAGjzu6elJcXExtbW1aLVaq/PFzbOzs6Nr16507dqV3/3u\nd8B/gyrLaJJ9+/axevVqLl++TMeOHeuNJmlo3+G5c+c4ceIEnTp1olu3blZBW0uk0WhwdnbG2dlZ\nnUMLEBoayrFjx0hMTGTjxo2cPn0aR0dHgoKC+OCDD+jTpw+hoaH06tULZ2fnZrwCIYRomaTZjhBC\n3KSKigqOHTtGUVERw4cP5/Lly8yaNYucnBzc3d154oknmDJlSnMv84Zd3dBjz549/PnPfyY+Pt7q\njfnJkyd57LHH1GY7w4cPJyUlBUVR6N69O//617/w8/MjPDycrVu3EhISwoQJExg/frzabKdPnz7M\nnDmzuS71jqUoChcvXlSzl0lJSZw+fRqj0UhQUBC9e/dGr9cTFxfHgQMHeP311xk7dqxNl0oajUY2\nbdrEpk2beO6555g2bRparZZLly6RnJyslgqfOnWKmpoaNm/eTN++fZt72UII0RSka6sQQjSn7Oxs\nkpOT0el0Lb5M7lrq7sPy9vbm9ddfJzo6murqarVxx+DBg9mwYQNwpdx106ZNaLVaVq1axahRowCI\njY3lhRdewGQyMXXqVF577TXgSlfcyMhICgsL6devHx9//PFNjdIQt5bRaOTkyZOsXbuWL7/8kp49\ne1JcXIyrq6u699LyX1dXV5sILM1mM99++y1Llixh5MiRzJ07Fzc3t+t+jclkQlGUG2rcI4QQNkgC\nSSGEEELcGEVRiI2NZdGiRURERPDKK6/g5uaGoigUFRWRlJSkzr08ceIE5eXldO3aVS2NDQkJITAw\nsMUEX4qikJyczGuvvYavry9Lly6lS5cuzb0sIYRoiSSQFEIIIcSN+eSTT/juu+944403rLruXovJ\nZCI9Pd1q9mV6ejqOjo7qaBJLgOnh4dGk2cu8vDwWL15MVlYWK1asIDw83Cayp0II0UwkkBRCCCEa\nMnXqVHbv3o2Xl1e9Ye5vvfUWc+bMURvQKIrC7NmziY2NxcXFhQ8++ID+/fsDsGXLFt58800A5s2b\nx+TJkwE4cuQIU6ZMobKyktGjR7N69WqbC1wsY3Bu9jEMBgMnT55U914mJydTVFRE586drZr7dO/e\nHXt7+1v6PBkMBlavXs3XX3/N/Pnz+cMf/tDg2A8hhBBWJJAUQgghGnLgwAFcXV2JioqyCiSzs7OZ\nNm0ap0+f5siRI3Ts2JHY2FjWrFlDbGwsCQkJzJ49m4SEBAoLCxkwYAA//vgjGo2GsLAwjhw5gru7\nOwMHDuTtt99m0KBBjB49mueff17dLyqu7FPMycmxyl6ePXsWjUbT4GiSxgZ/JpOJTz75hHXr1vHU\nU0/x3HPPyd5bIYT49X5VINkyNi4IIYQQTej+++8nMzOz3vEXX3yRFStWMHbsWPVYTEwMUVFRaDQa\nBg8eTHFxMXl5ecTFxREREYGHhwcAERER7Nmzh2HDhlFaWsrgwYMBiIqK4osvvpBAsg47Ozu6dOlC\nly5dePjhh4Er2cuamhp1NEl8fDxr167lwoULeHp6qo19evfuTc+ePXF2dq6XvVQUhfj4eBYtWsQ9\n99xDXFyc2hRKCCHErSWBpBBCCMGVgNHPz6/eiIfc3FyrPYI6nY7c3NzrHtfpdPWOi+vTaDQ4OjrS\nr18/+vXrpx5XFIVLly6p2cv33nuP06dPU1NTo44mCQkJwcXFhQ0bNuDg4MDHH39M9+7dm/FqhBCi\n9ZNAUgghxB2voqKCpUuXsnfv3uZeiriKRqPB29ubiIgIIiIi1OO1tbWcPXuW48eP89NPP/GPf/yD\n999/n6FDh9rcflQhhLBFsuNcCCHEHS8tLY2MjAz69u2Lv78/OTk59O/fnwsXLuDn50d2drZ6bk5O\nDn5+ftc9npOTU++4uLW0Wi29evVi0qRJREdHk5qayrBhwySIFEKIJiKBpBBCiDteaGgoly5dIjMz\nk8zMTHQ6HUePHsXHx4cxY8bw4YcfoigKhw4dws3NDV9fX0aOHMnevXspKiqiqKiIvXv3MnLkSHx9\nfWnfvj2HDh1CURQ+/PBDqz2XwjZNnToVLy8vevfu3eDnFUXh+eefR6/X06dPH44ePdrEKxRCiKYl\ngaQQQog7zqRJk7jnnns4c+YMOp2OjRs3XvPc0aNHExgYiF6v55lnnmH9+vUAeHh4MH/+fMLDwwkP\nD2fBggVq453169czbdo09Ho9QUFB0minFZgyZQp79uy55ue/+eYbUlJSSElJ4e9//zszZsxowtUJ\nIUTTk/EfQgghhBC/QmZmJg8//HC92aMA06dPZ9iwYUyaNAmA4OBg4uLi8PX1beplCiHEzfpVewQk\nIymEEEIIcZOu1cVXCCFaKwkkhRBCiFbkWnv51qxZQ48ePQgJCeHll19Wj0dHR6PX6wkODubbb79V\nj+/Zs4fg4GD0ej3Lli1Tj2dkZDBo0CD0ej2PPvooNTU1t/+ihBBCtDgSSAohhBCtSEN7+fbv309M\nTAzHjx/n5MmTzJkzB4BTp06xfft2Tp48yZ49e5g5cyYmkwmTycRzzz3HN998w6lTp9i2bRunTp0C\n4JVXXuHFF18kNTUVd3f36+4vvZNcq4uvEEK0VhJICiGEEK3I/fffrzb9sXjnnXeYO3cujo6OAHh5\neQEQExNDZGQkjo6OBAQEoNfrSUxMJDExEb1eT2BgIA4ODkRGRhITE4OiKOzbt49HHnkEgMmTJ/PF\nF1807QW2UNfq7iuEEK2VBJJCCCFEK3f27Fm+//57Bg0axNChQzl8+DBw7X191zpeUFBAhw4d0Gq1\nVsfvBA11+t2wYQMbNmwArt3dVwghWittcy9ACCGEELdXbW0thYWFHDp0iMOHDzNx4kTS09Obe1k2\nZdu2bdf9vEajYd26dU20GiGEaH4SSAohhBCtnE6nY9y4cWg0GgYOHIidnR35+fnX3dfX0HFPT0+K\ni4upra1Fq9XKPkAhhLiDSWmrEEII0cr9/ve/Z//+/cCVMteamho6duzImDFj2L59O9XV1WRkZJCS\nksLAgQMJDw8nJSWFjIwMampq2L59O2PGjEGj0fDAAw/w2WefAbBlyxbGjh3bnJcmhBCimUhGUggh\nhGhFJk2aRFxcHPn5+eh0Ol5//XWmTp3K1KlT6d27Nw4ODmzZsgWNRkNISAgTJ06kV69eaLVa1q1b\nR5s2bQBYu3YtI0eOxGQyMXXqVEJCQgBYvnw5kZGRzJs3j379+vH000835+UKIYRoJhpFURpzfqNO\nFkIIIYQQQghhUzS/5iQpbRVCCCGEEEII0SgSSAohhBBCCCGEaBQJJIUQQgghhBBCNIoEkkIIIYQQ\nQgghGkUCSSGEEEIIIYQQjSKBpBBCCCGEEEKIRpFAUgghhBBCCCFEo0ggKYQQQgghhBCiUSSQFEII\nIYQQQgjRKBJICiGEEEIIIYRoFAkkhRBCCCGEEEI0igSSQgghhBBCCCEaRQJJIYQQQgghhBCNIoGk\nEEIIIYQQQohGkUBSCCGEEEIIIUSjaBt5vua2rEIIIYQQQgghhM2QjKQQQgghhBBCiEaRQFIIIYQQ\nQgghRKNIICmEEEIIIYQQolEkkBRCCCGEEEII0SgSSAohhBBCCCGEaBQJJIUQQgghhBBCNIoEkkII\nIYQQQgghGkUCSSGEEEIIIYQQjSKBpBBCCCGEEEKIRpFAUgghhBBCCCFEo/w/THPx7eVoB/YAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x1029c8cd0>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_metric('bw')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### IOPS" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ebefa0e959fe46b7a14e9fe7ec4f12e2" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_metric('iops')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAH+CAYAAADu2DEaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WtsHNd5P/7v7uyVd1J3irukZEq0qIslWlfbVFBDiYM0\ndpA4SS0Xdg0rKJzUaOMmSJGkMZz2RV/EQX6RUdRBKqdOgNpuExg2iqJI3Fh/MZEdR2lsN5Uvcixy\nZ0kur7vL3Z3Z3dmZ+b9gZrw3Lve+Zw6fDyDIFm9nuLO7853nnOfYdF0HIYQQQgghhBBSLnurB0AI\nIYQQQgghxFooSBJCCCGEEEIIqQgFSUIIIYQQQgghFaEgSQghhBBCCCGkIhQkCSGEEEIIIYRUhIIk\nIYQQQgghhJCKUJAkhBBCCCGEEFIRCpKEEEIIIYQQQipCQZIQQgghhBBCSEUcFX6+3pBREEIIIYQQ\nQghhga2cT6KKJCGEEEIIIYSQilCQJIQQQgghhBBSEQqShBBCCCGEEEIqQkGSEEIIIYQQQkhFKm22\nQwghhBBCCCHMURQFwWAQyWSy1UOxBI/Hg4GBATidzqq+3qbrFTVipa6thBBCCCGEEOZcv34dnZ2d\n2LRpE2y2shqPbli6rmNpaQmxWAy7du3K/zB1bSWEEEIIIYRsDMlkkkJkmWw2GzZt2lRT9ZaCJCGE\nEEIIIYQLFCLLV+vvioIkIYQQQgghhJCKUJAkhBBCCCGEEM488MAD+PGPf9yw709BkhBCCCGEELIx\nLSwAv/716t91pus6NE2r6mszmUydR1N/FCQJIYQQQgghG88zzwCDg8CHP7z69zPP1PwtJycnMTIy\ngvvvvx8HDhzAuXPnAADf/e53sXv3bgDA+++/j1tvvbXgax944AE89NBDOHHiBL7yla8gkUjgwQcf\nxPHjx3HkyBG88MIL5s8YHx/H2NgYxsbGcPnyZQCrwfXhhx/GyMgIzpw5g/n5+ZqPpxTaR5IQQggh\nhBCysSwsAOfOAbK8+gdY/f8zZ4AtW2r61teuXcPTTz+NoaEh3HnnnQCAiYkJbNq0CdPT05iYmMDp\n06eLfm0wGMTly5chCAK+9rWv4fbbb8dTTz2FSCSC48eP48yZM9i6dSt+9rOfwePx4Nq1azh79iyu\nXLmC559/Hu+88w6uXr2Kubk5jI6O4sEHH6zpWEqhIEkIIYQQQgjZWCYnAZfrgxAJAE7n6r/XGCQH\nBwdx8uRJAEA8HkcsFoMoirj33ntx6dIlTExM4FOf+lTRr/3MZz4DQRAAAD/96U/x4osv4vHHHwew\nur1JIBBAf38/Hn74Ybz++usQBAHvvvsuAODSpUs4e/YsBEFAf38/br/99pqOYz0UJAkhhBBCCCEb\ny9AQkE7n/puirP57jdrb283/vuWWW/CDH/wAIyMjGB8fx1NPPYVXXnkF3/72t9f9Wl3X8ZOf/AQj\nIyM5n/PYY49h27ZteOONN6BpGjweT81jrgatkSSEEEIIIYRsLFu2ABcuAF4v0NW1+veFCzVXI/ON\nj4/j8ccfx+nTp3HkyBG8/PLLcLvd6O7uXvdr77jjDjzxxBPQdR0A8Nvf/hYAEI1GsWPHDtjtdvzo\nRz+CqqoAgNOnT+O5556DqqqYnZ3Fyy+/XNdjyUdBkhBCCCGEELLxnD0LTE0BL720+vfZs3X/EePj\n4xBFEadPn4YgCPD5fLjtttvMjz/66KN48cUXi37tN77xDSiKgkOHDmH//v34xje+AQD4whe+gKef\nfho33XQT3n77bbOK+clPfhJ79uzB6Ogo7r//fpw6darux5PNZiTcMlX0yYQQQgghhBDSDG+99Rb2\n7dvX6mFYyhq/M1s5X0sVSUIIIYQQQgghFaEgSQghhBBCCCGkIhQkCSGEEEIIIYRUhIIkIYQQQggh\nhJCKUJAkhBBCCCGEEFIRCpKEEEIIIYQQQipCQZIQQgghhBBCLObKlSv4y7/8SwDAxYsXcfny5ab+\nfEdTfxohhBBCCCGEMGIhsYDJyCSGeoawpX1LXb+3ruvQdR12e/1rd5lMBkePHsXRo0cBrAbJjo4O\n3HLLLXX/WWuhiiQhhBBCCCFkw3nmf5/B4P8bxId/9GEM/r9BPPO7Z2r+npOTkxgZGcH999+PAwcO\n4Ny5cwCA7373u9i9ezcA4P3338ett96a83WqqmLXrl3QdR2RSASCIODSpUsAgNOnT+PatWt47LHH\ncN999+HWW2/Ffffdh4sXL+LjH/84Jicn8eSTT+I73/kODh8+jImJCSwsLODuu+/GsWPHcOzYMfzy\nl7+s+djyUUWSEEIIIYQQsqEsJBZw7sVzkDMy5IwMADj3wjmc2XWm5srktWvX8PTTT2NoaAh33nkn\nAGBiYgKbNm3C9PQ0JiYmcPr06ZyvEQQBIyMjuHr1Kq5fv46xsTFMTEzgxIkTEEURe/bsAQBcvXoV\nv/jFL+D1enHx4kUAwNDQEB566CF0dHTgy1/+MgDg3nvvxSOPPILbbrsNgUAAd9xxB956662ajisf\nBUlCCCGEEELIhjIZmYRLcJkhEgCcghOTkcmag+Tg4CBOnjwJAIjH44jFYhBFEffeey8uXbqEiYkJ\nfOpTnyr4uvHxcVy6dAnXr1/HV7/6VXz/+9/Hhz70IRw7dsz8nLvuugter3fdMbz00ku4evWq+f8r\nKyuIx+Po6Oio6diy0dRWQgghhBBCyIYy1DOEtJrO+TdFVTDUM1Tz925vbzf/+5ZbbsEPfvADjIyM\nYHx8HBMTE3jllVcKprYCq1NYJyYm8Nprr+FjH/sYIpEILl68iPHx8aLfuxRN0/Dqq6/i9ddfx+uv\nv47p6em6hkiAgiQhhGwImqYhnU4jk8lAVVXout7qIRFCCCEts6V9Cy584gK8Di+63F3wOry48IkL\ndW+4Mz4+jscffxynT5/GkSNH8PLLL8PtdqO7u7vgc48fP47Lly/DbrfD4/Hg8OHD+N73vlcwDbaY\nzs5OxGIx8/8/8pGP4IknnjD///XXX6/PAWWhIEkIIZzSdR2qqiKVSiGVSkGSJHOKTTQaRTQaRTwe\nhyRJSKVSUBSFQiYhhJAN4+yBs5j64hReuu8lTH1xCmcPnK37zxgfH4coijh9+jQEQYDP58Ntt91m\nfvzRRx/Fiy++CABwu93w+XzmtNjx8XHEYjEcPHhw3Z9z55134vnnnzeb7Zw/fx5XrlzBoUOHMDo6\niieffLLux2ar8IKBri4IIYRxmqZBVVUzFNpsNgBAOp02/9t47Tdak2d/HgDYbDbY7XYIgpDzt81m\nM/8QQgghLHnrrbewb9++Vg/DUtb4nZX1Jk/NdgghhAO6rkPTNGQyGWiaBuCDMGh8PJsRBIsFQuNz\njUCaHzIBFARM4w+FTEIIIWRjoCBJCCEWVqz6WGuYKxUygQ9Cq6qqUBQl52MLCwvYvHkzXC5XTsg0\nQi2FTEIIIYQPFCQJIcRi1qs+NlqpoBoKhdDT0wO73V4QMgHkVC+LVTMJIYQQYg0UJAkhxCJqrT42\nI6hlVx/zGVNmVVVFJpOhdZmEEEKIhVGQJIQQhhnVR0VR8P7772PXrl1NrT5Ww6iS5qN1mYQQQgg/\nKEgSQgiD8quPADA3N4cbbrih6u9ZLJzVW7Xfv9J1mfnHYgRMWpdJCCGENAcFSUIIYUSr1z7Wg81m\na8g+lKWqjsbPy2Qy667LdDgc5u+UQiYhhBCrunLlCn74wx/i/PnzuHjxIlwuF2655ZamjoGCJCGE\ntFgjOq+updFVyUYFyfV+Zvbf2fLXZabT6YKvpXWZhBCycS0sAJOTwNAQsGVL836uqqoQBKGqr81k\nMjh69CiOHj0KALh48SI6OjqaHiStc5ubEEI4ous6VFVFKpVCKpVCJpMBgIat+WtWKGpFkCzFOO7s\nqa/ZU2BtNhs0TUM6nYYsy0gkEojFYlhZWcH09DTm5+eRSCSQTCahKIpZLWbpGAkhhFTnmWeAwUHg\nwx9e/fuZZ2r7ft/61rdw/vx5AMAjjzyC22+/HQDw85//HH/6p3+Kjo4OfOlLX8JNN92EV155xfw6\nVVWxa9cu6LqOSCQCQRBw6dIlAMDp06dx7do1PPbYY7jvvvtw66234r777sPFixfx8Y9/HJOTk3jy\nySfxne98B4cPH8bExAQWFhZw991349ixYzh27Bh++ctf1nZga6AgSQghTWQ0zkmlUkin02aFkJdp\nlqwFyVLyQ6bD4cgJmuFwGNFoFIqiIJlMIh6PIx6PY2VlBdFoFCsrK2bITKfTFDIJIcRCFhaAc+cA\nWQai0dW/z51b/fdqjY+PY2JiAsDq1NN4PA5FUTAxMYHTp08jkUjgxIkTeOONN3DbbbeZXycIAkZG\nRnD16lX84he/wNjYGCYmJpBKpSCKIvbs2QMAuHr1Kl566SU8k5V4h4aG8NBDD+GRRx7B66+/jvHx\ncfzVX/0VHnnkEfz617/GT37yE3zuc5+r/qBKoKmthBDSYDysfSyXlYLkeoygWWzqka7r0HV93XWZ\nRiildZmEEMKWyUnA5VoNkAanc/Xfq53ievPNN+M3v/kNVlZW4Ha7MTY2hitXrmBiYgLnz5+HIAi4\n++67i37t+Pg4Ll26hOvXr+OrX/0qvv/97+NDH/oQjh07Zn7OXXfdBa/Xu+44XnrpJVy9etX8/5WV\nFcTjcXR0dFR3YGugIEkIIQ3SzLWPrOApSJZSTvMfY11msa+ldZmEENJaQ0NA3rJ5KMrqv1fL6XRi\n165d+Jd/+RfccsstOHToEF5++WW899572LdvHzwez5rrIk+fPo1/+qd/wszMDP7u7/4O3/rWt3Dx\n4kWMj4+bn9Pe3l7WODRNw6uvvgqPx1P9wZSBv9vhhBDSQs1e+0jYU8u6zJWVFcRiMVqXSQghDbZl\nC3DhAuD1Al1dq39fuFB7w53x8XE8/vjjOH36NMbHx/Hkk0/iyJEj677/Hz9+HJcvX4bdbofH48Hh\nw4fxve99D6dPn173Z3Z2diIWi5n//5GPfARPPPGE+f+vv/569QdUAgVJQgipA97XPpaLt4pkvY9l\nvXWZRsikdZmEENJ4Z88CU1PASy+t/n32bO3fc3x8HLOzszh16hS2bdsGj8eTU1XM9uijj+LFF18E\nALjdbvh8Ppw8edL8PrFYDAcPHlz3Z9555514/vnnzWY758+fx5UrV3Do0CGMjo7iySefrP3AirBV\n+OZD71SEEPIHa619bFRwvHz5Mk6dOlX1988OuI1y7do1bN68Gb29vQ37Gc0SCATgcrmwffv2Vg8F\nwAfrMo3/zkfrMgkhG91bb72Fffv2tXoYlrLG76ysNw1aI0kIIRUy1j4a01abtbbNqPZV+3OaUS3k\nrSLJklrXZcqyjPb2drhcLjNgGg2fKGgSQgipFAVJQggpg7H2UVXVplQfi7Hb7dA0jelurxQkW8M4\nD4udj8bj8f7772PXrl3weDw5n1es+U/2tGwKmYQQQoqhIEkIISW0qvpYjBVCmhXGuNFkn6vGukyD\n8VgZ57nxb9lfkz1dNruSSSGTEEI2NgqShBCSh4XqYzFGRZJlFCTZln8Ol6pkApXvl2kETFqXSQgh\n/KMgSQghf2BUZZLJJN59913s37+fiQBpsEpIs8IYy7XRj6Ve+2UWq2YSQgixNgqShJANrVj1URAE\nxGIx5i52m1WRVNUEdD0FQeiEzeas6GtZ+53VgqdjAQqnrNaqnHWZxs2Z7J+t63pOJZPWZRJCiDVR\nkCSEbDjGdL211j5mb7PAEmOPwVq+fj2S9L+Ix38FwAZB6EB39x1wOHqaNkbSWM0KaNWGTAOtyySE\nkMo98MAD+PjHP45Pf/rTTfl5FCQJIRtGuWsfWb1QtdvtDQ24irKIePwVOJ07YLM5kMmEEYv9f+jt\n/UTZ34PV3x1hZ5ourcskhLAknV5AMjkJj2cILteWun5v4/XM6LauqioEQSj6uZlMJqcZmhWw20Oe\nEELqQNd1aJoGRVGQTCahKIpZAbHahWejp7ZqWgI2mwCbbfWNTBC6kcksVhRArLKOc6OywvluPDez\nw2J2aARWL8amp6dx9epVxONxxGIxRKNRRKNRxONxSJKEVCoFRVHMqichhOSbm3sGr746iDfe+DBe\nfXUQc3PP1Pw9JycnMTIygvvvvx8HDhyAIAj40pe+hJtuugmvvPJKzuc+8MADeOihh3DixAl85Stf\nQSKRwIMPPojjx4/jyJEjeOGFF8zvOT4+jrGxMYyNjeHy5csAVq9xHn74YYyMjODMmTOYn5+vefyV\nsFbsJYSQMrHaebUW9QhppdbJCUIHdF2Driuw2ZxQ1WU4ndsr+p1RkGQXD49LdjXTZrOZARMobP5D\n6zIJIaWk0wt4551z0DQZgAwAeOedc+jtPVNzZfLatWt4+umncfLkSdhsNpw4cQLf/va3i35uMBjE\n5cuXIQgCvva1r+H222/HU089hUgkguPHj+PMmTPYunUrfvazn8Hj8eDatWs4e/Ysrly5gueffx7v\nvPMOrl69irm5OYyOjuLBBx+saeyVoCBJCOHGemsfra7RFUmHYxM6O8cRj78CXdfgcPSgs3O8ou/B\nW5Dk6VgAa1Qky5V/U6TWdZnZAZPWZRLCv2RyEjabC0aIBACbzYlkcrLmIDk4OIiTJ08CWH1tufvu\nu9f83M985jPmDbGf/vSnePHFF/H444//YYxJBAIB9Pf34+GHH8brr78OQRDw7rvvAgAuXbqEs2fP\nQhAE9Pf34/bbb69p3JWiIEkIsTweq4/FNCOkeb03wu3eBV1PwW5vh81WfC3HWnhqtsPb+cNbKNY0\nrezHqJx1mZqmmdPg8xVr/mPF6fGEkA94PEPQ9XTOv+m6Ao9nqObv3d7envVzPGuui8z/XF3X8ZOf\n/AQjIyM5n/PYY49h27ZteOONN6BpGjweT81jrAdaI0kIsSSe1j6Wq1nbf9jtbghCV8Uh0sBbYOEJ\nT8+L7AYWtSpnXWYmk0EymYQkSTnrMldWVmhdJiEW5HJtwcjIBdjtXghCF+x2L0ZGLtS94U4l7rjj\nDjzxxBPm68dvf/tbAEA0GsWOHTtgt9vxox/9CKqqAgBOnz6N5557DqqqYnZ2Fi+//HJTx0sVSUKI\npTSr+mhU1up1oVoPtVYkmxEieAoqvOEt2NR7X8y1lDNltti6TONr8tdlZk+XpecLIa21bdtZ9Pae\naVjX1mIeffRRHD16FHfddVfBx77xjW/gi1/8Ig4dOgRN07Br1y78x3/8B77whS/g7rvvxg9/+EN8\n9KMfNauYn/zkJ/Hzn/8co6Oj8Pv9OHXqVMPHn81W4RsLX+9ChBBLWGvtY/bf9farX/0KN998M1Ot\nuH//+9+jvb0d27dvr+rrVVWFoigNDcehUAjpdBp+v79hP6NZgsEg7HY7+vv7Wz2Uurhy5QrGxsaY\nujlSC9YfH+P6ynj9onWZhDTeW2+9hX379rV6GJayxu+srBcgdq6QCCEkTyvXPjZrGmklWBxTPt6a\n7RB2aZpWct1Rq5W7LtO4wQMA4XAYmqZh06ZNtC6TEMI8CpKEEKaw0nmVxdBmhZBmhTFWgrdj4SmA\n1HONZCsUe01LpVIAkLMuc63mP8Yfh8ORs8aTp8eYEMI2CpKEECaw1nmVxSDJ4pjy8RQk6YKcbbwF\nY+CDKmsl6zJTqRStyyQkC4+vDY1S6/s1BUlCSMuwUn0shsXQZoWQZoUxbmStfl7VUyXbf1iFpmlw\nOp0lP6ee+2UaoZXWZRJeeDweLC0tYdOmTXQ+r0PXdSwtLdW0lQgFSUJI02VXH99++23s3buXuYsY\nQRCYC5J2u73oNLdyNavDJQVJ0gxWn9paTK3rPitdl5kfNIuty6SQSaxkYGAAwWAQCwsLrR6KJXg8\nHgwMDFT99RQkCSFNsVb1cWlpicmLQbvdbu7TxAq73V51SNM0DfPz84jH42hra0NbWxs8Hk/df/cU\nJEmz8Dh9rdFbDpUKhMZr9HrrMvMrmbQuk7DE6XRi165drR7GhkFBkhDSUOutfWT1AoTVqa2VjimZ\nTCIYDGJubg69vb3wer2IRqMIhUKQZRm6rsPlcsHr9aKtrQ1er9f8U+0FLQVJ0gwUJOtrvZAJIOdG\nYP7X0rpMQjYeCpKEkLpjee1juVgMkuWOSdd1LC8vIxAIIJVKYWBgACdPnoTNZkM6nc65UNV1HYqi\nQJIkyLJshsxkMmmu1zICZnbQXOti1yqPb7koFLOrlaGrUVg9plrWZdpsNqysrKCvr4/WZRLCGQqS\nhJC6qabzqlFlY+3iicUgud60UUVRMD09jZmZGXR2dmL37t3o7u42P17seGw2G1wuF1wuF3p6enI+\nZoRMWZYhSRJWVlbWDJlG0DRuIvCApumyjSqSbChnXea7776Lm2++mdZlEsIZCpKEkJrUWn0UBAGq\nqjJ38cRikFxrTNFoFIFAALFYDP39/Th27Ni6nR/LkR0yswMpUBgyY7GYuQYznU4jkUgUnS7L8gby\nxFooSFqD8RgVe+7TukxCrI2CJCGkKvXa95HF7qgAu0Eye63S7OwsgsEg3G43/H4/+vr61v391+vi\na62QubKygpmZGdxwww3mdFkjZMqyDE3T4HA4ik6XpZBJKkFB0jrWepzqtS4zv5pZ6mcSQuqHgiQh\npGyNWPvIYndUgM1x2Ww2pFIpvPXWW1heXsa2bdtw+PDhmvaAqjdjOqjT6UR3d3dBJRNATiUzHo8X\nhMzsgGn8TSGT5ON1H0negmS108NrXZeZ3/yH1mUSUn8UJAkh66pX9bEYY2orawRBqGnPxnoytu64\nfv06kskkRkdHMTIywuQFZznrCp1OJ5xOJ7q6ugo+lh0yE4kEFhcXIcsyVFU1Q2Z+JdPhoLeyjYjX\nfSR5O6ZGLF2oJGQa/0brMgmpP3r3JYQU1azOq6wGSRamtiaTSYiiiLm5OWzevBk33HADQqEQtm3b\n1tJxlVJrg5pSITOTyZjTZfNDpiAIRafL1hoyqdkOu2hqqzVomtbUGQXlNP+hdZmE1AcFSUJIjkZW\nH4thIbAV06px6bqOpaUliKKIdDqNgYEBnDp1CoIgIJFI1DSmZl0ENSp8ORwOdHV1rRkyjUqmJEkF\nIbPYdNn1QiZdNLKN1yDJ2zEZz0FWNGpdJm+PGyHloCBJCGnpvo9UkVyVTqfNrTu6u7txww03FAQm\nK2xH0aqLKYfDgc7OTnR2dhZ8zAiZRtBcXl6GLMvIZDJmyMwPmjRdln08Vu8AcHdMrAXJUipdl/nO\nO+9g7969OVVLWpdJNhJ6pyRkA2t29bGYjRwkdV03t+6Ix+PYuXMnjh8/vubWHfUYU6OrOCyG3XJD\npizLOSHTWJeZyWRygmY9tlYhteOxIskjKwXJUoqFTEmScm46Za/LzEfrMgmPKEgSssG0svpYzEbc\n/iOTyZhbd3i9Xvj9fvT29q77+8/e/qNajX6MWQySpZQKmdPT05BlGe3t7ZBlGZFIBJIkIZPJwG63\nF6zHbGtro5DZRDwGSSs9d8rF4j7B9ZTfLbaYStdlGgGTpswS1lGQJGSDYKH6WAyL22wAjQmS8Xgc\ngUAA4XAY27dvx9jYGNxud9lfb7PZmAzd2awWJEux2+1wu93YunVrwcdUVc2pZEYiEciyDEVRzJCZ\nHzSdTmfLn2884XE9IY+a3WyHRbWuy8yeLkvrMglLKEgSwjHjLmgsFoPD4ciZRsPKGxBL22xkq9eU\nW03TMDc3B1EUIQgCfD4f9u3bV9Xvn9XGRNl4CpLA2hUiQRDQ0dGBjo6Ogo+pqopkMml2mI1Go5Ak\nyQyZHo+noPEPhczq8PY74+14AH6mtjZKOesyjZCZXYU3tr+hdZmklShIEsKh/Orj22+/jRtuuKHo\n9L1WEwQByWSy1cMoUGtok2UZoihifn4eW7ZswYEDB9DW1lbTmKwQ0qwwxnJVexEmCALa29vR3t5e\n8DEjZBqNf0KhUEHIzG/8QyFzbfR7YR+vQbIZFfFKm//kfx6tyySNRkGSEE6UWvvocDiYrWSxWmWr\nZly6rmNxcRGiKEJRFPh8PgwPD9dtfZAVQpoVxthKpUKmpmk502Xn5uYgyzLS6TRsNps5RTY7aLpc\nLrog5ASvzxteg2Qmk2lpd+d67JeZP2WW1mWSSlGQJMTiyln7aHSeZBEPXVuzt+7o6enBnj17GlL9\ntcqbO68XxI1mt9tLhszs6bLz8/OQJMkMmdnTZY2gSSHTWnjdzkTTNLhcrlYPo+5YD8jlrMs0pssW\nI0kSenp6aF0mKYmCJCEWVGnnVVbDGsDu2NYLkrquIxKJQBRFJBIJ7Ny5EydOnNjw+w/SRUZj2O12\ntLW1FZ0ebYRMY7rswsICZFlGKpUyQ6bX60U6nUY4HKaQyShegyTrgatara5I1mK9KbOpVAq///3v\ncfDgwYIps0bVslg1k6bMbjzWfAYQskFV23nV4XAwGdYA6wXJTCaDmZkZTE9Po62tDX6/Hz09PfTm\n+Qc0tbX5skPmpk2bcj6WHTLn5ubWDJnZ02Xdbjedzy1AQdJaeD0um80GVVXhdDoLjq+cdZmlOszS\n6wp/KEgSwrh67PvIalgD2F4jmR2IYrEYRFFEOBzGjh07cPPNN3M5XatWvAVJqx9Ldsh0uVzYu3ev\n+TFN05BKpczpsouLi5AkyQyZbre7YLosSyHT6o9NPl6DJK/HZeWK5HrWOrZy1mUaIbPUuszskEnr\nMq2Nz2cAIRzIDo/GBVO1d/RY3WIDYDvk6rqOmZkZiKIIh8MBv99f9dYdGwVPQZL3xzl7v8t8uq7n\nTJddWlpCMBg0Oyznd5f1er3weDzc/84aidfAxWvljtfjAgBFUaoKyeWuy1wrZBp/HA6HGTApZLKN\ngiQhDKlH9bEYVrfYANgMkpIkmWsf4/E4Dh06VPRi24qa8YZMb/rsqTTcZ3eJ7evrK/heRsiUZRlL\nS0vmdFld14tOl6WQuT4KktbCe0XS6XTW9XtWsl+mMSsi+2uzp8uKooht27ahq6urrmMklePzGUCI\nxdSz+lgMrZFcn67rWFhYgCiKUFUVPp8P7e3tOVMBCbGyer2eZIfMfEajDmO67PLysjldVtf1NafL\nVhOgeAvskUfEAAAgAElEQVSmFCStRVVVbpc3NDskV7pf5t///d/jL/7iL3DixImmjZEUR0GSkBZp\nVPWxGEEQmN3+o9VTIVOpFKanpzE7O4ve3l7s3bvX3Lrj+vXrLRtXoxRrjkD416znmNHAx+PxFB1D\nKpUyp8uGw2HMzMwgmUyaIbPYdNli4YqX6dPZeA6SPB5XJpMp2kWZB4qiFN2GqBWKhcxwOIzNmze3\nakgkCwVJQpqs0dXHYlip+hXTilCj6zrC4TBEUYQkSRgYGLDU1h0UBpuHl8DCwjmTHTJ7e3tzPqbr\nOtLptFnJXCtkZlcxecNrkNQ0jduKJI/HBTRmams9UZBkhzWumgixuGZWH4theWprM2UyGUxPT2N6\nehodHR0YHBxEd3d3yceAhQvwbEY32VrGxNoxsYp+R81jdIl1u93rhsxIJIJEIgFJkvDaa6/B5XIV\nTJddq5LJMl6DJK+vN7yvkWT52OLxuDlziLQWu2cJIRxoRfWxGJantjbDysoKRFFEJBJBf38/jh49\nWtbaFmPaLUsXQTabreoLTuPc46XKRsrH2nlciWIhM5PJ4M0338SRI0eQTqfN6bLRaBShUAiyLEPX\ndbhcroLpsl6vl8nAxmuQ5BXvFUlWg2T2tRRpPTbPEkIsrNXVx2JYntraKKqqYm5uDqIowul0wu/3\nY3R0tKLHQBAE5i7uWN13k5Bm0jTNfE01QmZPT0/O5+i6DkVRzEqmETKTySQ0TYPT6TQDZnbQbNXz\nnbXXmnrh9YKf5bBVK0VRmJ3aSkGSLXw+AwhpAVaqj8VYIUjWq2JibN2xsLCAbdu21bR1h91uh6qq\nTF0sUEWRVMPKFclidF1fN3TZbDa4XC64XK41Q6ZRyVxZWVkzZGZPl21kBYrXIMnr61Umk+G2Isly\ntVWSJGYaAREKkoTUxKg+Gut1urq6Wl59LIalsRRjBN1qA5uxdUcgEICu6/D5fNizZ0/NF2UsVv9Y\nHBMhzVZrMM4Omd3d3QXf2wiZsiwjFothfn4esiybIbPYdNlaL7w1TWPqplU98HYDI1s5NzOsjNXH\nbWlpqWAdNWkdvl6xCGmS/OpjNBrF0tJSwV1vUp5qw1EqlUIwGEQoFEJfXx9uvPFGdHR0tHxcjWQ0\n2yHNwcvvmrcLemNqayOUCpkAcqbLxuPxnJDpcDgKKpnlhkweK5IsV7bqgafnlFUsLy9j06ZNrR4G\n+QMKkoSUqdTaR5fLtaGb2dSqkqm3uq5jeXkZoihClmX4fL6Gbd3BYpA0mu2QxuPtIpGn42llNcjp\ndKK7u3vNkGlMl00kElhcXIQkSWbIzK9ktrW1mUGLgiRhAes3z5aXl9HX19fqYZA/oCBJyDrKWfto\nla6orFYlygmSiqJgZmYG09PT6OzsxK5du4peyNUTi0Gy1ookrbHcmHh7zFl9LXM6nXA6nejq6ir4\nWPZ0WSNkyrJsTus3Pq7ruhk0rT7VlcdwDPD3fMrGehMhqkiyhd0zhZAWqrTzqhX2aTRCEYt3h43u\nqMVEo1GIooiVlZWKtu6oBxaDJFUkSbVYDF7VYjVIllIqZGYyGbzzzjvweDyQJCknZAqCkFPJNP5m\n+WLfwGtFkteADLAfJMPhMAVJhrB7phDSAtV2XnU4HMxXJI2qH4tv6kZ3VIOqqgiFQhBFEW63G36/\nH/v372/J/pushTYWwy1hH28VFN4u5B0OBxwOBzZt2lQw0yKTyZiVTEmSsLy8DEmSckJmftBkJQiw\n+p5TK9a6edeToihMH1s4HIbP52v1MMgfsHumENIk9dj30Qrbaxhht1nVvEoYv79EIgFRFLG4uIjt\n27fj8OHD8Hg8LRtXfsBlgVWmplqxYsQz3h4P3o4HWDscOxwOdHZ2orOzs+BjxUKmLMvm1hTZXWWN\noNnM/QFVVeUq8Bt43vojk8kwu4ckQFNbWUNBkmxY9dz30QoXNKyGXU3TIMsy3nnnHbhcLvj9fuzd\nu5eJiw8Wq38sjimfEXat8LxYjxVC+0bEy/mVrZoqa6mQqaqqGTBlWUY4HDZDpt1uLzpdtt4BgtXl\nFLViffpnLVg/NgqSbGH3TCGkAYzqYyaTMUMVi/s+NgJr6ziTyaS5dYfT6cTOnTsxNDTU6mHlYDG0\nWWH7D6tUTdfD02sCb8Grkdt/tEq9p+sKgoCOjo6iWyIZIdMImpFIBJIk5YTM/KBZTcjkeWorj8cF\nWCNIbt68udXDIH/A7plCSB3Vs/q43s9h9eKGhYqksXVHIBBAKpXCwMAATp06hWAwyOSbMotB0grN\ndngJkoRdLL/WVquZ6z7LDZmyLCMSiUCWZSiKkhMy8yuZxR4PXgMX62GrFoqiwO12t3oYa4pEIlSR\nZAifzwJC0PzqI8tdUYHWblGiKAqmp6cxMzODrq4u7N69O6ehBAshtxgWg2StY2rWxTcFSbbwFrxa\nuY9ko7DSQGi9kJlMJs3psqFQCJIkmSHT4/HkVDFTqRST6/JrxWtABlZDcrHHnhXpdLqlvRNILgqS\nhDvNqj7mM5rZsPrm0oqwFo1GEQgEEIvF0N/fj2PHjhWdHiUIAhRFaerYyiEIAtLpdKuHkcMK1T6e\nAgthE2/BGGAnSJYiCALa29vR3t5e8DFjvbsxXTYUCmF5eRm6rmNmZmbN6bJWfBx5rkiyfGysv/dt\nRGyeKYRUiIW1j0aQZHVKSLO2KFFVFbOzswgGg/B4PPD5fOjr6yv5OLDYHRVgc1wsVknzWSHsbjS8\nBS9aI8keu91eEDLff/99dHV1oa+vL2e67NzcHGRZRjqdhs1mKzpd1uVyMfsYq6rKdGfTWrC8/YfR\nBZjV82IjYvNMIaRMrao+FsP6XpKCICCVSjXs+8fjcYiiiKWlJezYsQNHjhwpO1TT1Nby1SOkNTpU\n8BQkeTkOgK9KMY9TWwG+HiPggymgxUKmQdO0nOmy8/PzkCTJDJnZ02WNoNnqkMly1a5WLG//EY1G\nC/ZZJa3F57OAcI2F6mMxrAdJh8MBSZLq+j01TcP8/DxEUYTNZoPf78fIyEjFF3gUJMvHYpU0Hy9B\nkqeLeh4ej2y8VVh5Vc5aQrvdjra2NrS1tRV8zAiZxnTZhYUFyLKMVCplhsz86bLNCJm8r5FkNSQv\nLy+jr6+v1cMgWdg8UwgpgqXqYzGsB8l6hrVkMglRFDE3N4ctW7Zg//79RS8CysViYAPYHJfdbmdy\nPWk2XoIkb1h5rawHCpLWYExFrFZ2yMzv1JkdMmVZXjNkZgdNt9tdl/OG5bBVK5ar/RQk2cPns4Bw\nw6g+rqysmNMkbTYbky9yVgiStYxP13UsLS0hEAhAURT4fD6cOnWqLndlqSJZvmpDmq7rCIfDmJqa\nQiaTMS/OjIusel1g1TJG0ji8PR4sd8gmH2jk47ReJTOVSpnTZRcXFyFJkhky3W53wXTZSl4Dea5I\nsmxpaYm2/mAMBUnCpPzq4//8z//g1KlTTAZIgxWCZDVhLZ1Om1t39PT0YHh4GF1dXUyMrdFYDJKV\njklVVczMzCAYDKK9vR2Dg4Ow2+3mnfylpSWIophzFz87YFbTWZGCJJt4quCxXDUhH2hV4Mre7zKf\nrus502WXlpYQDAaRTCYBoGC6rNfrhcfjyXn+8FqRZP11OxwOU5BkDH/PAmJZa619tNvtcDgczHe0\nczgcDW1mUyuHw1F2WNN13dy6Ix6PY2BgACdOnGjYGycFyfKVG9IkSYIoilhYWMCOHTswNjYGt9sN\nVVWhKEpZ65Hm5uZy9ojLvntv/Cl2TlCQZA9vjwdNbbUGFit32V1i86dJZodM40abMV1W13UzZMqy\njGg0ivb29oKQaWWsX2ctLy9j+/btrR4GyUJBkrRcOWsfjWofy3cAa5062mjljC+TyZhbd7S1tcHn\n86G3t7fhb5IsBjZg9XfG2rhK/a6ypx9nMhn4/X7s2bOn7AuDUuuRsjcilyQJ4XAYsiybe6dmVzEV\nRWHyxkA1eAlgvAUv3rb/4OU8y8d6MMmXHTLz6bpuTpedn59HJBLBzMyMGTLXmi5rpeNnuWMrsBok\n9+/f3+phkCzsXpUTrpWqPhbjdDqhKAo8Hk8zh1mRSip+rVBqfPF4HIFAAOFwGNu3bzerV83CckWS\ntXHZbLaCIJnJZMzpq11dXQ2bfrxW+/5MJmNWMROJBCRJwttvvw2bzQan01kwVdbj8Vji4oqnoMIb\n3qa2Wi1wlYunGxjG1H+PxwOXy4Xh4WHzY0bINF4Hw+EwZmZmkEwmzZBZbLosa485y3tIAjS1lUXs\nni2ES9V2XnU6nUxX+wD210jmBxBN0zA3NwdRFCEIAnw+H/bt29eSN31WLzRYrJTa7XbzuZNIJBAI\nBLC8vIz+/n4cPXoULper6WNyOBzo7OxEZ2cnACCVSqG/vx9dXV1QFMWsYkajUYRCIciyXHBxZVxg\n8TRNjCU8XdAD/B0Pr0GSp8eolOyQ2dvbm/MxXdeRTqfNxj9GJdMImS6XK+dmWytDJuszvyhIsofd\ns4Vwo9LqYzEOh4P5LQ+sECQBQJZliKKI+fl5bNmyBQcOHKhp6w6esRgkbTYbEokErly5Al3X4ff7\nceONNzJ1wZa9RtLpdKK7u7tgE+nsiytJkrC8vAxJksyGF/lt+1nYhNzqePrdUZC0Bh6n7FZ6TEaX\nWLfbvWbINCqZkUgEs7Oz5s02l8tV8DrYyJBphSC5efPmVg+DZGH3bCGWV899H6kiWRtd18325//7\nv/+LgYEBDA8Pc3nhUk8sBUlFUTA9PQ1RFAEAR44cQUdHR8XfpxkX3+U021nv4spYj2nsDydJEtLp\ntLmGKbvhj9frZXpdDwt4u6DnbY0kr0GSR/VsIJT9OtjT05PzseyQaTT3yZ7RYYTM/CmztZxHiqIw\n/VoajUYLfk+ktShIkrqqR/WxGKpIViedTiMYDGJ2dha9vb1wu904fvx4q4dlGSxcqMZiMQQCAUQi\nEezcuRMHDx7E1NRUVSGyWWrt2lqq4YWmaebde2OamCRJZtOf/KmybW1tzHWNbBUWzud6oTWS7OOt\namxoVifa9UKmoijma+HKygpCoRCSySQ0TctZm55dyVxv3CxXJHVdh6ZpzI5vo6JHg9RFPauPxTid\nTnPKG6tYecPUdR2RSASBQACSJGHnzp3m1h2XL19m+s2d5bE1k6ZpWFhYQCAQgN1uh9/vx+joqDmt\nlfXqUiO3/7Db7es2/TEurhYXFyHLMlRVhcPhKAiYtd69txLWz5lK8fZawWOQZHHrj3pgIWzZbDa4\nXC64XK6iywayQ2YsFsP8/DxkWTZDZn4V0+v1mp3dWW5qCLBzrUVWUZAkVWtU9bEYFqt9rDE6d05P\nT6O9vR1+vx89PT05L7pGd9RWvwkWY4SPjfwmkV1B7uvrw+joaEFgYmm67VpatY9kftOfbEbTH1mW\nEYvFMDc3lzNFLD9kGk1/eAlgvD23aGor+3gNkqy+hxrWC5mZTCbntTA7ZCqKgo6ODkiSlBM0WXgc\nU6lUS5rJkdLYfSYQZjW6+liMsf0HKZQ99bG/vx8333zzmi+2xhYgLL4JGiGXt4upcqysrGBqagqx\nWAwDAwNmBbkYq4Qb1sZYTtMfWZZz2vYbN6/y12VS05/W4zEY8/bax+vruTGN3oqMLZmKvRYCwO9+\n9zuzmU08Hs8JmQ6Ho6DxTzND5vLycsF6etJ67F1NEiY1s/pYjFUqksYWG43+vWiahlAoBFEU4XQ6\n4fP5zKmPpRhTV5q5R2S5jCDJ8kL/ejK2XwkEAnA6nRgcHERfX9+6j6FVKpJWUarpz/LyMubm5tDX\n1wdJkrCwsABZlpFKpXLWcWY3/mH1/OUteNEaSfZpmmbZwFUKr5VWYPUx6+npKTq9NXu6bCKRKFg6\nUKzxTz1vWi8vL9PWHwyiIElKyg6Pzao+FmOViqQReBs1/UKSJIiiiIWFBWzduhWHDh0q2pBkLUZY\nY5EgCMwHpHpIpVIQRRGhUAhbtmyp+DGsR5Bs9PPXKlXT9dhsNjgcDvT19aGvry/nY5qmmZ1lJUlC\nKBSCJElQFAV2uz3nrr3x3yzOBLAq3oIxj0GS18DFwhrJRil1bE6nE06nE11dXQUfM0KmLMsFIVMQ\nhIIqZjWvh8vLywWvw6T1+HwmkJq0uvpYjFUqko0IkrquY2FhAaIoQlVV+Hw+7Nmzp6rHw5jayiK7\n3c7s2Opx0RqJRDA1NQVJkuDz+XDq1KmqLrKsENKsMMZaGWGx2B6sqqqad+6z98jMvnOfv31Jo19f\neQtevB0PBUnr4PW4gOqPrVTINJqgGa+H+SGz2HTZYiGTKpJsoiBJTKxUH4thYQzlqGfgTaVSCAaD\nCIVC6O3txcjISM1bPhhTW1nEarXUqABW8+aqaRpmZ2chiiI8Hg8GBwcLGiBVOx6WbYQgWYogCOjo\n6Cj6fC3VTTF783HjgqqRm49bGW/Bi7fjAfheI1nsBhIv6n29VaoJWn6n7eybbplMBufPn8euXbsw\nPDyMubm5ivaQ/M53voN//ud/hs1mw8GDB/GDH/wAs7OzuOeee7C0tISbb74ZP/rRj+ByuZBKpXD/\n/ffjN7/5DTZt2oTnnnsOQ0NDAIB/+Id/wIULFyAIAs6fP4877rijXr8aLlCQ3OBYrD5aWa1BUtd1\nhMNhBAIByLK8buOVSrEa1gB2x2ZMua0kSCaTSQQCAczPz2Pbtm04fPhw3VqqW+GmCk9Bst7Hsdad\ne6Nlv3HXPhKJmE1/dF2Hx+MpuHPvdrvLPh94q+Dxdjy8BkkeK3c8T21ttlIhM5VK4Ytf/CLeffdd\nXLt2Db/5zW+wuLiIZ599Fm1tbbjhhhswPDyMPXv2YHh4GHv37jUbCE1PT+P8+fO4evUqvF4vPvvZ\nz+LZZ5/Ff/7nf+KRRx7BPffcg4ceeggXLlzA5z//eVy4cAG9vb1477338Oyzz+Jv/uZv8Nxzz+Hq\n1at49tln8X//93+YmZnBmTNn8O6773J5XleLngkblBEel5eXoSgKNm3axEz1sRTWLx6qDZKKophb\nd3R0dGBoaAjd3d11P1ZWwxrA7hpJY8rtek1UjJsAU1NTSKVS8Pv9GB4eZu7isBnPH16CZDNfa7Jb\n9hfbfDyVSpmdZZeWliCKotn0x+PxFGxf4nQ6C8bP8mtnpVh/L6gUjxutU7Mda2FtSx23242TJ0/i\n5MmTAICvf/3r+NjHPoaPfvSjSCQSeP/993Ht2jW89957ePnll3H48GF84QtfML/eqHY6nU5IkoQd\nO3bg5z//Of71X/8VAPBnf/ZneOyxx/D5z38eL7zwAh577DEAwKc//Wk8/PDD0HUdL7zwAu655x64\n3W6zMvraa6/h1KlTTf99sIqvVy1SUrHqYyqVwsrKCrZs2dLi0a3PCGmsdkUEKg+SKysrCAQCiEaj\n6O/vx9GjRxu6TxLLa01ZXSO53lRSVVUxMzODYDCI9vZ27N69u2hb9Y2ElyDJCiMsFqtqZzf9kWUZ\nc3NzOU1/jGCZTqdhs9m4qaawdtFbK1VVudsjj9WtpmrFy3MoH+vHFQ6HzTWS7e3tOHjwIA4ePFj0\nc3fu3Ikvf/nL8Pv98Hq9+MhHPoKbb74ZPT095jEODAxgenoawGoF0+fzAVi9Turu7sbS0hKmp6fN\nIJv/NWQVu2cMqZtSax9dLpcluqECq1PCWA+S5axBVFUVoVAIwWAQLpcLPp8P+/fvb8pFkSAISKfT\nDf851WC1WrpWkJQkCYFAAIuLi9ixYwfGxsaY3FalVShINkc5TX9kWUYoFEIqlcIbb7yR00mxVXvC\n1Yq37T94Ox5g9fzj8TWR14ok60FyeXnZ3ONyPeFwGC+88AKuX7+Onp4efOYzn8F//dd/NXiEGxO7\nZwypSblrH62yrQawepdIUZSKtkpoNofDgVQqVfRjiUQCoihicXER27Ztw0033VS3dXOVjI/FsAZY\nI0jquo6lpSUEAgFkMhn4/X7s3buXuwvAWvFUKbKy7KY/mUwGmUzGvOueyWTMKmYikTD3yNQ0DU6n\nsyBkstj0h6fzjNc1krwdE8B+4KoW68eVXZFcz0svvYRdu3aZs+0+9alP4Ze//CUikYh5nMFgEDt3\n7gSwWsEURREDAwPIZDKIRqPYtGmT+e+G7K8hq9g9Y0hVKu286nQ6ma1Q5bNC6HU4HEgkEub/a5pm\nbt2h6zp8Pl9LgwfLXVvtdjuTj68xrqmpKUxPT6OrqwvDw8NF25yTVTabjcn1rpXiKajkryl0OBzo\n6upas+mP0UUxGo0iFApBlmXoug63212wR2YlTX9IcTwGSVojaS2KojA940uSpLI71/v9frz66quQ\nJAlerxf//d//jaNHj+KP/uiP8OMf/xj33HMPnn76aXziE58AANx11114+umncerUKfz4xz/G7bff\nDpvNhrvuugv33nsv/vqv/xozMzO4du0ajh8/3sjDtBwKkhyopfOqMV3UClhe32cwxphMJs2tOzZt\n2oQbb7yx5q076oHVqh+wOrZkMtnqYeRIJBKIRCJYWlqCz+dr+BpWXvC0RpKX4yhXdtOf/LW+uq4j\nnU6bnWWXlpYQDAaRTCbNdZz5e2QWa/pDCvEYJHkNXABfN5kMLFckswsj5Thx4gQ+/elPY2xsDA6H\nA0eOHMGf//mf44//+I9xzz334G//9m9x5MgRnDt3DgBw7tw53HfffRgeHkZfXx+effZZAMD+/fvx\n2c9+FqOjo3A4HPjHf/xHbs/parF5xpCy1GPfR7vdbpkLJdYrkrquI5FIYG5uDtFoFAMDA1VvOt8o\nrAdJFsam6zoWFhYQCASg6zq8Xi98Pp8lGlKxgqcgyYt6dDm12Wxwu91wu93o7e3N+ZimaWZnWUmS\nMD8/D0mSkE6nzaY/+Xtkslz9aDYep4HyeEw84ylIAsA3v/lNfPOb38z5t927d+O1114r+FyPx4N/\n//d/L/p9vv71r+PrX/96BaPdWNg8Y8i6MpmMGao2yr6PxhpJ1iiKgunpaczMzJgXSqxOfWC5qtvq\nIGk8jtPT0+jt7TWryO+99x6FogpRkNx4ssNi/jomTdPMqbLGHpmSJCGTyUAQhIIqppWa/tQLj812\neJ3ayitFUYo27WJBPB4vutckaT0KkhZWz30frTCtxtgLiBXRaBSBQACxWAz9/f04duwYdF3HG2+8\n0eqhranVYa2U9bbZaJRYLIZAIIBIJIKdO3fi+PHjOZUSFrclMYIaq9OrKEiyp5VBxW63o729He3t\n7QUfM/Z6kyQJiUQCi4uLkCTJ3FcxP2B6vV7m36uqYYX34ErxOLWV59c1liuSS0tLBbMgCBvYPGPI\nuuoZIo0po6y36WZhPaeqqpidnUUwGITb7Ybf70dfX5/5WGia1vIxlsJykGzm2IwmSIFAAHa7HX6/\nH6Ojo0WfU60KuKUYzWxYvUijIEnK5XA40NnZWbTaoCiKWcVcWVnJafojyzLefffdgs6yrN5cWQ/L\nz+dq8RgkWQ5btWL52Crp2Eqai80zhqyrnm+Wxl6SrAfJVk5tjcfjEEURS0tL2L59Ow4fPlx06w7W\n15yyPL5mBMl0Oo1gMIjZ2Vn09fVhdHS0aJUkG4tB0hgTyxdprJ5nlbBqKCmG5Qr2WpxOJ7q7u4s2\n/fnVr36FLVu2QJZlhMNhTE9Pm826PB5PwfYlLpeL6eNXVZXp8VWDqqzWwnKQXFpaQl9fX6uHQYpg\n84whTcV6ExtDs8epaRrm5+chiiJsNht8Ph9GRka4e2NkRSMD28rKCqamphCLxTAwMIATJ06U/YbJ\n8tRWVrE+vkrwchw8MfoC9Pb2Fkx303UdyWTS3CNzYWHBbPpjs9nMYJm9LpOFpj88hi6Ar5sxANth\nq1Ysb/+xvLxMFUlG8fls2ADq+eJslSDZrEYxyWQSoihibm4OmzdvLqtqRWpX74qkpmmYm5tDIBCA\n0+nE4OBgzjTkcrG4vyWLVdJsvF088sCKFclS1joWIyx6vd6CjxlNf4w1mbOzs2bTH7vdXhAwvV5v\n00IDj812eLwJw3tFktVjC4fDVJFkFAVJAqfTiXQ63ephrKuRUx91XcfS0hJEUUQ6na556w7eLtqa\noV6PbyqVgiiKCIVC2LJlCw4dOlT0orJcLIa2WqcoN/rc5KkiyRNeXpOqPbdKNf1RVdWsYhp7ZMqy\nDFVVc5r+ZFc06x38eHl8eMZzRRIAszczwuEwhoaGWj0MUgS/zwbO1XuNZCqVqtv3a5RGvMmm02lz\n647u7m7ccMMN6Orqqul7GpVTVqeIGI1aWHvDqCUc6bqOaDSKqakpSJIEn89Xtz08BUFgLkgajyGr\nKEiyh6fHoxE36gRBKNn0xwiYsVgM8/PzkGUZmqbB5XIVVDKt3PSHlMZzRZJly8vL2Lx5c6uHQYqg\nIGlh9bpYczqdiMfjdRiRNRihIxAIIB6PF93yoRasB0mj8sdakKyGpmmYnZ2FKIrweDwYHBxET09P\nXS/iWFwjWWuVtNEVc56CJE/HwUu4afaxOJ1OOJ3OgpuMuq7ndJYNh8OYmZlBMpmEruvweDwFe2Su\n1fSHl/PMoGkaN+dbNl4rkqyff7RGkl38PRtIxayyRhKorZqWyWTMrTu8Xi/8fj96e3vr/mbXrLWc\n1XI4HFBVldmgW45kMolAIID5+Xls27ZtzS669cDi1FbWgxrr4ysXjxfCPGAlpNhsNrhcLrhcLvT0\n9OR8TNd1pFIpM2Qa+2OmUqmcdZxGwNR1nauwz3pX6WoZU515w3qlNRwOU0WSUfw9GzaQelYkrRIk\njZDmcrnK/pp4PI5AIIBwOIzt27djbGysoVudsB4kBUFgenxr0XUd4XAYU1NTSKVS8Pv9GB4ebnhl\nlcUgWY8xNfKilZcgyROeQooVGtPYbDZ4PB54PJ6CJiGapuV0lg2FQkgmk/j1r38Nu91eUMVsZtOf\nemE9mFQrk8k07KZlKymKwvQ5FolEqNkOo9g9a0jTWKXZDrA61nKCpNGxUxRFCIIAn8+Hffv2NeVC\nirmUG4EAACAASURBVPWg1oz9GutJVVXMzMwgGAyivb0du3fvLthXrpFYDJK1BDWbzdbwoEdBkjSS\n1UOx0SG2ra3N/LeVlRUcO3YMqqqa6zElScLy8jIkSTKDWX7A9Hq9TAY2XoMkr8fF8nIcAJbY63yj\noiBpYfV6IzXCmRU4HI6S1VNZliGKIubn57FlyxYcOHAg5826GYypo6xiPUgaF4mSJCEQCGBxcRE7\nduxoeCV5LSwGSRbHlI+CJFusHr6ysTK1tV6yj0cQBHR0dKCjo6Pg8zKZjBkw4/F4TtMfp9NZ0FnW\n4/G0rHLLyzr8fLyukWT5uOi9hG1snjWkqaz0hlxsGq6u61hcXIQoilAUBT6frylTHtfC+tRWlsdn\nt9sxPz+P6elpZDIZ+P1+7N27t6UXJNS1tXJWek3ZSHh5XKwwtbUS5QZjh8OBrq6ukk1/ZFlGNBrF\n7Oys2fTH7XYXhEy3293Q84HnNZI8HhfLQdLY55WX1y/esHnWkLJsxCdVdghKp9MIBoOYnZ1FT08P\n9uzZU7R1e7OtVzVtNRYrkplMBtPT04jFYgiFQhgeHq55G5Z6YbVrK8t3aWlqK3t4ejx4qq4CqHk7\npnKb/siybO6XbDT98Xg8BduXOJ3Omn+/FLisheU1kpFIpOC8Juxg86whTWez2Szxwu9wOBCNRjE/\nP49EIoGdO3fixIkTTL0AOhwOyLLc6mGsiaWpt4lEAlNTUwiHw+jv70dfXx/27t0Lr9fb6qGZWJxG\nyuKYsvESJHk5DgMv4Yu3IKnresPee7Ob/uQzmv4YazLn5uYgSRIURTGb/uQ3/in3vdYK1xPV4PW4\nKm1i2Ey09Qfb2Ln6JhWr5xupy+WCoijMvkBmMhnMzMxgamoKgiBgdHS07vsF1gvLU0eB1YpkKyum\nuq5jYWEBgUAAuq5jcHDQbIS0srLCTMg1sBjaWA84rI9vI+Lp8eBtjWSr1hNmN/3Jv1BXVdXsLGvs\nkSnLMjKZjNn0Jztk5jf94XWNJM9Bstn9JMq1vLxMHVsZRkGSAPhg7SFrba1jsRhEUUQ4HMaOHTsw\nPDyMeDyO3t7eVg9tTVYIkslksuk/V1EUTE9PY3p6Gr29vbjxxhsLGkqwOO2WxVBUa7ilrq0bEy/h\ni8c1kqwdjyAIaG9vR3t7e8HHMpmMWcVMJBLmHpnZTX+MqZKSJLW06U8j8PI8ysbylN2lpSWqSDKM\nzbOGlKWeL2Ys7SWpaRpCoRBEUYTD4YDf7zcrVpFIBJFIpNVDLMkKQbKZYS0WiyEQCCAajaK/vx/H\njx9fs804q41tWMN6UGN9fBsRT48Hb1NbWQySpTgcDnR2dhbtSWA0/QkGg0ilUnj//fchy7LZ9Ce/\niunxeLh6LK1KURRmt/+IRCIUJBlGQZIAYGMvSUmSIIoiFhYWsHXrVhw6dKhgrRzrjWwA9oNkM8an\naRrm5+chiiLsdjv8fj9GR0fXvWBgsbENi1icbpuNgiR7eApfvE1ttVqQLMXpdKK7uxvhcBhtbW3Y\nunUrgNXzL51OF+yPacyOyV6Pafztcrm4epxZxnJFcnl5GTt37mz1MMga2DxrSFkasUay2Yz1cqIo\nQlVV+Hw+7NmzZ803VZYqp2thPUg2siKZ3Um3r68Po6OjRadGtWJsPLHb7cw/DyhIkkbhKRQDfAVJ\nQ/4aSZvNBrfbDbfbXbA0Rdd1cz2mLMtYWFiAJElIp9Ow2WwFDX+8Xm9Lqme83cDIxnqQPHToUKuH\nQdbA5llDylavO/9Op7OpnUZTqRSCwSBCoRB6e3uxd+/esrbuYD2kAexXixrRtXVlZQVTU1OIxWIY\nGBioupMuBcnyVPu8N4L+zMwMAJit/7P/1KP1P08XW7wEYp7CF62RZF8l+0gaYbFYt25N08z1mLIs\nIxKJQJIks+lP/lTZtra2hjXD4bXRDsD2vp/UtZVtFCQJgNUgubKy0tCfoes6wuEwRFGEJElVBQ4W\n19DlY/1irV5hTdM0zM3NIRAIwOVywe/3o6+vr6bjt8Ljy4JKb1bE43FMTU0hGo1iYGAAR48eBQBz\nf7lirf/zA2Z+V8ZSeJnayvpzuVK8HA9PoRjgM0jWK3TZ7fZ1m/4YQXNxcRGyLENVVTgcjoKA6fV6\na/o9s1y141k4HKYgyTB6RlhcPSuSjZoqZ2w2Pz09jY6ODvj9fma37tgIBEGoqaqbSqUgiiJCoRC2\nbNlSdC1rtVheI8nSxWs5z3td17G0tITJyUnouo6hoSFznaqiKNA0zawCFGv9bwTMRCKBhYUFyLIM\nTdPgcrkKQqbb7c753fASJHnC0+PB0nOxHihIVqecpj+yLCMWi2Fubs5s+pP9GmaEzHKa/hhVUNJc\nFCTZRkGSAGhMs52VlRWIoohIJIL+/n4cPXqU2Q1vG4HVi51qKpK6riMajWJqagqSJMHn8+HUqVN1\nf1MVBKHlTZ+KMYIRK49nqYqkqqqYmZmBKIro6urCyMhIwYXWeschCELRC7T8hhlLS0sQRRGpVCpn\nLZPX60Umk6E7+Ixh5fytFW/Bi7fjAVq/j6TR9Ke7uzvn37Nfw2RZRjgcxszMDJLJJHRdN6f7Z0+Z\nNZr+GJVO3qiqyvRrw8rKCnp6elo9DLIG/p4RG0y9nvz1arajqipCoRCCwSCcTid8Pl9Z3TorYVSt\nWL4zaIQ1Ft90KnksjMdTFEV4PB4MDg42tJrM6hpJI7ixcrFnt9sLKkzJZBKBQADz8/PYsWNHQ27c\nlGqYkb2WyWiU8eabb5phMr+KydvecqyjiiS7WHptqRdW36PLafpjvI4ZMzGMG2XGYzQ7O5uzptzq\nMpkMs8eh6zp0XWfyXCKr2LvKJS1R6wV89tYd27Ztq+t0x3xGwx2WX1iMMbIYJMuRHUq2bduGw4cP\nw+PxNPznstqoiLVx2Ww2czzRaBSTk5OQJAmDg4MYHh5uyUVp9lomXdcxPz+PsbExAB9MM5MkCdFo\nFLOzswUVgHo3/CG5eApfPB0LsBokrfpesRaWm7esJbvpT19fX87HNE1DMBhEPB6HoigIhUIFa8rz\nG/9Y5TG1wrUKT8933rB95pB11evJVc330TTN3LpD1/V1t+6oF2M9p9vtbujPqUWt6xBbwWiGNDU1\nhVQqBb/f3/RQwnpFkhU2mw2JRAK/+tWv4HK5MDQ0VHGluJEX4/nft9Q0M6Ptf70b/tQLT5U8XvC2\nDQOPFUnejslut0MQBHR3dxfsaaiqas5sDGOPTGNWUrHtS1j63bAcJGVZbspNbFI9Ns8c0jLlXFwa\nW3fMzs5i06ZNuPHGG9HR0dGkEa5elLIe0hqxxUa9GY+1saYuGAyivb0du3fvLrjgbxZWgyQr3WQV\nRUEwGIQoirDb7RgbG0NbW1urh1W17ApAvRv+1Gt8vOCpisfbVDfeQhfA1/lmUFW16HIBQRDQ0dFR\n9DpIURQzZMZiMczPz5uvY06nsyBgtmLKv6IozAbJ5eXlginIhC1snjmkbPV8oS61rk/XdSwvL0MU\nRciyDJ/Ph5MnT7bkxcfhcDC/GTvr+13a7XYkEgkEg0EsLi5ix44dGBsba3mVl9Wura0eVyKRwNTU\nFMLhMHbu3ImDBw9CFEVLh8j11NrwJ/sPqxdJpDq8hRQegySPMplMxa+5TqcTTqcTXV1dOf+u63rO\nlP9IJFLQ9Ce7eVmjbpYBbK+RXF5eLphmTNhC767EZEwZzb7oUhQF09PTmJmZQWdnJ3bt2tWyapXB\nKhVJFsdobAmRSCTwu9/9DkNDQ9i7dy8zFzGsVP7ytWJqq3HzZmpqCplMBoODg9i3bx9sNhvi8fiG\nnXJZScOfcDgMWZap4Q/4Cl80tZW0Qj0bCNlsNrhcLrhcroKOpLqum3v8yrJccLMse125ETJrWVfO\n8tTW5eVl2vqDcWyeOaRs9XwzNYKk1+tFNBqFKIpYWVlhbusOqkhWLnsvz66uLnR2duLAgQPMVbRY\nndrazCCpqipmZ2chiiI6OjowPDxccDe71vHwdBGerdTm5cYUs0QiUXbDH8ImXde5Cl4UJK2hWYHL\nCIvF1gZqmmauK5dluWBdeX4Vs5wZGYqiFH3NZMHy8jI2b97c6mGQEihIEpMgCJidncXVq1fhdrvh\n9/uxf/9+5i46nU4nEolEq4dREitBMntKZPYNgTfffJPJwLaRg2QqlUIgEMDc3By2bdtWcqpxse0/\nSGmlppit1fAHWL14nJycbGnDn3rgqSLJ07EA/AVJ3irGBha2NMluQpbPaPpjzMoIh8Nm0x9BEIp2\nljUaA7J644zWSLKPgqTF1ePFOpFIQBRFhEIh9Pb2Nm2rh2qxEtJKcTgcSKVSLfnZuq5jYWEBgUAA\nuq7nTIk0bOTAVo1GjmtlZQVTU1OIx+Pw+Xw4derUuhcr2dt/kNqUavgTi8Xw3nvvoa2trWUNf0gh\nCpJss+LWH+VgeQooULrpTyaTMauY+a9l6XQayWQS8XjcDJqsTPsPh8PYt29fq4dBSmD3GUHKZrPZ\nKq5OGFt3BAIBAIDP5zPvcLEcIoEPpuCyrBVh1+joOTMzg97e3pLddFntKsvqxWG9124aYX9ychKC\nIGBoaAh9fX1lHz+rgZs3DocDDocDW7duzfl3o1FGIpEwG/4Eg0Ekk0lmG/7wFL54q3jxFiRZqNw1\ngpWPy+FwoKurq+iMjDfffBPbtm2DqqqIRqMIhUKQZRm6rsPtdhdUMpt5wywcDtMaScZRkNxgkskk\ngsEgQqEQNm/ejNHRUXNufCgUYn7KKGCdimSzxhiLxRAIBBCNRtHf34/jx4+vO03FivtctlK9urZm\nMhkEg0FMT0+jt7cX+/fvr2ptSjU3j0j9ZDfKKNXwR5blnOllrW74w0v4ojWSbLNy4CqFt8cJgLkF\nWG9vb8F1Q7EO2dk3zLI7y2avLa/n6ww122EfBUkOrHdRaXR/DAQCSKVSGBgYKDp9zul0Ip1ON3q4\nNaOK5Oob2vz8PAKBAARBgN/vx+joaNkv4KxObWVVrRVASZIQCASwtLRUdthv5HhI49S74U+9Lsp4\nuvHAU3UV4C+gqKrK1fFk4+m8M6y17dt6HbKNzrKSJGF+fh6SJCGdTptNf/LXY1bznhcOh6nZDuMo\nSHIse+uOrq6udTead7lczAc0YGNXJNPpNILBIGZnZ9HX11d1RcsKv0OWVBPcdF1HJBLB5OQk0uk0\nBgcH67bVSq0VSR4vhqyg3IY/8/PzSCQSZifG/IBZbcMfXh53mtrKNl7XSPKs0udTdljMrxjmb8MU\niUQgSRIymQwEQSioYpZ6PaOKJPsoSHIg/wUgGo0iEAggFouhv78fx44dK+tOkBUqfYA1OlbWO6hl\nP6YDAwM4ceJETWuuBEFoWTOgcrBWcbDb7WU/NzRNQygUQiAQgNfrXfcGTjVY+t2Q2pVq+KOq6ppN\nMipp+MP6a2YlWHt9qBVvx8Pj1Faenj+NVmpWRiaTMUNmIpHA4uIiJEmCpmlwOBy4evUqrl+/jr17\n9+LGG29EKpVidmsSsoqCJCey957zer3w+XwVNe8ArBMkraAeU0c1TcPc3BwCgQBcLhf8fn/Fj2kj\nx9coRvWPpQuRciqS6XQaoihidnYWW7duZb77MSlPqy8gBUFAZ2cnOjs7c/690oY/PFXxeFsjCfB1\nc4jHIMlb1djQ7Nc3h8NR9PUMWJ1F53A4EIvF8Nprr+HZZ59FMBjE2NgYduzYgT179mDv3r3m3z6f\nL+c8i0Qi+NznPoff/e53sNlseOqppzAyMoI/+ZM/weTkJIaGhvBv//Zv6O3tha7r/z97bx7kyFnf\n/791S6O5d3Zn55Rmd3Z3Zte73vtwJV82IQ6EVJkiELBDYge7QuIqEgOpBBcYCqoobEOSCuGo5A8H\nb1GhwKGocoqY4xtS/hII5bUxMVdsr1mpdWtmdI2k1tFS9++P/T3t1jEaHS31Rz39qtoyaHc0T0tP\nP/28n8/n8/7goYcewjPPPIORkRE8+eSTOHv2LADg2rVr+OQnPwkAeOSRR3DfffcN5sMZUgwhqQM2\nNjbw8ssv4+DBgzhz5kzXm1e1nSn7DeVT3F7GVSqV5HYs+/fvx6lTp+ByuVQcHV3XVuD1eUhpI9JK\nSGazWXAch+3t7bbbdxgMB1TXF6Bzw59cLocXX3wRNptNU8MfNaC89hvoU0jq8ZoAWi1NbDYbTp06\nhVOnTgG4tY694Q1vwIsvvohYLIZXX30Vr776Kv7jP/4DX/ziFxEMBvFf//VfcseBhx56CG9+85vx\n9a9/XTYJ+tSnPoU3vvGNePjhh/HYY4/hsccew+OPP45vfetbuHHjBm7cuIHnnnsODz74IJ577jkk\nk0l84hOfwAsvvACTyYRz587hrrvuMnpZtoDG7DHoiX379uHKlStDtRHoFRZRo7IA9ookSchkMuA4\nDjzP912QUHZtZQ6plBok1wtJSZKwtbUFv98Pk8kEr9eLEydOGJvbOowNvzY0Sy0rFAo4deoUJEnS\nzPBHLYx5RRs9mu1QElxqQvm6tre3MT4+DpPJhLm5OczNzeENb3hD03+byWTw/e9/H08++SQAyIds\nTz/9NJ599lkAwH333YerV6/i8ccfx9NPP417770XJpMJly9fRjqdRjQaxbPPPos777wT09PTAIA7\n77wT3/72t3HPPfcM4pKHEpqzx6Aj1E5JHYaHNKtBpLoAtku1WkUsFkMwGITT6YTH48Hk5GTfP3/K\nqa0Ux8bGVKlUEIlEEAqFMDExgfX19R17de51mCEQ9bVkr6G14Y8a6DXNUC+wejc9YUQkB08ymZQF\n3W74fD7s378f73nPe/DSSy/h3Llz+OxnP4t4PI65uTkAwMGDBxGPxwEA4XAYS0tL8s8vLi4iHA7v\n+LrBztCcPQaawQQapWhQM5h4plyDZjKZdtzwFItFBAIBbGxsYHZ2duD1dMOQ2koJQRCQTCbx3HPP\nYW5uDufPn4fdbtd6WD0xCIGndX2hwevsJup3M/xRGmR0a/gzqGsx0JZqtQqHw6H1MFSFsuDqBUEQ\nyO73OhGSlUoFL774Ij73uc/h0qVLeOihh/DYY4/V/BuTyWSsG31Af3fFHkTNG4MJNKoLC8Nms5FN\nzWQwUc4EhyRJSKVS4DgO5XIZS0tLWF1d1eRknXJqK6WIJGvfkc/nYbVaceHCBSMS0iZ6eGDr4RrU\nwGKxYHR0tCH6Xm/4k0wmWxr+jIyMqLIZ15OQlCRJdwcueoze6fGaANoCOZFItN36Y3FxUXa0B4B3\nvOMdeOyxxzA7O4toNIq5uTnZCA8AFhYWEAwG5Z8PhUJYWFjAwsKCnArLXr969apq16RHaM4eA80Y\nFudWq9VKfpxMSFosFjkd0u1296UdRKdQEmv1sBpJrVC65TocDng8HthsNvzqV78yRGQH9Nrrkgp6\nuAagP+KrHcMfFslMpVLgeV6ube/F8MdwoKWNUSM5PFC+rlQq1baQPHjwIJaWlvDKK6/g2LFj+N73\nvofjx4/j+PHjuHbtGh5++GFcu3YNb33rWwEAd911Fz7/+c/j7rvvxnPPPYeJiQnMzc3hTW96Ez78\n4Q8jlUoBAL773e/i0Ucf7ds16gGas8egI9SOSJbLZdXer18MQ0QSAF577TVsb29jbm4OZ8+eJZPu\n0047C63QSuSWy2WEQiFEIpEGt1zW54oalCMzehGSemKQc6VVLzlBEGoMf2KxGAqFQtuGP3oSX3qs\n99Rj9E6P1wTcuhep7Evq6SS1FQA+97nP4d3vfjfK5TIOHTqEL33pSxBFEe985zvxxBNPwOPx4Kmn\nngIAvOUtb8EzzzyD1dVVjIyM4Etf+hIAYHp6Gh/96Edx4cIFAMDHPvaxjsawFzGEpE5Qa9Nmt9vJ\nR/oAuhFJSZKQSCRq2kHcdttt5DYKVMUHMPgayVwuB47jkMlksLi4iMuXLzec0FIU3r2Y2Qzi+zeE\nJC0ofRftGP4UCoUdDX/K5TLy+TxGRkaGfnOvRyFJrX2TGlQqFdKeDN1SqVTIGsalUimsrq62/e9P\nnz6NF154oeH1733vew2vmUwmfOELX2j6Pvfffz/uv//+9ge6xzGEpEENw5LaarPZUCwWtR6GTKVS\nkR2/xsfHceTIEcTjcYyPj+tuk9BvBpHaqhT8oijC4/Hg+PHjOwosikKSjYnq/DKEJD0oHyABtYY/\n9SgNf0RRRCAQ0NTwRy0o38PdosfoHStT0RuUU1uTySRmZma0HobBLtCcPQYdo9amjZpA2wlWf6g1\n+XweHMchlUphfn6+xs0zkUiQGOOw0c/U1mq1ikgkgmAwiPHxcRw9ehRjY2NtjYmakKQu1KiPz2C4\nUBr+cByHEydOANDO8Ect9Cok9XhNlOaNWgiCQPa6kslk2zWSBtpBc/YYaMYw1UhqFTmVJAmbm5sI\nBAKQJAkejwfr6+sNp99UxG4rKNbYWSwWlEolVd9T2W6lm/YdWhsANYNilFSJHoQktXvDoBGtDH/U\nQo9CUq+prXq7JgCk272l02lDSA4BhpDUCWpteIapRnLQIk0QBNmMZWpqCmtray1rC6xWKwqFwgBH\n2Bks8kftNFLN6F8mkwHHccjn81heXsYdd9zR1aaNoqAYBqFGfXztoIdr2Kv00/BHLfQoJI2I5PBA\nObW1E9dWA+2gOXsMNGOYaiQHNc5sNotAIIBMJoP5+XlcunSprYWXekTSarWSfDj2Gv2TJAnxeBwc\nx8Fut8Pj8WBqaoqkGOwFIyJpYNA9uxn+sCjmToY/7I/L5eopUqVHIQnQPHzrBcqCqxeoOiBLkoRq\ntUo2WmrwOvq7K/Yoai3awyIk+y3SRFHExsYGAoEALBYLlpeXW5qxaDHGXrFYLKhUKuSsv7utkVRG\njKenp3Hy5EmMjIz0YYQ0GAYhaWDQD/p5QKE0/Km3/Vca/uTzeWxubvZs+KNXIak39GggNAwYzxH6\nGELSoAaz2TwUUYR+LS6sl2A0GsX09DROnDjRNC2qHYZBSFKr+wM6HxfP8+A4DslkEgsLC21HjIcd\n6hE/6uMzMOgUpeGPEqXhT6FQ6MjwxxCSwwHVyF0vUF6fBUEwhPuQoP/d1h7BOLXpjUwmg0AggGw2\ni8XFRVXEiCEku6OdSJskSUgmk+A4DpVKBR6PB2tra3vqPhiGiCTljYqBgVrsZvjDemMyw59CoSCn\nSppMJphMJmxtbWlm+GOwN6F8iJFKpRruJQOaGELSoCkU3Tyb0cs4RVFELBZDMBiE3W7H8vIypqen\nVbtu6kKS6vhaCVxRFOX2HW63G6urqw01TnsF6tkDehGSergGA+1Q1lXWw9Lx8/k8tre3NTP8URPK\n4sSgFsp1n0brj+GB5gwy6Bg1Hy6sTrKT9ghawIRQp8XYpVIJwWAQsVgM+/fvx6lTp5o2wO4VVoNI\nFaoRyWbjUn5ns7OzOHv2rCa1nZQOWEwmkxGR7DNUvmuDWvTyvdhsNjgcDthsNiwuLsqvD9rwR030\n6Ng67OvYTgiCQNbMJpFINNQoG9DEEJIGDQyLkLTZbG0LSUmSkE6nEQgEwPM8lpaWcOXKlb4+fKk/\nTCkLSSaQtre3wXEccrncQL6zVrBUUiobNiMiabAX0ducahbB68TwZ2trCzzP92T4o/b1UFkj1UKv\nRjuUI5JG64/hgeYMMugYNR8Udrsd5XK5a5OZQWG1WiEIQstoYrValdNXnU4nPB4PJicndXOi3Qus\n/Qc1TCYTisUinn/+eZjNZni9XlVTjruFmpDsNSLZ78/TEJIG/YBSVoAaiKLY0Wa+H4Y/aqJH0aXH\nawLoC0kjIjkc0JxBBl2h1sZtWFqAtBpnoVBAMBjExsYGZmdncfr0aTidzgGPkDYWiwXlclnrYchU\nKhWEw2GEQiEIgoBz586ROsygZm5DPSIJ6C96ZKA9oijqTkiqkb3Si+FPvcDsxfBHj6KLsuDqBcqp\nrclkEh6PR+thGLSB/u4Mg54ZFiFZbxYjSRJSqRQ4jkO5XMbS0hJWV1c1TzGlaj5AJbWV53kEAgEk\nEgnMz8/j4sWLeP7550mJSICekByGGkkDA7XRWxuGQTwfdjP8KRQKqhn+6FFI6vGaANoCOZlM4uzZ\ns1oPw6ANaM4gg67YqxHJSqWCaDSKUCgEt9uNQ4cOYWJiQuvhAXg9fZTixkdL11ZWs+r3+1Eul+Hx\neHD06FGSnxODmpDsdTz9ThHUS2qrHq5BT+gxtVXLdc9ms8FmszW4X0uShFKpJEcx2zX8ofq86wXK\ngqsXKpUK2Uwto0ZyeNDfnWHQMzabDTzPaz2MXRFFEfF4HH6/H3Nzc5o5ebaiW2fZQaBFRJK1XAkE\nAnC5XFhZWcHk5ORAx9AtShMgClAXatTH1w56Eix6wRCSg8FkMsHpdMLpdLY0/OF5vsbwB7h1yBUK\nhTQz/FEbvUYkBUEgK5BTqRRmZma0HoZBG9CcQQZdodZCbbPZSNXOKZEkCYlEAhzHoVAowO124/z5\n8yQfxADdXo3AYIVkuVxGMBhENBrFgQMHhrJmVW8RSSb0+rXB04OQNKAHVeHVLcN4Pa0Mf8LhMPL5\nPMxms2aGP2qj54gkxUNu4FZqq2G2Mxzo784w6Bm73U4utZUZsYTDYYyPj+Po0aOoVCqIxWKkH8KU\nheQgXFtzuRz8fj+2t7c7at/B6v8ofbdms5lETSmjWyFZKBTAcRw2NzflzZ3b7VZ9c2cISYN+YEQk\n6WIymWAymeB2uzE/P1/zd4M0/FEbvUYkKQvkbDZLpkTJoDU0Z5BBV6gZkaQiJHO5HAKBAFKpFObn\n53H+/Hm5v2U2myUzzp2gLCQtFktfxiZJEra2tsBxHADA4/HgxIkTHc1PJpKobCQAehHJTs12MpkM\n/H4/CoUCvF4vvF5vQx1UKpUCz/OoVquw2Ww1AtPtdsNut3f0PRpC0kBtDCFJm53ambRj+MPzvCqG\nP2pTqVSajnvYoSok2XNDT/eFnqE3gww0R2shKUkSNjc3EQgEIEkSPB4P1tfXGx4cWo+zHagLafPk\nKQAAIABJREFUSTUjbJVKBZFIBKFQCBMTE1hbW2tIfep0bJQectSEZDvjYaLe7/fDYrHINakmkwnl\nchmSJO24uSuXy7LATCQSCAaDKJVKMJvNcoqaUmjWP/SHoT2JwfBhtP+gTbVa7diroBPDH57nUS6X\nWxr+qI1eI5JUr0uSJJIHRnfccQf++7//W+thkIPOLs2gZ9S66bS6eQVBQCgUQiQSwdTU1K5ChLJI\nY1Aeo1ob/WKxKKdK1keNu4VKaxIl1IRkq9RRURQRiUQQCAQwMTGB48ePd9xOhfWkqzdDUhpt5PN5\nbG5uolAoQBRFOBwOWWAWCgVyG4FuMMQwLYz2H7RRU5x0a/hjt9sbRGYvhj9UI3edwPO/QDb7fQAm\nTEy8EU7nEZJiDbhVfkExAmyIyOYM951hoAuy2Sw4jsP29jYWFhZw6dKlthZtimKjHqvVilKppPUw\n+gJr31EsFrG8vIwjR46otiGi5pAK0BOSzcajNDU6ePCgKqK+nlZGG+VyGfl8HjzPI5fLIZ1OIxqN\nwmKxNEQwKdVA7QTFTdZeh+rmt1v0KCQHcT2t1iFBEGSBqYbhD9XIXbsUCi9jY+MfYbGMA5AQj38e\ns7N/ofWwdiSRSJA02hkdHUUul4MkSfjrv/5rfOtb34LJZMIjjzyCd73rXXj22WfxsY99DGNjY3jt\ntdfwG7/xG/jiF78ISZLwwAMP4IUXXoDJZML999+PD3zgA1pfjmoYQlJHqPlw7bfZiSiK2NjYQCAQ\ngMViwfLycsd1dMOwmbBarcjn81oPQzVYy5VAIACHwwGPxyOnSqoJNWMbgJ64VUYkeZ6H3+9HOp3u\nyNRI7fE4HA44HA55E2A2mzE/P49KpSJv7La3txGNRlEsFgFAroFSisxhP/036B9GaitttBZdJpNp\nx2yKesOfdDoNnud3NfwZ9ohkLvcjWCyjsFpvrcuCUEE2ex1m8xGNR9acZDJJuofkN77xDfzP//wP\nXnrpJWxtbeHChQv4P//n/wAArl+/jl/+8pfweDx485vfjG984xtYWVlBOBzGz3/+cwC3DuH1xPDe\nGQZ9hdUfqt2XURkx2bdvH2677TaSKQxqQTm1tRMEQZC/t5mZGZw6dQoul6tvv49itJmauDWbzeB5\nHj/5yU8gCAK8Xm/TWuKd6LerqvL9rVYrxsfHm9ZAKdPT6s1+lEY/euhHZ9A7eotI6u16RFEkG73r\n1vCnVCqB4ziMjY1pZvjTCyaTFZL0+rNLkqqQJDNZcUy99ccPfvAD3HPPPbBYLJidncUb3vAGPP/8\n8xgfH8fFixdx6NAhAMA999yDH/zgB3jjG9+Imzdv4s///M/xu7/7u/jt3/5tja9AXWjOIoOuUHNR\nU1tIZjIZBAIBZLNZLC4u4vLly6q1GKB8oktdSO72+SldcxcXF9tOO+4VqkKSgrmTJEnY2NjAa6+9\nhmq1ilOnTjWcvFOgHVdZk8nUltlPMpmUzX6UP8MEZr9MNvSCnuo89VYjCQxHdk27aB2R7JZWhj/X\nr1/HzMwMCoWCZoY/vTA29gbk8/+DcjkMQILJZIXDcQFWK6/10JqSSqVIRyRbUX8vm0wmTE1N4aWX\nXsJ3vvMd/OM//iOeeuop/PM//7NGI1QfQ0jqDLWiDHa7HeVyuaf3EEURsVgMwWAQdrsdy8vLmJ6e\nVvWhyYSa2nVgakFdSDLBptyYSZKERCIBjuMgiuKOrrn9HhelNFJA+xrJarWKcDiMUCiEqakpHD58\nGIlEgqSIBHpfi1qlpxUKBbkWU2mywcx+lCJzmCIHBrujtwie3hhWIbkTJpMJZrO5qbAZpOFPLzgc\ny5ib+yDy+RcAmDE6egGFwgis1sjAx9IO1COSv/7rv45/+qd/wn333YdkMonvf//7+MxnPoOXX34Z\n169fh8/ng8fjwde+9jW8973vxdbWFux2O97+9rfj2LFj+MM//EOtL0FVDCFp0JReWmuUSiUEg0HE\nYjHs37+/r2mQNpvNEJI9YLVa5TTCarWKSCSCYDCI8fFxHD16FGNjY5qMi1oaKaCdkCyVSggEAojH\n45ifn8eFCxdgs9mwvb2Nzc3NgY+nXfqVOms2m+F2uxtcaOvNfjY2NpDP5yEIgmz2oxSY7Zr96CGa\npyfxpadr0SODMtuhwCANf3rFbl+A3b4g///t7QRsNltff2e3JJNJnDx5Uuth7Mjb3vY2/OhHP8Lt\nt98Ok8mET3/60zh48CBefvllXLhwAe973/tks523ve1t+NnPfob3vOc98v7h0Ucf1fgK1MUQkjpD\nrc1bp0JSkiSk02kEAgHwPD8www+r1Uoi3XAnqAtJi8UCnucRDAYRj8dx8OBBnDt3TvXa2G7GtdeF\nZC6Xg9/vRzabxfLyMu64446aDVq/axzVYJDja2b2w6hUKnIUU1n/BKCm4TkTmWxTZwgWeujNbEdv\nUC416ZZO17F+GP6oDWUDIaqprblcDsCt7/czn/kMPvOZzzT8m/HxcXzzm9+see3222/Hiy++OJAx\nagHNWWSgOTabra22FdVqVU5fdTqdfXPx3IleIqeDgHJT9kwmg0wmg2w2i5WVlQahoiUWi4Xc9zqI\ndFtJkpBKpeDz+SCKIrxe745uxlqn2u4GJaFrtVoxNjbWEGGXJAnFYlGOYkYiEeTzeVSrVXlTVyqV\nkEgk4Ha7h9bsR09RPD3WSOoNvcw1QP17p5XhT727tdLwR3ngpYbhD2UhSd211aAWmrPIoGvUWvBs\nNhuy2eyOf18oFBAMBrGxsYHZ2VmcPn0aTqdTld/dCdQjftSQJAnxeBwcx8Fms2FsbAzLy8vkFm2K\nIqmfY2JtVTiOw8jICI4cOdJg+lAPJaHWDOrjAyCnmTVLvRcEAblcDslkEqlUCuFwWE5NU27m3G43\nSYMNvaI3Uaw39PLdMAZZ89nK3bpUKskiUw3DH0EQ+uq83gupVAozMzNaD6Njrl69iqtXr2o9jIFj\nCEmDptjt9oaIEIuWcByHcrmMpaUlrK6uano6TD0iSQVBEBAOhxEOhzE9PY2TJ09iZGQEN27cIJdC\nCtBNbVV7TJVKBaFQCOFwGDMzMx0dyPQqbPst1od9Q2mz2TAxMQG73Y7V1VX5dWb2w/M88vk8EolE\nU7MfJjIpmP3oSXzpKbVVT98LQ2/imELkzmQywel0wul0NqTtd2v4U6lUSNdIUjvcNtgZQ0jqDDUj\nkkygVSoVRKNRhEIhuN1uHDp0CBMTE6r8nl6x2WxyY3PKaLVh4HkeHMchmUxiYWGhoX0HRcEG0ByX\nmsKrWCyC4zhsbW01/V4GMZ5+b/iGISLZDUqzn/3798uvM7MfJjA3NzflQzel2Y8yajDIQzi9CBY9\npbbqrZ5Qj/d7pVIhnW3QreGPIAgQBAHlcnlghj/tUi6XyUZLDRqhMWsMyMEE2ssvv4xEIiGbsFBz\nR6VutgO8LooGtUizyLHf70elUoHH48Ha2lrTjSRFwQboN7U1m83C5/Mhn8/D6/XiyJEjXW8kqQs1\n6uNrl3avQWn2MzU1VfN31WpVFpjZbBbxeLym9omZ/Chrn7S4hmFAT1E8PQpJPV0PgIE+u9VkN8Of\nn/70pxgfH0e5XNbM8KcZelqr9grDd3cYtKTXB6yyh2Aul8PKygqOHj1K9uHA2n9QhtVx9vthJIoi\notEoAoEA3G43Dh8+vGvkmKoQpyhwuxWS7J7y+Xwwm83wer2q9FNVQ9j2c1OuByGp1mdjsVhamv2w\nqEE0Gq3Z0NULTKfT2fWY9CK+DCFJF731kAToRyS7gZkAHjhwoOHQapCGP81gqet6ucf3AoaQNABw\na/FgNXSsh+DPfvYzHDx4UOuhtYSqEFLSb0MgZd/O2dlZnDlzpu06O4vFQjI1WA9CUinsx8bGsL6+\n3pB+1AvUhRr18VFAafZTXxOkTEurN/txuVwNIrPVZldP34OexJeergXQZw/JYY1I7sZOAnmQhj/N\nyGQyuxrNGdBCf3fHHqfTU5xcLodAIIBUKoX5+XmcP3+eXPpqK4bBbKdfQjKbzcLv9yOXy3Xdt5Oi\nYANojqvd9h+CICAYDCISiWB2dhZnz57tS1/OYRBq1MdHGWb2U59V0Mrsh5lrKEWm3W7XVRRPT9ei\nNyEpiqLuoncUzHb6RSdzrx+GP80wjHaGD33eHQYtkSQJm5ubCAQCkCQJHo8H6+vrDTc2c6mk/GAY\nhvYfao6RfXccx6mSJkn186NYI2kymVqOSWlstLS0hMuXL/d1A0J9M62nDTIl2jH7YZu5fD6PcrkM\nk8mEcrkMv98vi8xBm/2ohd6EJOXna6dQ3y90g14jkmoe8nVr+ONyuTAyMoIXX3wR+/fvx8mTJ5FM\nJhuEqgFt9Hd37HFaPWAFQUAoFEIkEsHU1BTW1tZaptqxaB/lB8MgmsT3ihpijaUeh0IhTE1N4fjx\n43C73T2PjWLkD6A5rp3urUwmA5/Ph1KpBK/Xu6OxETUGMUYjIjk4Wpn95PN5vPLKK3C5XMjlcg1m\nP/VRTKptAQB9tf+oVqu6uRZAn0KyUqlo0iO7nwzqMGY3wx9WH85xHJ5++mn4/X5sb2+jWq3ive99\nL44ePYpjx47h2LFjWFlZabouVatVnD9/HgsLC/jmN78Jn8+Hu+++G4lEAufOncOXv/xl2O12lEol\n3Hvvvfjxj3+Mffv24Wtf+xq8Xi8A4NFHH8UTTzwBi8WCf/iHf8Cb3vSmvn82esIQkjqkPuUtm82C\n4zhsb2931GqACUm9LaKDphchWSgUatpEXLx4UdVNHkXBBtCMSCphkWG/3w+bzQav19uwed/rDEPq\n7W7oZZNvsVhgtVoxOztb83q92U8sFkM+n69xb1QKzF7MftRCT86geroWQL81knoTxxSuSVlX+Zd/\n+Zfy61/5ylcQi8XwO7/zO3j11Vdx/fp1fPnLX4bP50O1WsUf//Ef4y/+4i/kf//Zz34W6+vr2N7e\nBgB86EMfwgc+8AHcfffd+LM/+zM88cQTePDBB/HEE09gamoKr732Gr761a/iQx/6EL72ta/hl7/8\nJb761a/iF7/4BSKRCH7rt34Lr776quafzzBhCEmdIooiNjY2EAgEYLFYsLy8jBMnTnS0CbDb7SiX\ny30c5d6gU0MgSZKQTqfh9/tRLpfh8Xj65pxrtVpJCkmtN6s7IUkSgsEggsEgJicnceLECVUiw3pE\nD0JSL+wUgWjX7CedTjeY/bBNIBOag9p46S21VU/CS2+puoA+ayQpX1MymcTi4iIuXryIixcv1vwd\nqw9nhEIh/Pu//zs+8pGP4O/+7u8gSRL+8z//E1/5ylcAAPfddx8+/vGP48EHH8TTTz+Nj3/84wCA\nd7zjHXjf+94HSZLw9NNP4+6774bD4cDKygpWV1dx/fp1XLlyZWDXPOzQnEkGPREMBsFxHPbt24fb\nbrsNIyMjXb3PMBjZAPRrOa1Wa83itxOiKCIWiyEQCMDlcmFlZaUhHURtLBYLyRpJapTLZQQCAbnm\nbNhMqbTAEJK06FR8tWP2wxxleZ5HtVqtMdZgAtNut6sq/AwhSRfKz+Fu0eM1CYJAVkimUimsr683\n/TtWH854//vfj09/+tPIZrMAgEQigcnJSfnaFhcXEQ6HAQDhcBhLS0sAbu3JJiYmkEgkEA6Hcfny\nZfk9lT9j0B40Z5JBT0xMTLSdvtqKYRGSLHWU6mK/W2pruVxGMBhENBrF/v37cfr06YGlE1NNbaVC\nPp+H3+9HJpPB8vKy3J/TYHcMIUkHNb8HpdlP/e8QBAH5fL7GubFUKtWksfVq9qO3Gkmqz61u0Nv1\nALSjd91SqVTI1kG369r6zW9+EwcOHMC5c+fw7LPP9n9gBjuir7vDAAAwOTmpijiw2+3I5/MqjKi/\nMMHbjxYLarCTkMzlcnJx+eLiYlftO3pFLxsyNWGpxawmw+v14vjx4zCZTAgEAloPb2gwhCQdBhHF\nUxpr1NcLs/YA+XweuVxO7kFX3+ScicxWm1w91RXqSRQDt75nqgKlWwxxPFjaFZI//OEP8W//9m94\n5plnUCwWsb29jYceegjpdFq+vlAohIWFBQDAwsICgsEgFhcXUalUkMlksG/fPvl1hvJnDNqD5kwy\nIMGwRCRtNhvp9Exl+qgkSdja2gLHcQAAj8fTce3qXmKQaWySJCEej4PjODidThw+fLghrY+1ANHD\nRtZwbTUYFK3aA5RKJTmKqTT7sVgsNUY/brcbTqdTV6mtehLFwC3RpTdzPj0KScqprel0ui0h+eij\nj+LRRx8FADz77LP4m7/5G/zLv/wLfv/3fx9f//rXcffdd+PatWt461vfCgC46667cO3aNVy5cgVf\n//rX8Zu/+ZswmUy466678Ad/8Af44Ac/iEgkghs3bjTUZhq0huZMMugJtR6ywyIkOzWzGTQsIhkI\nBBAKhTA+Pr5r6xWD151b+/0QV7ZW2bdvH06dOgWXy9VyTJQ2f1Q31hTHtFehPEdYk/P6zWOlUgHP\n88jn88hkMohGoygWiygUChAEAePj47LAdLlcZDfGrRBFcSjHvRN6NNuheu/0QqVSIVvjn06ne+oj\n+fjjj+Puu+/GI488gjNnzuCBBx4AADzwwAP4oz/6I6yurmJ6ehpf/epXAQAnTpzAO9/5Thw/fhxW\nqxVf+MIXdDeH+41+VjAD1RkWIUk5IlksFuH3+5FKpTA1NUXWpIXiw5LVb/ZrUS8WiwgEAtjc3MT8\n/HxbrVWotSUxm80kvzvASG016A2r1Yrx8XGMj4/XvP7SSy9haWkJoigin8/XmP3YbLaGKKbaZj9q\nordol96uR69UKpWuTRj7iSRJXR2uXL16FVevXgUAHDp0CNevX2/4N06nE//6r//a9Oc/8pGP4CMf\n+UjH4zW4hSEkdYgRkdSedDoNjuNQKBSwtLSEkZERsiYtg4r8dYrFYumLaMtms/D7/cjlcvB4PFhd\nXW07wkhNSFJOtTWEJB2oHjZ0i9vthsPhwMzMjPwaM/thUcxEIoFgMNhg9qP8o/V9Q/Xe7RY9Ckk9\n3TcMyjWSgD4/cz1DdyYZaM6wOHrabDYSpkCsdyfHcbDb7fB6vZicnITJZJJrIinS78hft7C2Lmog\nSRKSySR8Ph8AYGVlBdPT0x0/sKgJSWrjUWIISYN+0KonJjP7qW+bxMx+mMjc3NyUzX4cDkdDFHNQ\nhjF6NNvRkzDW2/fDEASBpClSuVwmOS6D1hhCUoeotfANywK6W3uNfiMIAkKhECKRyK41dhRhnx+1\nlFs1DjJYb06O4zA6Oopjx45hbGys6/ejJtxYaitFDCFJBz1FJLvZ3O9m9sN6YsbjcfA8D0EQYLFY\napxkWcsStXtiUjvA6wWKmS29QPGAVQ2oRiSTyWSD47MBfejNJANyUN+EaJWCm8/nwXEcUqkUFhcX\nd+3dSfVzpBp57mVcSnG/f/9+nDlzRhU3wX6l23YLS23t5ef7hSEkaUFx7ekGNZ1OlWY/9QYfzOyH\n5/kasx/gVr2VUmCOjIx0tTHXWwRPb8KLquDqFarX1W7rDwNa0JtJBj2j5oaBbeYpLjqMQUYkWYqk\n3++HKIrweDxYX1/f9TOnWocI0BaSnYqkQqEAjuOQSCSwsLCwq7jvFIoRSUrjUWIISTro6XsY1IHc\nTmY/oiiiWCzKIrOV2c/IyAgcDseO49VjjaTerofiM7tXqH5PiUSiJ8dWA22gqw4MekKtTZzdbke5\nXCYtJAcRkaxWq4hGowgEAhgbG8PRo0c7SpFkYpfiQ8lqtZIUkp3USG5vb8Pn86FQKMDr9eLo0aN9\neVCqWbepBr3e5/3clBtCkhZ6ikhqeS1K4556yuWyLDDrzX5cLldDqqzehKTerodq5K5XTCYTyfUg\nlUoZEckhRH93iIGqDINzaz8jksViEcFgEPF4HAcPHsS5c+fgcDg6fh82xm5+tt9YLBaS7VN2i5RK\nkoStrS34/X5YLBZ4vV5MTU319QFJLQLYy3gGsZkwhCQN9PY9UNwEA2jL7IfneWxubqJQKCCfz+Pl\nl1/G6OhojcCkVq/eCVS/m27Qa0SS6nqQSqWMiOQQYghJnaJWNGAYhGQ/DEcymQw4jkM+n8fy8jLu\nuOOOnk5atTYEagXl1NZm4xJFEZFIBIFAABMTE1hfX28w0egX1IQk5aifnjaUw47WUby9zk5mPy++\n+CKOHDkiRzI3NjaQz+d3NPtxOp26ivhRR48RSapprcCtGkmqbdIMdkZfd4iB6gyDkFQLSZLk9h1W\nq1XVCJchJDunvkayXC4jGAwiGo3i4MGDOH/+/MBP7qkJSWrjUWIIFwOD1kiSBJfLhdHR0ZZmP9vb\n2w1mP/UiU2+ChwJ6jEhWKhWyLTaSySQuXryo9TAMOsRYeXSKWpu4YRKS3Z66VyoVhEIhhMNhTE9P\n47bbbmta/9ILlIWk1WpFqVTSehgNmM1mucG43+9HOp3G4uIirly5otnDnZpw69W11WBvYEQkadKq\nlclOZj+SJNWkydab/Sj7Ye5m9qMmVDMjeoFiW6xeoRxlNWokhxOas8mADHa7HdlsVuth7Eo37rI8\nz4PjOCSTSSwsLODixYt9O6mjLCSpRiSLxSLC4TA2Nzfh9XrbcsftN9SEJOU+koA+N5cGBmrSaZqh\nyWRqy+wnmUwiFAqhWCzW/AwTmC6XS9UDOTXbslChUqkMVU/odqAuJGdmZrQehkGH0JxNBj2z1yKS\nTKjttkBKkoRUKgW/349KpQKPx4O1tbW+CxTKQpKSaytLL/b7/QCAiYkJnDp1SttBKbBYLKTuB2rC\n1oAmeopI6ulwQu1r2cnsRxRF2dyH53lsbW2B53mIogiHw9EgMm02W8fzRY9poNRbn3WDIAhkr8no\nIzmc0JxNBmQYFiHJxrlT03lRFOX2HW63G4cPH8bExMTAxkc1fRSg4dparVYRDocRCoUwNTWFkydP\nolgsIh6PazqueqhFACmb7QBGnaSBAQXMZjPcbjfcbnfN65IkoVwuywKzmdmPUmC2MvvRo5Ck2rKr\nFyjXSObz+Y7aqhnQwBCSOmWvRSRtNltTMVQqlRAMBhGLxTA7O4szZ87sKDb7CQWxthNapraWSiUE\nAgHE43HMz8/jwoUL8kNOEAQykVIGtT6SRkTSoB30FJHUE1p/JyaTCQ6HAw6Ho6nZD4tibm9vIxaL\noVAoyAZB9SKTshtot+gxIkk1tZUdiGp9Txh0Dr3ZZEAKu92Ocrms9TB2xWq11gjebDYLv9+PbDaL\n5eVlTQ1a2PgoCRAlWgjJXC4nfz9LS0tN26tQrN2kJty6jUgKgoBAIICNjQ24XC55M+h2u+FyuYyH\nuYHBHsdqtWJsbKwhQiRJEorFInieRz6fRyQSAc/zKJfLqFQqeOWVV2pE5qDMfvqBHqOsgiA0RKYp\nIEmSceA1pBhCUqeodTNSS+XbCRY5Ze07zGYzPB4PbrvtNhILE/UayUGMjdWn+nw+iKIIr9eLEydO\n7Pj9UBNtAL0xdTqeYrEIjuOwtbWFxcVFnDx5EqVSCfl8HtlsFrFYTG4xwKIOLCWuG3OOYVg79gJ6\n2qDp5TqGFZPJBJfLBZfLVVPPlk6nEYvFcPDgQeTzeaRSKYTD4QazH+WBFXWRRjV61wtUrymfzw+s\nH7SButCbTQYGHVKpVJDJZJBMJjE7OzvQBvXtQllI9jvyJ4oi4vE4OI7DyMgIjhw50mBpr8W4uoGa\nkGy3/Uc+n4fP50M2m4XH48GRI0dgMplQLpdht9sbog7MnIPP51G+cQObm5vI2WwozMzA4XTWRDDd\nbjfJjYmB/tDTwYSergWA3H5kYmKiwX9AXk/+/yhmIpFoavbD1pRuzH76gSiKukvXpVojmUgkGtKr\nDYYD4+mvU9RehCmeaBcKBXAch0QigbGxMczPz+PYsWNaD6splIVkv8SRsj/nzMwMTp8+3VF9qiEk\nd2e3ms10Og2fz4dKpdIQAW61kWXmHGM//SksP/85JLsdpnIZlQMHUDh2TDbniEaj4Hle3pwoBaba\nvVgNuofi+t0NrfouDht6EymtaiSVZj/79++XX2dmP0xgbm5uguM4lMtlmM3mmrWEtSwZ5Geml/tG\nCdWIpOHYOrzQm00GqqGWoyOrP6TQmFeSJKTTaXAch1KphOXlZRw9ehSpVAqbm5taD29HKAtJtR+U\nyvTJhYUFXLp0qasHl8ViISXaAHpjMpvNDWZYkiRha2sLPp8PNpsNKysrDe0A2mJ7G+Zf/ALi4iJg\nNkMSRVh/+lM4T5yAc9++hoe+ckO4tbUli80f//jHNRtCt9sNp9Opuw0adfTweeupV6EehWSnqapK\ns5+pqamG92M9MbPZLOLxuGz241RkRbA/FKNsFKHa/iOZTBoRySGF3mwyIIfdbtdcSIqiiFgshkAg\nAKfTCa/XW7M5pu4uq4dN3G5ks1n4fD7k83k5fbKXjRLF1hbUXFuVnxG7RziOw9jYGI4fP75rinfL\neVmtAiYTwL5DsxkSe70JzXrYPf/887j99ttlgZnJZBCJRJo2SWd1U3raXFOB2n3ULXqKEOlNSIqi\nqGrNo8Vi2dXspz4rwmq1NgjMbg+t9DTXlFB1ok2lUkZEckihN5sMVEOtjbiWIq1cLiMYDCIajWL/\n/v24/fbb4XK5Gv7dTu0/DPqLJElIJBLw+/0wmUzwer2Ynp7W5QMYoJnaWqlUwHEcQqEQZmZm1Gtx\nMz6OyvQUIq9cR9IpYqogYe7wWZg7cPyTJAlWqxXj4+MNdbHKJuksrY3n+YaIA/svxc3PsKCXTbFe\nrgPQn5CsVqsDOWzeyewHuBVtYwKz3uxH6U7N/rQSvnpKo1ZC9R4yIpLDi/FkNtgVLYRkLpcDx3HI\nZDJYXFzE5cuXW24k69t/GHROJw8YURQRjUYRCAQwNjaGtbU1cgZH/YCSkCyXy4jFYkgkEvB6vbh4\n8aKq6V2S2Yz/t+ZEIc1jJisiOG3Fz1aB3zYBamx/WzVJLxaLcmpsOBwGz/PyRrVeYFJTsIfWAAAg\nAElEQVRIuTcYDHoSX3q6FqB1jeSg6Mbsx263N9Ri2u12spG7XqEoIoFbEUmPx6P1MAy6QH93iYGM\nWgvGoIQkq+3iOA4A4PF4cPz48baug3INIoM5bGr9sG0GM7bZ7cEpCIIcIT5w4ADOnj0Lh8MxoFFq\nDwUhWSgU4Pf7kUqlMDU1hbm5ORw6dKir92p1eMBXePyqHMW+y2/AzZIJdhuQEMLIlDKYck41/Zl6\nWFZEJ2uRMuJQP1ZlHebGxgby+bxc81NfhznM/evUhmoUolP0ch2A/oSk2qmtatLK7EcQBPnQitV2\ns97ZlUoFfr9fXleGPfWecoq7YbYzvBhC0mBXbDabvLD2g2q1inA4jFAohPHxcRw7dqyhLmI3hmFz\nwcQuxQjKbkKS53lwHIdkMomlpaWuDXSGHS2FJKtB5XkeXq8Xa2trSKVSiMfjffl9JpiQyQC/fNkE\nSTJDkoADhwHTMW3utVbGHJVKRU6RTaVSCIVCKJVKsvOjUmQO+2ZwL2MISbp0Y7ajNSaTSa7trl9T\n0uk0AoEAXC4Xcrlcg9lPfRRzGMx+qDq2AoaQHGZozigDVVDrgWu321EoFFR5LyXFYhGBQAAbGxuY\nm5vD+fPnSYostaAsJK1Wa1MTmUwmA5/Ph1KpBI/Hg7W1tYFu5KhFcc1m88BPdVOpFG7evAlJkrCy\nslJTg9pLHbTJZGoZMXSYR7D92gnwtp9h3OFGvsIjffMoLJcngDZLMLuJSHaD1WptmtJWrVblOkyl\n8yOApnWYw7YRbhe9CDA91a1RWtfUYBiFZCskSYLL5cLs7GzD60qzn1gshnw+L4u0eoFJyaGaspA0\nzHaGF5ozyoAUaqe2ZjIZ+P1+FAoFLC8vY3V1VbUHKuUNE+X0W4vFIo9NkiRsbm7C7/fDZrPB6/U2\nnNYOclx623C1A/sOfD4fHA4Hjhw50mBWA/Q3QloqAQviHViaOYDt6hZGXVMwCcdQLEoYG2tPvGrt\nvGuxWDA6OtpQvyuKYk0dZjKZrGmQrhSYlNPBOoHqutgJRvsPulCokVSTnYRxu2Y/6XQa4XAYpVIJ\nAOByuRqyIwYtvKkLyZmZGa2HYdAFNGeUgSpQqpEURREbGxvgOA52u11u36Hm5oYJNaopJtSFJKt/\nDAaDmJycxIkTJxqMULQYl15ND5rBTIw4jsPk5CROnjyJkZGRHf99PyOkTicwPmYGSkcwP34EhQKw\nbTHD7W5/LdBaSO6EMuVViSRJKJVKch1mLBZDoVDA9evX5dYCSpFpt9uHQqBR/A66gfJBYafoTUhS\nrpHshm5EVyuzH+XBVSqVqjEQqxeY/VpXBEEguz8SBGFP+S3oib2xOzPoCbvd3nWNpCAICIVCiEQi\n2Ldv364b415gLUCoLpRUhWS5XEY2m8Xm5iYWFxdJpRhT69vYLyqVCkKhEMLhMPbv349z58619VBl\nqb/dIEkSRFGUN+f1m1qzGfit36rg//5fKyIRwGYD7ryzgk5uX6pCcidMJhOcTiecTqdsRb+9vY0L\nFy7UmHIkEgkEAgGUy2VYLJamdZjUBA+18XSDISTporfUVjWvp9XBVb3ZD8/zfavvphqRHKZnhEEj\n9GaUgWqo9cDtRgDl83lwHIdUKoXFxcWBmLOwFiDN+kxSgJqQzOfz8Pv9yGQycDqdWFpawvz8vNbD\nqoFFJPVKuVwGx3HY2NjA/Px8x/dJNxFJSZJqRCQTotVqtUZUmkwmTE0Bv//7FRQKtyKUnd7CwyYk\nW2Gz2TA5OYnJycma16vVqhzBzGQyiEajKBQKNb3rlDVTWogHvQgwPYkvPV0LoD8hWalU+h4ha2X2\no6zvzuVy2NjYqOmzWy8y2zlApyokWVq0HtaovQi9GWVAjnY3q5IkIZlMwu/3QxRFeDwerK+vD2xx\n0KLfZSco6xC1QpIkpNNp+Hw+VKtVucUKx3EkN/ysRlJv8DwPv9+PdDqN5eVlXLlypatNZScRSaV4\nZMLCZrPJ71H/96+/bxUOByCKEioVs2zS08549SQkd8JisWBsbKzBaZr1rmPRhs3NTRQKBYiiWOP6\nyDaC/dzg6UVI6uU6AP0JST0ZIQHQvKRip/puln7P1pVYLAae5yEIAiwWS82hldvtrjH7oZo+mk6n\nG9KBDYYHQ0jqmEEt6tVqFdFoFMFgEKOjozsag/QbahG/eqxWq1x4P2gkSUI8HgfHcXA6nTh8+HDN\nwr2Ta6vWUE1t7XZDu729DZ/Ph2KxiJWVlZ4PWto55GkmIBvTWG/9//qIQiuByb4XZoDSicDcCyh7\n1ylRuj7m83mEw2G5XspmszXUYTKxb6A/IUkxOtQLevluALrRO2X6fb3ZT6VSaciOKBaLAG6Z/ZRK\nJUxMTCCbzcLlcpG5PqP1x3BDYxYZ9A21IgLN2jCUSiUEAgHE43EcPHhQ8+b01COSVqsV+Xx+oL+z\nUqnIPTqnp6dx6tSppqm/Foulr71Cu4ViamunLS1YpN7n88FkMuHQoUOqueC2ikgy0cf+vhuR147A\nVP4uADXflyRJct2yITBvsZPrY329FHNOro80sP920lZALwJMT1EvvUUk9cYwpuparVaMj483HOQz\ns59XX30V1WoVoVCo4fBKGcUctIlYMpmUa9INhg9DSBq0BRNpDocD29vb8Pv9yOfzWF5exh133EHi\ngWiz2UiKIcYgI6alUgkcx2FzcxPz8/O4ePFiyxoKioINoDmudluSsCiw3+/HyMgIjh071pD+2CvN\n2n80E5BqbwpaCUzg1saA4zj531Sr1ZrvkY2JjYvC+qE1reqllJGGVCqFcDiMYrEIs9ncUIfZqyEH\nZfQiiAFDSFKHakSyG5hxj9VqxeLiopwlwQ6v2NqSSCQQDAYbzH6Uf/oxZxOJhBGRHGL0cZcY7Iha\nEUmr1YpYLIZ4PA6r1QqPx1PTGJ0CWkT8OmEQQjKbzcLv9yOXy8Hj8bTdo5NC/WYzKNZI7ta7URRF\nhMNhBINBTE1N4fbbb++bAZQytXUQArIVyhppu92Oo0ePysK5PnJZW4P5ehTTEJjNaRVpYJvAXC6H\neDyOQqEAADV1mMVikaybdScYfSRposc66GGMSO5Gvau98vCqmYlYoVCQ1xdljbey164yBb9b0um0\nEZEcYgwhadAS1pYgkUhAkiQSvQV3grX/oEq/hKRyAy9JErxeL/bt29eRiDBqJNtnpzGxPpzRaBSz\ns7MDaaPCUlur1aqmAjIejyMQCGB0dBTHjx9vsLlXbpi7qcNk72EIzFrMZvOOhhzKTWAmk5GjDQ6H\noyZFttdN4CAxIpI00dO1MPQUkWR0ck27mf3wPA+e5xGPx2vMfpRrS7utkBKJBDnHeIP20dddYtBA\ntw9dnufBcRySySTm5+exsLCA6elpsiISeL39B1XUFpKiKCIWi4HjOIyOjtZEgDqFYgopcGtc1L7T\n+ohksVgEx3HY2trC4uIiLl++3PeTbBYBYDUuP/rRj+BwODA6OiqnOfZbIIiiKJtsTU1N4dSpU3A6\nnR2/j2H0oz4mk0neyM3MzECSJIyMjGD//v0ol8tyHWY8Hkc+n5c3mEpxqUWt1G4YNZI0EUVRd9E7\nPX0/DDWuqVmvXQZLwed5vsHsx+l01tR3S5Ikp/CnUimcPHmyp3EZaIchJA1kJElCKpUCx3EQBAHL\ny8s4duwYzGYz/H4/6fpDYDjMdtQQkpVKBcFgEJFIBDMzMzhz5kxXG/j6sVEVkuxBRAUmJPP5PHw+\nH7LZLDweD44cOdL3jUd9D0gAOHPmDADIlvD5fB6RSEQWCHa7HW63u0Zk9hIpZWYNkUgEBw4cwNmz\nZ/sSeTUEpnqwSJ7JZILD4YDD4WjYBO5WK6UUme1EGfp1HXr5LvUkVPSYBmrQObuZ/TCRefPmTfzV\nX/0VeJ7H5OQkbDYbRFHEyMgI1tbWsLCw0HR9CQaDuPfeexGPx2EymfDe974XDz30EJLJJN71rnfB\n7/fD6/XiqaeewtTUFCRJwkMPPYRnnnkGIyMjePLJJ3H27FkAwLVr1/DJT34SAPDII4/gvvvu6/8H\npFMMIalz2nnYs8hCIBCA2+3GoUOHGnr62O12zVpXtAv19h/dNI9XUigUwHEcEokEFhYWOm5e3wqq\nNZK71SNqQaVSwf/+7/8CAFZWVnDixIm+b6qbtfCoT2FtZgnPzBRyuRzy+bwcgSqXyzWtJpjQbBWB\nEgQBgUAAGxsbmJubw4ULFzRJ/dpNYCr/NEuRVX52etnIq4HNZsPExETD2l+tVmWBmc1mEYvFaloK\nKCOYLperr4LCEJI0YQ3lDeiiZR2r0rgHAJaXl/HDH/4QABCNRvH+978f09PT+M53voPPfvazCIfD\nsNlsOHLkCNbW1vAnf/InmJ2dhdVqxd/+7d/i7NmzyGazOHfuHO688048+eSTeOMb34iHH34Yjz32\nGB577DE8/vjj+Na3voUbN27gxo0beO655/Dggw/iueeeQzKZxCc+8Qm88MILMJlMOHfuHO666y7V\n3NT3GoaQ3MOUy2UEAgHEYjEcOHCgZWTLZrMhl8sNeISdQTU9s1dY78FCoQCPx4OjR4+q/tCm+tlR\nGZckSUgkEvD5fOB5HocOHcLS0tJAfu9uPSBbwcwUpqenm0agmEnL1tYWOI5DqVSSW02wCKbNZkMs\nFkMqlcLi4iIuXbpEctO405iYmNytBlPPRj+91BZaLBaMjY01pM2LolhTh5lIJMDzPERRrDH6Yf9V\n49DBqJGkid4iknqaZwyq6cdzc3PgeR5/+qd/iv3798uvl0olvPbaa3j55ZflEo25uTnMzc0BAMbG\nxrC+vo5wOIynn34azz77LADgvvvuw9WrV/H444/j6aefxr333guTyYTLly8jnU4jGo3i2WefxZ13\n3ik/E++88058+9vfxj333DPYi9cJhpDUOc0Ww2w2C47jsL29jaWlJVy5cmXXBYZ62iigr2bIkiRh\na2sLfr8fFosFXq8XU1NTfbvGXqOl/UJrISmKotzCQ/ngqjeTURs1ekDuhs1mw+TkZINbX6VSkdtM\n3LhxA8ViEVarFXa7Hel0GoIg1LSboH7fsc+t/vNr5iRbLzKZiVG1WtWlwOwFs9kszwPlBpCZcbA6\nzGg0Cp7nZcfI+jpMm83W9hwyaiRpQlWkdIuevhsGZfOgTCbTEA10OBw4ceIETpw40fRn/H4/fvKT\nn+DSpUuIx+OywDx48CDi8TgAIBwO1xz4Li4uIhwO7/i6QXfQnFUGqiNJEjY3N8FxHMxmMzweT0cp\necMgJIeFVqedoigiEokgEAhgYmIC6+vrDa5pewmt2n9Uq1W5hce+fftqovX9dJLVuoUHcCuFOhAI\noFgsYnV1FTMzMzCZTDUpjtvb24hGo3KrCSYMWBSzX/3G1KSVk2ylUkEkEkEoFMKBAweG3kl2kBEW\npRlHfW+4crlc006A4ziUy+UGt0e32w2n09kwZiO1lSZ6i0hSFl3dIggCSXdmdoDXyfzJ5XJ4+9vf\njr//+79vqMfU4pm519HXnWLQgCiKCAQCCIVCPQkTu91O3mwHeL0dAtUHNKvjrF/Qy+UygsGgnGZ8\n7tw5OBwOjUZJh0G3/2B1gNFoFHNzc7h48WLDd9WPuk0KAjKdTsPn80GSJKysrDScELdKcWTiIJ/P\nY2NjAzzPQ5IkuFyumhrMkZER0htOpZHQ7OwsLly4UPP9G0Y/vbFTzzrm9shalUQiERSLxRr3Wbfb\njVKp1LeerIOG8nOqU/RWI6k3YQzQFsedHHQJgoC3v/3tePe7343f+73fAwDMzs7Kz+xoNIoDBw4A\nABYWFhAMBuWfDYVCWFhYwMLCgpwKy16/evWqatez16A5qwxUQ5IkVKvVnnvaUTeyYbBx9rt/X7fU\nC0me5+H3+5FOpwfWOmKYGFRqa7FYhN/vRyKR2DXdWy0hyVKJtRSQrPbT7/fDbrfj8OHDDSe8u7Fb\nL0NWh8lq6KrVKpxOZ0OrEi03OcwJORaLtTQSGlYnWeo1X63cHpnTI0u3TiaT4DhObiegjGIO09qp\nNyE5TJ/9blAWXd1C9ZqKxWLbh+aSJOGBBx7A+vo6PvjBD8qv33XXXbh27RoefvhhXLt2DW9961vl\n1z//+c/j7rvvxnPPPYeJiQnMzc3hTW96Ez784Q8jlUoBAL773e/i0UcfVf/i9gj0ZpWBqthsNqys\nrPT8PpQ3IUpYCi51IcmiP4IgwOPxYH19XfPPmGI0t9+prblcDj6fD/l8Hl6vF8eOHdv1e+hVSCp7\nQLL/rYWA3NjYAMdxcLvdWF9fV71HrDKaVF9DVywW5QhmOByWW5U4HI6aCGa/e2EqnWgXFxdx8eLF\nrjbErQQm+6/hJNs59YcU1WoV09PTmJqakucQz/NIpVLyIQVrd6NMlaX6PNB6zVcLvdVIVioVXV0P\nQDe1NZlMNhjB7cQPf/hDfPnLX8bJkydx+vRpAMCnPvUpPPzww3jnO9+JJ554Ah6PB0899RQA4C1v\neQueeeYZrK6uYmRkBF/60pcAANPT0/joRz+KCxcuAAA+9rGPtT0Gg0YMIbkHMJlMJI1U+gHlyKkk\nSSiXy/jpT38Kt9uNlZWVhhQvLWHRP0ob2X5FJFOpFHw+H6rVKg4dOoTp6em2N3XdCslmPSAHLSBZ\nq59gMIipqSmcOnWq5x6knWIymeByueByuTAzMyO/zu4PFsGMRqPI5/PyBqg+gtmqVclulEolBAIB\nOQLdLyfa3Yx+lJHMfjrJUo9Itouy9Q2bQ/V/r6zD3NjYkOeQ1WptqMN0OBy6+Fy0hgl4vVCtVklG\n73qBakSyEyH5a7/2azvuZb/3ve81vGYymfCFL3yh6b+///77cf/997c/UIMdoTerDMjCDDcon9RR\nNAVixi2hUAgA4PF4sLi4qPGoGmGijdKpJYuSqgEznPL5fHA4HDh8+HBDz7x2sFgsHdULt9MDst+w\nORgOh7F//36cPXuW3MbPZDLB4XDA4XA0bCyYwGQmLT6fD+VyGVartSGC2UocsBTmTCaD5eVlHD58\nWJODk26cZNncqU+RbfY+emU3QaycQ/U1voIg1KTIhkIhlEqlmh53bC45nc4985mqAfV9QafoMSJZ\nqVQGfmjYDslkssGUy2C4MITkHkCtiKTdbocgCKQXWEoRSRb1YNbU58+fRzAYJHkqCND67BhqiC0W\nhQsEAhgfH8dtt93WUxpnuxHJQbTw2A1BEBAMBuU5uFPtH3WYSUu9OGCtSlgfQ+Y2y3phsj8Wi0WO\ncHo8nrZSmLWglZNsO3WY7D3qBaZeIpK9tP+w2WyYmJhoODxibsQ8zyObzSIej8tuxKwOUxnJpPz8\n0wpqmSy9YkQkB0cqlTKE5JBDb1YZkIVF+yieajEoRCRzuRz8fj+2t7exvLyMO+64Q37IUhRrDK17\nNqpNpVJBKBSqicKp4YS7m5MsBQdWdoixtbWFpaWlrmv/qGO1WncUB0xc3rhxQ45e2mw2Od2RRTBd\nLtdQbIJ7MfoRBEHuiznMdZj9aP/Ryo1YWYeZTCbB8zxEUZRreZUCk1Imx6DRY42kXtyBGVRrJBOJ\nhFGfOOQYQnIPoNYmloJI2w2bzYZisTjw3ytJklx3J4oivF5v0z6dVquV7GeoFyFZLpfBcRw2NjYw\nPz+PS5cuqXoSu1NEkoKA5HkeHMfJhxhapW5qDXNDFgQBa2trmJqaktOkWXpjNptFLBYDz/MAAJfL\n1VCHOQyf3U4Cs1qtymsSqzGl5CTbDYOMrCpTXuvHUCqV5HkUi8VksyibzdZQh9lLLe+woLfUViMi\nOThSqRSOHTum9TAMeoDerDIgC0ttpcyghZooiojH4+A4DiMjIzhy5EjL9glWq1VOm6IG5WhpOyhb\nqSwvL+PKlSt9M1BRCkkKApK5zxaLRXi9Xqytrel+89qMTCaDmzdvAkBTMyulC+js7Kz8uiiKcquS\nfD6Pra0t5PN5iKLY0AuTepsJSZKQTCblWuD63sHD7CRLIUXXZDLB6XTC6XQ2RFIEQWhItS6Xy7BY\nLDV1mCMjI7oywNObkKQqunqB6jUZNZLDD71ZZaA6akYkOzEZ0QKbzTYQMaRMm5yZmcHp06fbSvml\nLNYoRyRbbSCz2Sxu3rwpi6h+t1JhQpKCgEyn0/D7/XIUnEXe9hLKbACr1dp1L0wmFuvfu1gsIpfL\nIZ/PIxgMIp/Po1qtwuFwNEQwtUwdYz1BfT4fXC7Xji1dqDjJdkMvNZKDwGazYXJysuEAg9Vh5vN5\nZDIZRCIR8DyP559/vuaggolNKsK9XfQmJPV2PQDdazJqJIcfQ0gatI3NZiMbTWP0OyJZLBbBcRy2\ntra6Sps0hGTnsF6SyoegUjwAt6JPgxBRTNCyzaAWBhws4uT3+2G1WnHo0KGOhZMeYMLJ7/fD4XDg\n2LFjNZE3NVC2majvhVkqleToUyQSkdMbWR9DZQSznw65kiRha2sLfr8fIyMjOHHiREM6ZjsMg5Ns\nP2okB0F9HaYgCPj5z3+O22+/XY6E8zyPzc1N8DwPSZKaGv1QjCgB+jPb0aNrK4VofjMMITn80FyV\nDFRFzYjk9va2Ku/VL/pVx5nNZuXG9R6PB0eOHOnqwUlZSFKt32TmNhaLBZIkYWNjA36/Hy6XC0eP\nHm0wyegHyo2zy+WC1+tFLpfDxsaGXGPHNnxMPKgdWWDXznEc3G431tbWenKfHVZYGxe/3w+3243j\nx493JZx6QZneWL8JKpfLcgQzHo8jn8/LZj/1Ecxe+hgyAenz+TA6Otq1gNwNtZxkgd6di6luhjtF\nFEWYzeZdI+EsihkOh8HzvNyeSRnB7PdBRTvozWxHjzWSVEkmkzX9hA2GD+NOMWibYTDbUVOoKSMe\nJpMJXq+3o8b1/R6f2lgsFk2MinbDYrFAEARsbGwgEAhgcnISJ0+eHIh4aNYD0mw2Y3Z2tmmNHRMQ\nTGBKktSzwBRFEbFYrOba9eYo2A6SJMn1yBMTE2Q/B7vdjunp6Zb1c1tbW+A4DqVSqaZVCZsjTqdz\nx3VGKaRHR0c1/Rw6cZJlNYG9GP1QT21tFyYkd0IZCVceVEiSVDOP2DxgbbnqI5it5tEgr2fY0FtE\nkvJ9UygU9uSBqJ4whOQeQK0FZBjMdlgaZC8o+w6OjY1hbW1NtZQ56kKSWmprpVJBoVDAj3/8Y7kX\n5yBO3zvtAblTZKHexEUpMFltlDJKpfwd1WoV4XC4pn2J1pEHLWD3YzAYxPT0NE6fPq1KG5dBs1P9\nnLIXZiqVQigUQrFYhMlkqoleut1uZLNZWUifOnWKbCumdgUmew249Tk0S5NV3hPDmtpaT7fCy2Qy\nteypyiKYqVQK4XAYxWIRZrO5oQ5zWFreaIVe5hmDqtEOWwOoilyD9qA3swzIMgxmO73AmrdHo1Ec\nOHBAtb6DStptZq8FlERuqVQCx3HY3NyE2WzG8ePHGzZO/UBtA51WqWvKCCZzCZUkCQ6HQzbnmJ2d\n7cs8HAaq1SoikQhCoZCuhXSrXpg8zyOXyyEajSKZTMJkMsHhcKBcLiMcDvctjbpftBKY7L87pchK\nkoRqtVpzfw7DNTejHxE8q9WK8fHxhnrparUqH2blcjnE43HZ68DpdMoRTC3qvamiN2HDWtNQwxCS\n+sAQknsAtW5SihErNSgUCvD7/Ugmk1hcXFS976ASygsmhe83n8/D7/dje3sbHo8Hq6urePnll/v+\newftwGoymRp61CnFM0uN5HkeL730EkRRlM03lBFMPW76qtUqQqEQIpEIDh48iPPnz5PcBPUbs9mM\nXC4HjuMwNTWFO+64Aw6Ho2UatTLyNExzpJXRj7KdCTuQYesU+6+WTrLdMMhUUIvFIre8UcIOs1gU\nM5lMgud5iKIIh8PR0A9zL92DemrNAtCNSGaz2YF4HBj0F3ozy6AvsJShXt9jGFCas7Qik8nA5/Oh\nVCrB4/Hs2d57DC2FJPsuyuUyVlZWcPz4cfm76Oe4KLTwYAcZ29vbWF5exurqasMms74NRTKZlPsc\nKttQDEOfw50QBAGhUAixWAzz8/O4cOECyc1Pv1HWxE5PT+PMmTM1EendotzKPobMoKXZIcQwfLbp\ndBo3b96Ew+HAiRMn5Gtu5SQL3BKYyppmagKTQk2h8jBLaXYiSRLK5bLsJMsMo5gYUYpLPQpMvRg6\nKREEgeT9nkgkGmrJDYYPejPLgDzUF1qWotlsM600qrDZbHLvvUFD8TO0Wq0DFZLKvncWi0Vu4VGP\nGnWv9b8XeH2zCWgjIHO5HPx+PwqFwq4HGbu1oWjW53BYxEO5XEYgEMDm5iYWFxdx8eLFoRTCvaKs\nBd23b1/HqbxKYdBqjoTDYVkYOByOmujl6OgoCWHAIpB2u71pP8xenWS7MfpREwpCcidY+rTD4Whq\nGMUimIlEAsFgEKVSCYVCAb/85S8b6jCpPePagWq/xV6gmtqaSqUMIakD6O0qDPqCGhFJ4PXoEMUN\nKYO5yypP8Vm9VTAYxOTkZM3p9qCh+hlaLJaB1EhKkoRYLCa3sVhfX29pZqRWRLK+/x2gjYBk0VdR\nFOWDjG7HoGxDUR9VYH0Oc7lcg3ioj2BqMRdZKm8ymcTS0hIuXbpEdnPdT0RRlNemftSCtpojLPKU\nz+cRi8WQz+chCILcYkJ5CGG32/t+r6RSKdy8eRM2m63rvqCdOMlqJTApC8lW2Gy2hnpeQRDws5/9\nDEtLS8jn89je3kY0GpUdwF0uV0MdJuVrp5oG2gtUrymRSBg9JHUAvZllQBom0iguSgybzSYLIhbt\niMViA3X9bAWLmFL7DPud2spcSFnE5fTp0225TrJU5W5p1sJj0AKS1Xn5/X5YrVasrKw0mKuoyU59\nDpl42C06xQREP06xi8Ui/H4/MpnMjqm8ewGlgDxw4MDAa0FbRZ6UApNlcJRKJTm1UTlPeumFyWAp\nrFartWsBuRvtCEwATQUmUFuH2et8HVYh2Qx2KDo2NtZQ78bqeVkUc2trC4VCQWIqXU8AACAASURB\nVK75rq/DpPBM1GNEUhAEkq2SjIikPtD+rjUYCGptmpmQpLgoMaxWK7LZLCKRCNLpNJaWlnDlyhUy\nD4dBRf46pV/CShAEWcwfPHgQFy9e7GjD3K3A3akH5CBhqdQcx8HlcvVtk9wuSvHQTGCyCGY0GkUu\nl0OlUoHdbm+IYHYjeHieh9/vRy6Xg9frxbFjx4Yy9a1XlG60WgjIdmjVYoIJzGQyiWAwiGKxCIvF\ngpGRkZoIZjupjUxAWiwWHDlyRBPjjV6cZIHujH70JiR3erYq63mbpVuzOsxoNCqn5LNoeH0d5qDW\nCoqHvL1CNbU1mUwaEUkdoK+7xaDvMCFJlVQqhY2NDQDA0aNHsb6+Tm6zOuhaRK1gkadEIoGlpSVc\nvny5KzFvsVg6mnOd9oDsB0rDlMnJSdx2222kD192i06xCGYsFkMul4MgCLDb7Q0RzGbRfmUt6MrK\nCsl7chAo+4IePHhwKM2E2mlVkslkEIlEUCgU5LpN5TxxuVzIZrP41a9+pamA3I1WTrJAa6MfoLXA\n1JuQ7PRadsqYAFBj9MMO4crlsnxYoRSZTqdT9bVEjxFJquI4lUrh0KFDWg/DoEfozSyDvqDWYmu3\n28n1kpQkCfF4HBzHweFw4MCBA3A6nThw4IDWQ2sKpX6N/SCXy8Hn88mRp6NHj/a0aWo3tZWCA6sy\n2jQzM6OL3od2u11uR6JEGcFkzo7lchk2mw2jo6OwWCxIp9MAgMOHD/dUCzrM1LczGUYBuRsWi2XH\n1EaW1pjL5RAKhbC9vQ0AGB8fh9vtRj6fB4Ch6WG4k9EPE5S7CUzg9QiRHgSl2sKrVTSczSV2WFEs\nFmtMppTR8G4/V6qiqxeoXlMymayp2zYYTujNLAPSUIpIVioVhMNhhEIhTE9P49SpU3C5XLJpBFWo\nC8luHWVZmlq1WsXKygr27duninDYLbWVgoBUtq7YK70Pd9rwbW1tyfPA7XZDEAS88sorsFqtDSmy\ngzBw0YpqtYpgMIhoNIq5uTldCsjdMJvNGB0dletBLRYLzp07h9HR0ZpWJVtbW3I7m2a9MIfhc1Ou\nOzvVYQqCgEgkglgshqNHj6JarZJxku0WURQHcgBgtVoxPj6O8fHxht/P87wsMjc3N2v6qtZHMXcb\nqx4jksxAixqpVMpIbdUB9FdnA1VQs0ZSa5GmbNw+NzfXUHNHXahRHp/ZbO5oYyBJEra2tmSr/sOH\nD6tuItOs/QdzXdVaQJbLZXAch62trT3dukKSJKRSKfh8PlitVqytrTVs+ARBkCNTzQxclCJzmAVm\npVJBMBiU+2Hu1TkBANvb27h58yYkScKhQ4dq1oademEWi0V5nqRSKbl2jplBKeswKW6Od4JlKszN\nzeHSpUvyukbFSbZbtBZe7LCivvZcOZd4nkcqlZL7qrK0/Gb9MKlG73php3ZoWmPUSOoDfd0tBn1H\ny4gkq7XKZrMt3R4pRU2bQVlIsujfbg8dVgPIcRzGxsb62k5FmdpKpQdkoVAAx3FIp9NYXl7G4cOH\nyW3wBoGyF+huZkI2mw2Tk5OYnJysef3/Y+/NgyM763vvb7e6W1JrGe2tpaXepNk047E9M54ZrkOg\nSMUVoAgQJzdVNzbvm0DVS4A3lIsUscEeO17HjuEak4ANqWsqgddOUuG1y5fLhbKhCuIFPDiescev\nLXX36UVLS+p9PX2294/hOX5609I63X1O9/lUqQyamdZR69E5z/f5/X7fL8/z8gxmNBpFIBCocAgl\n4kEJh9BGQQvImZmZjhaQZAZSFMU9HS7Ream14myy2WyFGVS5k6xa2slJNmgwGMTExERFVXonJ9ny\ndlmgcU6y9dJqIVkLei3R0MZiuVwOkUgEuVxOdqMnnRRkXan5nrNbyGGE2kgkErqQbAN0IdkhaHVG\nko5NkCQJTqcTi4uL234/dPyHGjGZTGBZttWXUZWdjIDodmIyA0jndTYCIm5J9bGVApIcZuRyuY52\nHiVutAzDoL+/H4uLi7BarXW9lslkqikwiXCIRqMIBoOyQ2h5BbOVmz3iSryxsdHRVWngqoAkbc1u\nt7viZ1ovuzFnyWQy2NjYgN/vR7FYrKh0N1MU0Fm5Y2Nje251r7XpL3eSpTsy9uskWy/1mO20ku2M\nxTiOw7vvvguz2Yx4PI5wOAyWZWE0GivmMHt6ejT1fasRchCko210IamzJ5pV7aMrXn19fTh48OCu\nnf1MJpNekayTWtEkJI8zEolgenoaZ86caUr7D5nXJPOXZFO4m2gBJUkmk2AYBjzPw+l0YmRkpCMF\npCiKiEQiCAaDOHDgAK655ppdZYHWw3YOoaSCGY/HEQqF5M1eeWWqEa6OBFpAzs7O4syZMx27scxk\nMvD5fOB5XlEBuRtqzeqSVurySjc5iGjEOiEHLH6/H0NDQ4qbbe3HSba8Rbba69SDKIptIwbMZjNM\nJhMmJiZK7jvElTiXyyGdTiMSiSCfzwMAenp65LVExKaaDpLq9TxoNGSN6mgfXUh2CErnSDYK0h62\nurqKsbExXHfddXveqKpZqAHqvr5yY5t8Pg+GYRCPxzE3N4dz5841ZbNMn7ZbLBacOHECmUwGiUSi\n5JSY3gwqXZkic38Mw8BoNMLlcik+/6kVSIteKBTCyMgIrr322oZXomvR1dVVU2AS4ZBIJLCysoJC\noSBXE+gK5n6EAzlU2dzc1AXkbwUkx3Fwu90VYq6V1GqlJuuE3E/IOjEYDBUmP7t1/6RnxQcGBnDi\nxImGHbBUo5aTLIBdzWGS16hHYKq1tbVeqs1IbudKTOYwyYFFLpeDKIryTC9t9tOKmV61/nzI3KYa\nRa7O3tCFZAdhMBj2fQJUzfhECcjMWTQaxczMzL4qXkajUdUnXVoQkul0Gn6/H7lcDi6XC4cPH25a\nS1g1A51qD3F6Q1itMkXE5V5b2khVIRAIoLe3FwcPHqw599fu0HEmExMTqo4z6erqqurquF3GYXll\nartKNzFWIrmonSwgs9ksfD4fisWi6gTkTuy0TrLZLNLpNNbX15HL5QBAFgPkfmK1WuWffSwWg9fr\nhdVqxfHjx1WXF7vTHOZ+jX7UKlTqZS/fD93yOj4+Ln+ezPSS9bS2toZcLifHvpQ7yTbSXEyt5kHx\neFxT9w2d2qhvdel0FKlUSp45czgc+84c1AJqFZLEnv6dd96BxWKBy+VqWgtnPREe220IafMWerau\nPH6CFph02+bg4CCOHTumuk1hs+B5HuFwGGtra5qPM9mumkAqCalUCmtra7LApCuYFosFkUhErsp3\nqrES8J6AZFkWbre7YsZMy2y3TkhUCZnDJKKA4zhYLBZMT09jZGREtYcs1VBKYPI831a/D0oIL3qm\nt9ocZvnsd7FYLOmwIQJTiZZrYiKkNnTH1vZBfatLp2EoUZEk7KfvnrQBMQyDrq4uOJ3OhoSVq3U2\nQG1CUpIkbGxsyDOAk5OT8Hg8TfvaSkd41Gp9JOYtmUymYmbKYDAgl8theHgYR48eRX9/vyrXTqPh\nOA6hUEiehW1n4xij0VhTOORyOSQSCbkqbzKZYLFYEI1GUSgUSiqY7bSJrkU2m4Xf70ehUGjqAZMa\noDf4ExMTSKVS8Hq96O7uht1uhyRJyGazCIVCclQJPTdHDiTUuJmvxnYCk/yX3Lej0SgSiQSmp6fl\nkRc1OMnuh0ZXWLdzryZzmMlkEmtraygUCgBQkq1KKqC7fW9JFVRtRKPRtjqI6mS0cWfTURVECO31\n5kRCqUOhEAYGBnDkyJGGtQySFk01PrzL5xBbBfl5BINBDA0N4fjx49ja2mr4BrFVGZDl5i2k6ra6\nuorh4WHYbDbk83ksLS2hWCxWVDDVFCugNPTcX6c7jxaLRYTDYSSTSTgcDthsNhgMBllgksMIEhsA\nbN/6qGVyuRx8Ph/y+bxcgewUAVkOiTSRJAkej6ekE6JaWyNZJysrK8hms7JDJe0iSyreWoA2+kkk\nErKYvvbaa9Hb26sqJ9n90KoDaJPJVLXDhq6IZ7NZbG5uIpfLQZIk+cCCbpUt3/OoubVVr0i2B+pb\nXToNQ2nDnd0KyWKxiFAohLW1NdhstqZERhCxq8YbaKs3YrSh0cTEBE6dOiVvZhoZTUK3SbUywoMW\nTWQet5poIi1ImUxGdmIksQL0/KWWBSbLsggEAojFYpibm+voub9CoQC/349UKlU12oUOPrfZbPLn\nyUaPtFPTArO3t7dknWhFYOZyuZIZ6dHR0Zbft1pFNpuF1+sFx3HweDw7OtLWiiqh8wvJOslkMvKz\ntLyC2ci5uXohYhpARWbsXpxkiVhrlJNsO0FXxGkkSUKhUJAPt1ZWVpDL5SAIAiwWiywu8/m8Kg8F\n4/G4XpFsE9S3y9ZRPbt1bs3lcmAYBolEAna7HefOnWvaDY1cYzOd89QOEQ20gKrmTqd0tbR8I1F+\nMt0sCoWCvB53I5pqtSDRApPOrTObzRUzmGoVmMTcilTdFhYWVLdpbRb5fB5+vx+ZTAZOp3PPxlK1\nNnrbVRJIqxpdnVLDBjqfz8Pn8yGbzcLtdne0gCTV2EKhoMg86E75hfShFcMwctt9eQWzkZE2tcjl\ncvB6vSgWi5ifn9+Ve3UrnWQ7AYPBgN7eXvT29pYeWLAs+Hgcma4uZFkWyWQSPM9jc3NTjr6h8zBb\nlcEbi8UwOzvb9K+rozy6kOwglKxIFovFmn+eSCTkB6HT6cSRI0eafqMym82qmkNsJaS6QETD/Px8\nzYeykkJSLQIym82CYRhks1k4HI6KStNe2U5g0lWpbDZbUm2gRWarZlbIWshms1Wrbp0ELSBdLpfi\n96ntKgl0BXNrawvZbFZuVSuvYDbj8K38vRgbG+vYdVEoFODz+ZDJZJomprebmyMHEeXO1OXt1I3I\n1iVV+nQ6DY/Ho1grYqOdZOtFFEVNr3vjW2/B8s1vAoUC+gcGUPziF1EcHsbg4CDGxsbk9ZTL5RCP\nx0siksrnMBs9/x2LxXDttdc27PV1mocuJHX2jMViqahI0oYt3d3dcDqdTQ2lLsdkMjU073K/kJmr\nRt6oU6mUbNHvdDpx9OjRHR+SJpNp30KymoFOK06TU6kU/H4/eJ6H0+ls+HyX2WzG8PBwhaU5aWcj\nc3WkTc5isVTElDRKYGYyGfj9fvlwp9MrTaRtsxUHXcQV1mq1lnyetKrRjsMkk47MQtHVKSUEJi0U\nGiGmtQTLsnLHglrei/K5bsJ2kTZ0taneeV2O48AwDKLRaFPjn3YrMMnnAGUFplp9FXZFKgXLY49B\n6usDxsaARAKWr38d/Gc/C9NvK+DbrSfamTgSiSCfzwNA1TlMJe49umtr+6DR3xidelB6RhK4egNa\nWVlBOByWDVvKN0itQO0VSTLDqXTroyRJiMVi8Pv9MBqNcLlce8pq6urqqvt9a4QDaz3XEI/HwTAM\njEZjyw80gKsHLxaLparAJKJhbW0NmUymwpBjvwKTiGlBEPa8FtoN4jyaz+dVOfdHt6qVm7fQAjMW\ni5W4g9Lisr+/f1ebPFpA1tPO207Q+aBOpxMHDx5U/XuxXVRJLUMouuJUq9rN8zyCwSAikYjcvaKG\n92K3TrK1WmR36yTL87wq5wl3g2FzE+B5gMytDg3BEA5DikZhmpvb9t+SFupy80PSPUHWVCwWkw+3\nuru7Sw4trFbrnp5TiURCn5FsE3QhqbNnzGYzMpkMlpaWEIlEMDU1VWLYogbUXpFUWkhKkoRIJAKG\nYWC1WnH48OG6HHHraW1Vi4AkkTI9PT04ePBgwxyBlcJisWBkZKTkYUobcmQymRKB2d3dXVHBrHV6\nTqIrAMDtdu9qpqldoauxWoyu2E5gsiwrC8xwOFwRP0GLTJPJJM8JJ5PJplaa1AjHcbLpVrvkg9Yy\nhCpvp6ar3eS+wv52ns5ut2vGdIt2kqWpFlWyGydZLVckpeFh5PkClsMXke8SMWMcwrR5EGx3d90H\nkXT3xNjY2Htfq8w4an19XXYmNplMFXOY1YyjYrFYyWvqaBdt/sbo1IUSGwZiZ55IJHDw4EG8733v\nU+UDx2w2yxlMakSpLElBEORIleHhYZw4cQK9vb1NuS41CEhRFBGJRBAMBjE4OIjFxUVVVMTrpZYh\nB3lwk40gHSnQ3d0tCwbyflgsFszPz1dULDqJTCYDn88HjuPkamw7iSbaHbR8k1ceP5FOp5HP5yGK\nIoaHhzEzMwOLxaLpjXO9ENfq9fV1zM7O4oYbblDlM0xJarVTi6KIYDCIUCiEvr4+DA0NYWNjA2tr\na7LAVKIzotnsJDBrOcnG43EYDAbwPK85J9m41YB/vraI9//vALqMXWCkAP6/v/xL9HR1Kf47vpNx\nFKlgRqNRea73zTffxE9+8hMcOnQIR48eRS6XU/T59OMf/xh/9Vd/BUEQ8OlPfxp/8zd/o9hr62xP\nZz1BdOqCbhcUBAGTk5MwGo2w2+2tvrSaKCXUGsV+r48Ex6+trWFyclKxivBOFUkynyIIQksjPARB\nwNraGsLhMEZHR3Httdc2PFKmldAP7vJIAZZlsbq6Cp/PB4PBIFfjl5eXK0x+tNq2tRfS6TR8Ph94\nnofb7e64dl5aYPb394NhGEiShEOHDmF4eFiuIqyurpYcRmhVNOwWQRDk3NiZmZmOzkolngZ+vx+j\no6M4e/Zsyc+7/OBqbW1NNg8js930ejGbzZo4pKnlJJtMJrG8vAyz2QyXyyVHk9RykgVaN/tfiytb\nV/DT8T68cOoj6MsWYPYY0N/9Dm4VmltdNpvNVecwFxcXceTIEbz55pt49dVXsbGxgXPnzsFgMMDj\n8eDIkSM4cuQIjh49ioMHD+7peS4IAj73uc/hpz/9Kex2O06fPo2PfexjOHr0qNLfnk4VdCHZQez1\nRk+qG4FAAFarFfPz8xgcHATLsohEIg26SmXYbURJq6hXSBYKBQQCAWxtbWF2dhZnz55VdDNkNBrl\nhyeNWjIgeZ5HOByWM0lPnjzZdhve3UI2g4FAAP39/Th58qRccajV9kha2cpnMNthQ03Pg7rd7pbP\nxrYSYhwTj8cr5v62yzcsb6em53Vb7ThcL6IoynP8U1NTHS8gY7EYvF4vBgYGcN1111XdsNc6uAJQ\n0tJIxx+RlkZ6vbQqWmK35HI5LC8vg+d5HDx4sGqFrJqTLH2gCjTWSXa3rISNePddA0ZMVhiHrUit\n5DDfXwSGW59dDQB9fX04d+4czp07B0mS8Otf/xoXL14Ex3Hw+Xx4++238fbbb+P5559HPp/Hv/3b\nv+36tX/1q19hfn4ebrcbAPCnf/qnePbZZ3Uh2SR0IdlhkJO27SCb9ZWVFYyOjla0S6pdpAHaMdvZ\nLZlMBgzDyOYYCwsLDXlYlT9w1BLhUSwW5XmmTq8m0Ac8Q0NDuOaaayryUndqe8xkMshkMgiFQrLA\nbJQzaKNJJpPw+/2QJAkul6ujBWSxWATDMIjFYnA4HLsyjtmuTY2uSlVzHFZzZqooilhbW0MwGITN\nZsPp06c7ro2XJpFIwOv1oru7G8eOHat7BKCWeRjJwiQtjcFgEIVCQc4upNdLK7IwaViWhc/nQzqd\nxvz8/LamL/U4yZLW2GYKTDZ4Aj3iOFhrCCZ0Q+rKYDD0aWCxYV+ybvL5vPzMMpvNOHToEA4dOoSP\nf/zjdb3eyspKSSal3W7Hq6++qsi16uxM595VdSqgq13T09NVA+uBqzfWncRoq9GK2c5OENMUEmGx\nuLjYlAdwNQHZilNWsibj8ThmZ2c1YwLRCMjGOBQKYXR0tGY1YTu2E5jbRU+0IttwJ5LJJHw+HwDd\nUIh2HnU4HFhYWFDkPlHNEIp8PdoZNJvNolgsVs1MbbbAlCQJ6+vrCAQCGBsbw6lTpzRXRVWSdDoN\nr9cLADh06FDDTMhqZWEKgiALzEQiIWcXkrlN+uCq0dmFPM8jEAhgc3Nz32ZTSjrJ0q9XL6P9Azi8\neg941/9C0ZBEd/QUDk9dB6NRfYIqGo3qjq1thC4kO4xqFcl0Og2GYZDJZORNiNY361qYkSQ5TeXQ\nDqQmk6mpm2Ty0NvY2JBbk1qxFrLZLBiGQTab3XVlpV0hETsrKyuYmJhoSDvvbqInMpkMotEostks\nJEmS4wTojWAz1koikYDP54PRaITH48Hg4GDDv6ZaoQVkM51Ht6tKkcOIzc3NkrbH8nbqak6O+4HO\nMh4eHsb111+vuippM8nlcvB6vSgWi/B4PC2r1Hd1dWFwcLDi91QURVlgptNprK+vy1EltOMnObza\nz7oWRVHusrLb7Q01WNqL0Q89RkJEZr0C87/8FwE/+9kw1pf+G/qMEsxm4A8/lkGxqL5DlFgspqiQ\nnJmZQSgUkv9/OBzGzMyMYq+vsz26kOxQJElCNBoFwzAwGAx1BbaTSpUaUet1EaoJXVEU5ZP0gYEB\nHD16FH19fU25HtqBdX5+Xm5NYllW3gQ2o8qQSqXAMAyKxSKcTqfqsv6aCT0POjk52ZLWvO0EJh1g\nvbW1VSIwyyuYSmza4vE4fD4fTCYTFhYWOtqRluM4uXtETdEVZrMZw8PDNdseM5kMNjc3wTCMfG/Z\n71wdOXjz+/0YHBzEiRMnKlq9Owm6bdPj8ag27sZoNNbMwiT3FnIgkcvlIEnSntvv6er0xMRES0ci\nahn9bOckC1Qa/dQSmAcOAHfeyeL117vAccDRoyIOHCiCYdS3zY/FYhWzt/vh9OnTWFpagt/vx8zM\nDJ5++mn84Ac/UOz1dbZHfStMp6FIkoSVlRUEg0EMDAzUnTdI5iQ7+cR3P9BCkrgJhsNhjI2N4brr\nrmvaRqhahMf4+HiJaKA3gbS5Am3EQYRmvUInHo/D7/fDYDB0/JwbceSNRCKqnQel4wSqCUy6KkU2\ngURgkjWzW4EZi8Xg9/vlWRq154M2EiIgSfahVqIrarU98jxf0k4dCARKBCYtGsoFJjGO8fl8sFqt\nOH78+L6ij7QOx3FgGAbRaFTTGaFGo1H+2dOUt9/HYrGK3FT6g7S+HzhwQNXV6VoCE6hu9FMuMOk5\nzP5+A373d9/798kkr8q54Hg8rqiQNJlM+OY3v4mbbroJgiDgz//8z7G4qMLh0DbFsMdZN3UPxuns\nyNLSEgqFAhwOx77iEv7zP/8TCwsLTauY1cNLL70k20urDTK30t/fj0gkgqmpKczOzjZlloc2BthP\nBiRtxEFaH+lcw51iJ0glIRAIoLu7G06ns6OrTLSh0OzsLKanpzUhEnYDXWUga6W8jY2smd7eXhgM\nBllAdnd3w+VydbyADAaD2NjYaLu1UQ2e5+WKFLnH0MYtRqMRiURCdhNX83Oo0fA8j2AwiEgkAofD\ngampKVU+8xoFnZtKBGY8HgcA9Pf3Y2BgoKSCqVZBuRe2c5IlSJKERCKBVCoFt9utqvvFd7/7XZjN\nZnz+859v9aXobM+ubiTqO6rQaShut1uR2UGLxYJisajqBzip+qnNaCGfz4NhGGxtbckZXs2oOCmd\nAVnNiKM8DJ3ETgiCUNLyWCgUEIlEMDg4iKNHj9btINgO0IZCc3NzbWkoRFcZJiYm5M8TgUk7g6bT\nabAsC7PZjPHxcbk1TxTFtntfdqJcQLbj2qiGyWSqmkUXi8WwvLwMURQxODiIYrGIS5cuqdIZtNHQ\nc38zMzMdszbKIQZiZJZckiScOnUK/f39JTO71Uyh6PWi9MxuI9nJSVYQBGxsbCAYDMLlckEQhJpG\nP61YM7FYTK8YthG6kNSpi2ZEgEiShFzuTXDcOszmCVit1+zpRk+uUS1CMp1Ow+/3I5fLYXZ2Vv5v\no2lmBiTtClqeVZfL5RAMBvHuu+/KAdapVApLS0t1tTxqHXKgkEqlOtZQiAhMq9WKra0tRKNRDA0N\nweFwAECFEQdpqaVbHq1Wa9u9b3SVyW63d6xIIJAODkmScPjw4Qrjlu2cQctn6kjFW6tIkoS1tTUE\nAoGWzU6rCTITmslk5JlQQi3XYXpcg3TFsCwrH0jQ60VLBxJGo1E+bDlw4ABOnToFi8XSMifZWijd\n2qrTWjr37tOhKHVDbIaQ3Np6Bpub35edZkdH/wg22/+x63+vFudWYhJCcu5GRkYgSRICgUBDv65a\nMiBp05iJiQm8733vk8U9EZh0lABpeSyPEdD6BpBAO9I6nU7NzjIpAW2U0t/fj8XFxZLqdH9/P2w2\nm/z/RVFELpdDJpNBOp3G2toa8vl8RZSAVtcLz/MIhUJYX1/XBSSu/q54vV7wPA+3211zdrqWM6gg\nCPJ6SSaTFQKTrkipfb0QV1q/34/R0dGOjzXheV7u7NnrTOh2M7vkQCIejyMUCqFQKJR0VKh1vWQy\nGSwtLaGrq6siJ3QvTrLVRKbSAlMXku2FLiR16qLRQpLn49ja+n9gsUzDYDBBkgTEYj/E8PAfwGKx\n7fwCTbjG7ZAkSba/7+7uxsLCQskmp5EPoGoGOq3YjBaLRYRCIWxsbGB6errqyTm9oStveawlGOh5\nOi2dGGcyGfj9frAsKx8oaOG6GwH5/WAYBv39/bs2SjEajfLPnoZeL6lUqmK90IcSatsAAqUCUq0G\nS80kl8vB5/OhUCjA7XbXHRXQ1dVV0xmUCIby9VKebdjqijcxFfJ6vRgYGKgrP7adoFt6Z2dnFTWc\nqtVSTR9I0OsFQNX10sznLcuy8Hq9yOVyWFhY2FNUWC2jH3rucj9OsrVQ2rVVp7XoQrLDULIiSSpH\njUAQcgAMMBiuLlGDoQuAEaKY3fVrtKIiSULjA4EAhoaGcPz48abN/1UTkK3YANEzf/XOddUSDPQD\nnT4x7urqqnCQVcvMSzKZhN/vhyiKcLlcFdEInQSd9Tc4OIhrrrlGEYfi7QQmqXZXq0jRa6YVBxKC\nICAUCmFtbU0XkLh67yhvU2zEz2S76IlqB1gAqla8Gy0YEokEvF4vuru7K6pMnQaJ8mAYBjabram/\nK9sdSJCOGjKHmc/nS3J26RgkJa+X53nZwdntdmN8fFyx3xV677BfJ9lq5SCOaAAAIABJREFUB9mx\nWAxjY2OKXKtO69GFpE5dELOdRmE2T8BimQLHrcFkGgfPx2AyDcNimd7DazSvIknaN+nQ+GadGqtF\nQOZyOTAMg0wmg7m5uYbM/NV6oJOWpEwmUxEjQAQGHYTeDBKJBHw+H4xGI1wu155OitsNSZIQiUQQ\nCARw4MCBpmX91RIM9IEEPVNHt7A1suJNC8jp6emOF5Asy8Lv9yOZTMLlcuHIkSMtuYftVPGu1oJf\nbWZ3vwIzk8lgeXkZAHDw4MGOdrMmmdckyuPkyZOqcV6ttV7KY5Ci0ShyuZwcVUJXMPv6+vY04yqK\nIlZXVxEKhWC325seAbST0c9uBGY2m+3oQ5F2Q4//6EBYlt33a2SzWSwtLeHaa69V4IqqUyxGsLb2\nGPL5JfT0uDA19X+ju9u+63+/uroqB9s37hqLCAQC2NjYwMzMDOx2+64fCi+99BLOnj1b90NALQKS\nmAiR93p0dFQVlUCg1FSBPNSVzsCkIW1oDMPAbDbD5XJ1/CaQBIIPDw/D6XSqui2PNm0ha4ZlWVlg\n0mumPNdwt68fDoexuroqR/50soAsFotgGAaxWAxOpxM2m001947dUO46TMfa0C7VpCK1072etPSy\nLAuPx9PRebrA1W6O5eVldHd3w+PxaD4nlGRhknsM+SCxWeWHWPQMLJkn93q9GBsbg9Pp1ITJEi0s\nI5EIHnjgAbz44ovw+/0dPf+tEXZ1M9aFZAdSLBYrMofqeY033ngDp0+fVuiqlGdjYwPJZBILCwuK\nvzapviUSCTm7a683xV/96le47rrr9mSYoFQGpBLE43EwDAMAcDqdmmrZJBmY9AawPAOTPMx3s9En\nD3mGYdDb2wuXy6XqaJxGI4oi1tfXEQwGMTIysu/c2lZDBCa9XuhcQ3q9VBOYJJpgZWVFF5C4esAT\nCASwtbWFubm5tss+pHNTaYFJtzzSFUye5+Hz+ZBOpxva0qsViMmSIAiYn59v+8M4SZJQLBZL7jHZ\nbFZ2nTebzchkMujt7ZXfDy2tj1wuh8cffxzPPvss7rjjDtx88826iNQGeo6kTuNopZHNbjGbzYrP\nSKZSKfj9fhQKhX23YO0l51LpDMh6IW1GDMPAYrFo9iG/mwzMUCiEbDYLURRL2pHIf41GozzzFwgE\n0N/fj2PHjmn+1Hw/0AJydHQU119/vWra0PZDLVdQ2uWxvKWaiIR8Po9YLIapqamOj2qgTYWUNkpR\nE3SLNE15y+PGxgbi8Th4nkd/fz9GRkbkQy6lZ+q0wHZRHu2MwWBAd3c3uru7S77nfD6Pd999F4VC\nATabDYIgYGlpCcViUb7H0M+kerokGokgCHjmmWfwjW98A7fccgteffVVTR8o6lSnc59oHQyJ09jv\na6gdk8mkiNgl7Yp+vx8GgwFut1uR6ttuzIDUEuFB2lKCwSD6+/tx9OjRtptx2C4Ds1AoyBXMaDQq\nt8jyPA+r1Yrp6WkMDw937EOSntsZHx9vGwG5E7VcHknLZjAYRG9vL3p6erCxsYFoNFpRwVSLKVQj\noVt6Z2ZmOjbWhLjCWiwWWUwuLCxgcnISLMtWzNSRQ6zybMN2E5j7ifJoRziOg9/vRyKRgMfjqepw\nynGcPOcdjUYRDAZLuiToj2Y7VUuShF/+8pc4f/48Tp06hRdeeAHj4+NN+/o6zUVvbe1AOI6T2yL3\nw0svvYT3ve99ClxRYygUCnjrrbdw8uTJuv49EU8Mw8BqtSo+73blyhVMTU1VFaXVBCTQfAFPXGhD\noRCGh4fhcDiaYpKiVohgCofDGBkZwcTEREmbbLtnYJZTLiAdDkdHZ9uJooiVlRWEw2HYbDbMzc2V\nVCB5ni9pj81msyWmUOWuw1qHfj/0lt7S6AoyU7+doKYPseiZOiVMW9RAeZTH9PR0Rx4wEERRRCgU\nwurqqjwyU88cNr1WSBs+OcQoj0JS+v1eWlrCXXfdBQB46KGHcOTIEUVfX6ep6DOSOtXheb4kB6he\nXn75ZVWfLPM8j4sXL+LMmTN7+ndk80PEk9PpbEi74rvvvovh4eGSkzq1GOjQFYSJiQnMzs62xca2\nXugZt4mJCczNzdUUTHSEANkAaj0DsxxBEGRBvdP70QnQgrqe94M2hSL/LRaLMJvNFYcSWvg9JAdQ\nwWCwqqDuNCRJkmOhlHg/SBt++aEEEZjlFUy1vfd0lMfk5CTm5uY6+oCBPrQm60Pp94N+LhGRWe48\nTH/sdV8XjUZx4cIFXLx4Effffz8++MEPavLZplOCLiR1qqOUkHzttddw/Phx1bbzSZKEl19+eddV\nU47jZEt+cjNv5KbN5/Oht7cXU1NTqhGQHMchGAxiY2MDU1NTe3KhbUdIrMva2tq+3w86cqLcEZQW\nl2rKwCyHFtQ2mw2zs7O6gNyHgNwJjuMqxALHcVUrmGr4OdAuvWNjYx1foSYz1H6/H6Ojo3A6nQ19\nP8rnvKu5gtICs9k/GzJj7/V6MTQ0BJfLpYmDkUYSj8exvLyMgYEBuN3upr8f5cZQ5EOSJPlQgl43\n5QKXZVk8+eST+P73v4/bbrsNt9xyS0cfCrQZupDUqY4gCIqY0Fy6dAlut7siQ0lN7Kb9tlAoyA6C\ndrsddru9KTfCYDAIAJiZmWm5gGRZFoFAALFYDHa7veNbjGhBPTMzg5mZmYatCToDk/yXZdmSalSz\nMzDLoSvUk5OTmJ2d7egDBrri1oqW3nKHx0wmA47jYLFYKiqYzbguWjCNjIzA6XR2tEAgc/VerxcD\nAwNwuVwtHQkgrqDlhxK7iZ1QinaL8tgvJELNYDBgfn5edS7f1dqqr1y5gnvvvRfj4+NYWFiA1WrF\nCy+8gJtvvhlf/epXVfc96OwbXUjqVEcpIfn222/DZrOp2lltOyGZzWbh9/uRTqfhcDgwOTnZNPFE\nWlmWlpYwMjKC/v5+DAwMNL0NicSYkPdgYmKiowUkyQXd2tpq+cxOeQYmLRYakYFZDUEQ5Cq9XqEu\ndaVVY8WtmliotmaUEgsk9sbv92NwcBAul0u1HSrNIpFIwOv1oru7G263W9WmZNViJ0gUklKHEp0W\n5bETtDPtwsKC5rJCBUHAj3/8YzzxxBOQJAnT09MIBAJIJpOYmJjAkSNHcPToURw9ehQ33nhjR+8n\n2gBdSOpURxRFRdxMSTuGzWZT4KoaQ7U5zmQyCZ/PB57n4XQ6MTY21pQqYLUIj3KxUM1IgY6bUIp0\nOg2GYVAoFJr6HqgVUpWOx+OYm5tr6qHCXqHNfcorC/VkYFaDjmmYnp5uWpVerZTHmjgcDk1V3Mpz\nU4nALG933O2hBKm4+Xw+9PX1weVydXyFKZPJYHl5GQDg8Xg0L5joQ4lqVW963VT7XejUKI9aCIKA\nQCCAjY0NuFwuTExMaO6ZGwqFcP78eUSjUTzyyCO49tprS/58c3MTV65cwZUrV/DOO+/ga1/7mmqf\nozq7QheSOtVRSkgGAgF0dXXBbrcrcFWN4de//jVOnDgBs9mMaDQKv98Pk8kEl8vVtJNA4rxKXFiB\n7VtYy1tKyH8lSYLVai0RC3t1A00kEvD7/ZAkCS6XS5EYEy2Tz+fBMAxSqRScTqcmH+5A5WwUWTPb\nZWBWgxaQjW7p1QL0zJ8WBeR2lFejqrU70ocSRGDG43F4vV709PSovuLWDHK5HHw+H1iWhcfj0VyF\naa+UVzBJFBJpxe/t7UU6nUY6nYbH49HsPVUpJEnC6uoqgsHgrpx61UgqlcKjjz6Kn/3sZ7j77rvx\nkY98pKN/ph2ELiR1qkM2EPtldXUVLMvC5XIpcFWN4fXXX8fQ0BDW19cxMDAAp9PZtJlOpSM8yFA8\nXY3K5/Ny+DW96aODiYnBAcMwsFgscDqdFcHqnUY2mwXDMMjlcm1dkS3PwKSNFHp7e+U1093djWg0\nio2NDXlGVheQVwVkp8381ZqnKxaL4DgOZrMZU1NTGB0dVaUjaLMgFTcimEZGRtryHrJbWJaF3+/H\nxsYGrFYrDAYDisVihTFUp2Sn0sZC5B6ipjb43cBxHL73ve/hO9/5Dj772c/iM5/5jOa+B519oQtJ\nneooJSQ3NzcRi8Vw6NAhBa5KWYi75NLSEsbHx3Hw4MGmmR1UE5CNfGiS3Khys5auri50dXUhm82i\nr68PHo+nIji900in0/D7/SgWi3C5XB27+ZMkCblcDslkEqurq0in0zCZTFXjJto1A7MatA0/if7p\n9Jm/dDoNr9cLURThcDgAoORQQhAEua16O3fHdoHjODAMg2g0qtkWRSXZKcqjPNqGzk4td5GlD0C1\nTCqVwtLSkmaNhSRJwk9/+lPcd999+NCHPoTbb7+97SvtOlXRhaROdZQSkslkEqFQCMeOHVPgqpSB\nuG2ur69jamoKhUIBExMTGBsba/jXVkuEB+0o2dfXh4GBATlzjMxFKTVLpxWSyST8fj9EUdRbenG1\nPS0YDGJzc7PEVGi3GZikitkOmz7gPQEZCAQwNDSkC0hcFYtklny7Q6hamYaiKLaVwKTbvpttzqZG\n9hvlwfN8xQwmLTDpNaOVe00+n4fX60WxWMT8/LwmO3/eeustfOUrX8Ho6CgefPBBOJ3OVl+STuvQ\nhaRObYrFIvb4s68gl8vhnXfewXXXXafQVdVPoVAAwzCIxWLyxrirqwterxd9fX2YnJxs2NdWi4Ck\nM/7Gx8er5mDSbWu1ZunIh9Vq1fxGKR6Pw+/3w2g0wuVydXxFlrjSRqNRzM7OYmpqalc/42oZmIVC\nAV1dXZrJwKwGia1gGAYHDhzQXUfx3sxfoVCAx+Op+9CFtFWXV6PIvYY+mLBaraoVmKIoIhwOY2Vl\nRbMzbkrTyCgPEodErxtyrykXmD09Paq415AqdSwWg8fjwejoqCquay+sr6/jvvvug9frxUMPPYSz\nZ89q7nvQURxdSOrURgkhyXEcXn/9ddxwww0KXdXeyWQy8Pv9yGazcDqdsNlsJTe/YDAIg8GA2dlZ\nxb+2WgQkx3EIhUKIRCJ1RzSUz9JlMhnkcjkAqDD4UcvDuxbEUdLv98NiscDlcmneQXG/FItFeaOj\npCstnYFJNn2kqlBe9VbTjGG5gHQ6nS3N+VMD+Xxevpe63e6GtX1XMxPL5XJ7NoZqNJIkYW1tDYFA\nADabDXNzcx07D0rIZrNYXl6GKIpNj/IQBKGiglkuMMm6adYzij5kmJubw/T0tKqfjdXI5XJ4/PHH\n8eyzz+KOO+7AzTff3PEHJToyupDUqQ3HcbIAqhdJkvDyyy/XzGlsJKTSRFoVa2161tbWUCgUFDME\nIr8vahCQLMsiGAzKmYdTU1OKn+qXtzqSh3e5wY8aKlEk045hGFitVjidzo4PSGZZFgzDIB6Pw+Fw\nwGazNWWToIYMzGpIkoTNzU0wDKOKoHg1QExSkskk3G53y4yndjKGKp+na9Q6JocMfr8fo6OjmjRJ\nURo1R3kQj4DyCiZpx6fXjVLz3vQamZiYgMPhUG1FvRaCIODpp5/G448/jltvvRVf+MIXOr4bQ6cC\nXUjq1EYJIQkAL730UtOEJNkE+v1+dHd376pVcXNzE/F4HAcPHtz31wZKMyBbJSBzuRwCgQBSqRTm\n5uaaJg5oaIMf8kE79NGVqEZvwujq0uDgIJxOp+bMDZSGtHonEomqlfpW0YwMzGqQQwa/368LyN9C\nV6nVbBojSZLsVk1XMGnnYSIW9tuOT2b+9DVyFY7jEAgEsLW1BbfbjfHxcVWukWrQ7fh0BZMWmPUY\niiUSCSwtLaG/vx9ut1tz4kuSJPzyl7/E+fPncfr0aZw/f74pHhI6mkQXkjq14XkegiDs+3WaISSJ\neUwgEJDnmHabXZZIJLC6uoqjR4/W9bX3mgHZSEgbb6FQUG1kBcdxJUIhk8mA5/mqLWv7FQp0SPzw\n8DAcDkfHb/yIgEwmk5rJxVQqA7PWaxMB2d/fD5fL1fGHDLQ4IKYxal8j1SDOw3QlighMq9VasmZ2\nEphk5s9iscDj8XR8NqYoigiFQlhdXS0x42oHRFGsqGASQ7HyddPb2yt/36StV5IkLCwsaLLbZWlp\nCXfddRcA4MKFCzh8+HDDv6YgCDh16hRmZmbw/PPPl/wZy7K49dZbcfHiRYyOjuKZZ57RzX3Uxa4e\nDJ3d8K+zb4xGIwRBaEhbB8/z8vzB+Pg4Tp48uefTP5PJBI7j9vy1a0V4tGLDlUgkwDAMRFGE0+nE\n8PCwajd+ZrMZw8PDJQYd5UIhFArJQoHOMiQnwzttWERRxOrqKsLhMEZHR3H99derav6uFeTzeTAM\ng3Q6DafTiUOHDql2jZRjMBjQ09ODnp4ejI6Oyp8vb3WMRqNVMzCrrRviKOn3+9HX14fjx493vIDk\neR7BYBCRSASzs7O44YYbNC0O6MrSxMSE/HmSt0vuN5FIBPl8vkJg9vf3QxRFeL1eAMDBgwc7fpaa\nngudnJzEDTfcoLmWzZ0wGo0YGBio+FnTYxzpdBpra2vyuiGjLDMzM7DZbJq7l0SjUTz00EO4ePEi\nHnzwQXzgAx9o2vPhsccew5EjR5BKpSr+7B//8R8xPDyM5eVlPP300/jyl7+MZ555pinXpaMcekWy\nQxEEATzP7/t1Ll68iMXFRUUrQcRZcmNjA9PT05idna17joplWVy+fBmnTp3a1d9Xi4EOMYxhGAYm\nkwkul0uTVuLbQbes0QY/dNQEbZ4giqLsSmuz2TA7O9vxs0vEICWTycDpdGqq9axeyitR9LohQeip\nVAp9fX2Yn5/XZOVASQRBQCgUwtraWke7jhKBmclkEI/Hsbm5KcchDQwMlLRVk3XUKdBRHiQ/tdMP\n5wRBKIkS6+npkSuZtBHdXirfzYZlWTz55JP4/ve/j9tuuw233HJLUw8GwuEwPvWpT+ErX/kKvva1\nr1VUJG+66SbcfffdOHfuHHiex+TkJDY3Nzvqd0/l6BVJncZjsVjAcZwiQjKXy8lzXXNzczh37ty+\nb8omk2lXgllNAnJjYwOBQAB9fX04fPhw226EycbfarVWVBSISCBZpel0GjzPo7+/H1NTUxgcHNy3\n67CWyeVyssOmy+XCkSNHOubhW60SRVpYvV4vurq6MDw8jGKxiMuXL8NoNFY4D2sll24/0I6SU1NT\nbVld2gtGoxEmkwmxWAzpdBpHjx7FyMhIycEEXYki9yf6QEspsxY1QUd5XHPNNZqrtikNXZWdnp7G\nmTNnqu5D6IOJbDaLSCQiC0ylZ3f3iiiKeO655/Dwww/jE5/4BF5++eWW7CO++MUv4uGHH0Y6na76\n5ysrK7KjvslkwoEDBxCNRvWZTY2hC8kORamHodlsRrFY3NdrpNNpObfM6XQquinu6ura1lRILQKS\nnvcbGhrq6FY80nrU09ODXC4HlmXhcrlgs9nkVkdiusRxHMxmc4VRS7va9GezWfj9fuTzebhcLk3m\nlSkJHfXS09OD48ePV2yYaNONeDyOUCjUFhmYtSCt36FQCDabDadPn27b34fdQnL+otEoXC4XDh8+\nLP+cDQaDvA5sNpv8b2q1OraLwKSjPPS23qtEo1EsLy9jeHgYp06d2rbjhTiXl99v6NbqbDaLzc3N\nEnMo2uRH6fxUSZJw8eJF3HnnnZifn8ePfvQjTE9PK/b6e+H555/HxMQETp48iZ///OctuQad5tDZ\nTxedfWM2m+ueQSQRHgDgcrmaOvunFgEpCILcrjk+Pq7P++G91uZoNAq73V5yItzd3V3h1Es7ga6s\nrCCbzUIQhKpOoGpqO9oLxGiJiOpGZfxpiVgsBp/Ph+7ubhw5cqTmiXtXV1fVmSg6A3NrawuBQAAs\ny8JsNldE22ihhZpUUoLBIMbGxnbcCHcCdHvi3NwcPB7Pru8BRqNR/vnT0GYtqVSqRGDSIkGtmbss\ny8Lr9SKbzWJ+fr5knr1TSafTWFpagtls3ndVtpbALHcfpme+y03F6hGYoVAI58+fRywWwze+8Q2c\nOHGi7u9BCf7jP/4Dzz33HH70ox+hUCgglUrhz/7sz/DP//zP8t+ZmZlBKBSC3W4Hz/NIJpMlc/I6\n2kCfkexQJEnadyURAILBIAwGg9yesJuvS6Iaent7mxIWT5xl1ZQByXEcwuGwPH9ht9s7vmpQKBQQ\nCAQUyTwkBj/lURPEcKPcqEVtmz1CJpOBz+cDx3FNP2xRK/F4HD6fDxaLBW63W/GWLbVmYNaCzrQb\nGRnR59tQ2tbbrLnQWnETdGs1PfPd7N9jLUd5NIpCoQCv14tCoYD5+fkd48QaAW0qRsfbCIJQUcGs\n5naeSqXw6KOP4sUXX8Q999yDj3zkI6r7uf785z/H3/3d31XMSP793/89Ll++jG9/+9t4+umn8e//\n/u/4l3/5lxZdpU4V9BlJncZjsViQzWZ3/Huk3YpENTRzFsNoNMpzkq2O8GBZFsFgEFtbW7Db7R0/\ntwS8ZxhDHEcPHjy4758N7QRKz1uQeahq7WrlVahWztGl02m5dZdUIDsdIiDNZjMOHTpUUSlSCrPZ\njKGhIQwNDZV8nq58r66uyhmYPT09JWtH6QzMWpC5UJ/PhwMHDuC6667TXKad0tDzbc1u661V+aYF\nZiKRwMrKiiwwy0VCIwRmeZSH1t16lYDneTAMg62tLXg8npZGaRkMBvT29qK3txfj4+Py58sFZigU\nwgsvvIDvfve7sNlsWFhYgMFgwC9+8Qv85V/+JV555RVNdCDcddddOHXqFD72sY/hL/7iL3DLLbdg\nfn4eIyMjePrpp1t9eTp1oFckOxSlKpLRaBSbm5s184h4npcfYjabDXNzc007LSftq5cuXYIoirIz\n38DAQNOrUCSeIZVKYW5ubl/VtnaBnvdrdS4mvdkjHyzLlszRNaPNkcwLC4IgVyA7nUQiAZ/PB5PJ\nBLfb3TABWQ+1MjBJNWE/GZjbfU3S1tvX16dnY6K0Kjs6Ogqn06n6TbUgCCVZhuSeQwQmvXbqOdQq\nj/KYm5vr+ENL4vwdDoc1m48pCAKeeeYZ/NM//RN6e3sxMTEhtyrPzMzg6NGjWFxcxOLiIk6fPt3q\ny9XRNru66ehCsoMpFov7dr5MpVIIBAI4fvx4yedZlpVP/Ox2O2ZmZpp2MlyeAQmgIi4gn8+XPLCJ\nwFRa5GYyGTAMg3w+D4fDobcTobTa5nQ6VT3vx/N8ibgkbY7d3d0VFcz9bNJSqRR8Ph8kSYLL5aqo\nhnUiREB2dXXB7XZrygykPAOTzNTtJgNzO+LxOLxeL3p6euB2u2G1Whv8nagfElsxMDAAl8ulaBRV\nKxAEoURcZrPZEnMoWmRWE5h0pVqP8riKJEnY3NyEz+fD+Pg4HA6HKtrS98qbb76Jr371qxgbG8MD\nDzwAp9Mp/5kkSVhdXcWVK1dw5coVrKys4OGHH27dxeq0A7qQ1NkeJYRkPp/H22+/jeuvvx7A1SoT\nqbw5HA5MTk427cRvrwY69IlwOp2WRUK5C2g9IiGZTMLv90MURTidTn22De+9J+0glug2R/IhiqJs\nmkA+drJ9TyaT8Pl8AAC3292SGR21kUwm5RgPrQnIndgpA7OWEyh5T9RYlW0VJLbCYrHA4/G0vagm\n5lD02ikWi+jq6pLXDABEIhH09vbC4/F0fKUauHogtby8DKvVCo/Ho8n27/X1ddx3333wer24cOEC\nzpw50/H7CZ2moAtJne3hOG7baIzdwPM8Ll68iMOHD8Pv96NYLMLlcjW1TVFpB9adRAJpkS2vJJCW\nM4ZhYDKZ4HQ6dWEAyO68XV1dcLlcGBwcbPUlNYTyKhQRCQAqRALLsvD7/TAajXC73W37nuwFIqoN\nBkPHvSd01ASpQuXzeUiSBI7jYDKZMDs7i/Hx8Y7IwNyOTCaD5eVlAIDH42mrg4Z64HkeW1tbYBhG\n7pYQBAEmk6lidrcd4m12Sy6Xw/LyMgRBwMLCgiYPX3K5HB5//HE8++yzuOOOO3DzzTdrrhVXR9Po\nQlJne/YrJCVJQjQaxeuvv47R0VG43e6GVZkMV67A8MtfAlYrxD/4A2B0tKkRHkQkkMolXUkgrpGp\nVAp9fX1tV0WpBzrfr7u7Gy6XS5MPciUgIoFkikWjUflgYnBwsKSC2UkbPUIqlYLX6wVwVRh0koCs\nRSaTgdfrBc/zmJqagsFgkO877ZyBuR35fB5erxcsy8Lj8Wi6o0EpCoUCfD5f1SgP2n2Y/LdYLMJk\nMlVdO+1CsViE3+9HMpmUTVy0hiAIePrpp/H444/j1ltvxRe+8AVNVlJ1NI8uJHW2h+d5CIKw538n\nSRLW19cRCATQ19eHRCKB3/md32nAFV7F8Mor6PriX4EtZGEAYJ6eRfGp70H87UOzVQ6sxIk2EAig\np6cHvb29KBQKFQ9rNUUFNBoyi8IwDPr6+uB0OhWPZ9AiRFSbzWY58oZuraZb1crXTl9fn+qNQ+qB\nngvV23qvksvl4PP5UCgU4PF4apot0RmYRChoOQNzO0j1PpVKwePxqHqmulnsJ8qjmsAkVW9yv9Gi\nwBQEAaFQCGtra3A6nZicnNTcOpEkCb/4xS9w/vx53HDDDTh//nyJ67iOTpPRhaTO9uxVSAqCgJWV\nFYRCIdkZr6enBy+99BLOnTvXsJu2+Kd/DP8bv8CGUQAgwVUwYeQr98J46//ZkgeFIAhYXV1FOBzG\n2NgYHA5HxQOX47iK9lhBENDd3V1i7rPTDJ1WkCQJkUgEgUAAg4ODcDqdHT+fU29Vll47ZKPH87yc\nY9jsmAmloZ1pPR6PLiDxXgRONpuF2+2uWyyRtUOLTDVnYG4Hx3FgGAbRaBQulwsTExOaEwZKIwgC\nwuGwHOWhpOto+drJZrMoFouyZwC9dtR0OEEOthmGwdTUFGZnZzV5X3z33Xdx1113wWAw4MKFCzWd\n8HV0moguJHW2Z7dCkuM4BINBrK+vyzbi9IPk1VdfxcmTJxuyMZEkCe++7ziSkVWwxl4AEmyFLIJ/\n9Al88Gv/qPjX2w6O4xAOh+X3wW637+mBSqICyttjJUmqqCK0IrD/PWs6AAAgAElEQVS6HkRRxPr6\nupwP6nA4NO+auF/oeIbe3l64XK59V2VJXA99MJHNZiGK4r5cQJsJLSAb2QavJehqWyNny6utnVZm\nYG6HIAjy82Zubg5TU1OqXM/NpJVRHsVisWoF02KxVKydZgvMWCyG5eVlHDhwAC6XS1MVVEI0GsVD\nDz2E3/zmN3jggQfwgQ98QBPPfp2OQBeSOtsjCAJ4nq/554VCQT4Rnp2dxczMTNWH1+uvv45Dhw4p\n6ppHR3g8dPMH8F9/9RZSPd0wCxJMYhF/9/E/xXf++zcV+3rbUSwW5TYiu92O6elpRR/i5UYb9BxU\nX1+fbO6jppNgOo9rfHy8qfmgaoXMDPv9flit1qa09UqShHw+X2HwQ7uAtvpwIpPJwOfzged5XUD+\nlmKxCIZhEIvFWlZtIwdb5VUo2lhM6QzM7RBFEeFwGCsrK5iZmYHdbtcFZFmUh8vlUs0zgBxO0Gun\nWvW7EQIzk8lgaWkJXV1dmJ+f16RjL8uyePLJJ/H9738ft912G2655ZaWH+Lo6JSxq4eSuntbdBpK\nrY1LJpOB3+9HJpOB0+nEoUOHtt3kmM1mcBynyDWVZ0AaDAb89NAfIsat4g+9LHKmLjx2chSWAx9U\n5OttRz6fRyAQQCKRwNzcHDweT0M2NkajUd7s09AZhpFIBF6vV3bla1WLI91aZbPZcOrUKdVsbFoF\n2ez5/X709fVhcXGxaRsbIhitVismJibkz9OHE8lkEisrKygUCiVrjTb4aQREQHIcB7fbXXPer5Og\nZ9scDgcWFhZaVn0wGAzo6elBT09PyRxWuftwNBqVMzCtVmtJFUqJ6jddbbPZbDh9+rTq226bAYmt\n6O3txTXXXKO6UQGLxYKRkZEKMxu6+r22tia35tPZu+S/e/05sywLr9eLXC6HhYUFTbbFi6KIZ599\nFo888gg++clP4pVXXtGkENbRIegVyQ5GFMUSAUgCwAVBgMvlwujo6K42Oe+88w5GR0f3NRS+nQPr\n8/87j//r//0y2NGLACT0rd2E/3Hrnfjg7zbmtDqTyYBhGORyOTidzj0ZGTSa7VocyytQdA7dfuF5\nHqFQCOvr65iamoLdbu/4zR5tLNTf3w+Xy6W6zV45JOyc/iDZqeXt1fX+fLPZLHw+nxwFpEXXRKXh\neR7BYBCRSESz7ZqiKMrVb1KF2k0GZi3I74/f78fw8DCcTmfHdzUAV39/lpeXIYqiZmMryqGfW3QF\nkwjM8gpm+b2H53kEAgFsbm7u2VxILUiShNdeew133nknFhYWcO+992J6erphX69QKOD9738/WJYF\nz/O4+eabcc8995T8naeeegp//dd/jZmZGQDA5z//eXz6059u2DXpaA69tVVne0hrE6mmWCwWuFyu\nPZ/ykVmwqampuq5hpwgPSQL+5/804H/8axQGqQuf+W9DuOkm5ZdiMpkEwzDgeR5Op1NT7oAk6JwW\nCPl8HkajsUQgDAwM7GmzRuZjNzY2GtLWq0UkScLGxgYYhmkbYyF6Dop8kBm68up3LQFEBCTLsrJh\nTKdDO0na7XbMzMxoTkDuRK0MTHLvoe8/JAMzGo3C5/PJBzCdPlcNbB/l0a6QPQgtLun5XavVCo7j\nkEgkMDs7i9nZWU3+/gSDQZw/fx6JRAIPP/wwTpw40fCvKUkSstks+vv7wXEcbrzxRjz22GM4e/as\n/HeeeuopvPbaa/jmN5szJqSjOfTWVp3t4TgOr7zyCgYHB7G4uFj3PJfFYtlza+teMiANBuCjH5Xw\n0Y+SjalyIlKSJMTjcTAMA6PRWJeQVgMkz7Kvrw82m03+PB0xQYdWEyc++oMWiCzLIhgMyvOxZ86c\n0eQDXEloZ9oDBw7gxIkTbbMBtlgssFgsJZtXeoaOtDjmcjm5+k0EQldXF9bW1sCyrFyB1MoBTKOg\n5/2mp6dxww03tO0BTK3WfHLvyWaziMfjCIVCyOVyshPo5OQkhoeHYTAY5DGGToR2p3W73Thy5EjH\nvBd0e/Xo6Kj8eVEUsba2Br/fj97eXgwNDSESiWB1dbXq/K5af7dSqRQeffRR/OxnP8M999yDD3/4\nw0372RoMBvl3kuM4cBzXMetKp7noFckORpIkZDKZfbcTRSIRpNNpzM/P7/j1AOxaQDYS0lYVCATQ\n29sLp9PZFi1Eu6W8PTaTyUAURflQgOM42O12vYUVpbmpujPte9XvWCyGcDgMlmVhMpmqtseSClSn\nQLJlQ6EQJicnMTs72/G/P8DVcYHl5WUAgNPphMFgqJqBqeaYCaWh58212u7cCJLJJJaXl9HT0wOP\nx1Nyry0/3CIHFYIglHRPkEPVVglMjuPwve99D9/5znfw2c9+Fp/5zGdaspYFQcDJkyexvLyMz33u\nc7hw4ULJnz/11FO4/fbbMT4+joMHD+LrX/86Zmdnm36dOqpFb23V2RmWZff9GrFYDJFIBEeOHKn6\n52SNCYIg/+9WCUhRFBGJRBAMBtumLVEJcrkc/H4/0uk0RkZGYDKZSmagOlEgkLUSCAQwMjICh8OB\n7u7uVl9WyyFrJZfLlcxSi6JY0R7Lsiy6urpKNnhaCzrfDbRhzPj4OBwOR1uLoN2Sz+fh9XrBsiw8\nHs+2jr07ZWDux6RFTbQyykPN5PN5LC8vg+M4LCwsYGBgYNf/ljaIoud3qzkQW63Whr3fkiThJz/5\nCe6//3586EMfwh133KGKDqdEIoFPfOITePzxx3Hs2DH589FoVH6eP/HEE3jmmWfw4osvtvBKdVSG\nLiR1dqZYLGKPa6CCdDoNv9+Pa665puTzxHmVuLACrROQgiBgdXUV4XAYY2NjmJub00UB3jMWyufz\ncDqdVXPsagkEk8lU0R6r5Q0egc7GHB0dhcPhaDvhUw/5fF52c3a73bs246Ldh+kcup3aq7UAaXdm\nGEZfKxR0PuZe1ko1tsvA1EqLI6DuKI9WwnEc/H4/EokEPB5PSYvrftmLwNxvxM3ly5dx5513Ymxs\nDA888ACcTqdi34cS/O3f/i2sViu+9KUvVf1zQRAwMjKCZDLZ5CvTUTG6kNTZGY7j5DbTeikUCnjr\nrbdw8uRJANUjPIDacSONhOd5hMNhrK2tYXJyEna7XX944z3xz3EcXC6XPKu0F0gFgf4QBKFqPIkW\nWrbIXE4wGMTY2JguCn4LLSBdLlfVw4Z6qNVeXW7wY7VaVbd+aMdREoauH0yVzvs1Mh9zNxmYdItj\nq9cPHeVR3q7ZqYiiiFAohNXVVTgcDkxNTTVtj0Dyd8tNfiRJQm9vb0kHzk73n/X1ddx7773w+Xy4\ncOECzpw5o4punc3NTZjNZgwNDSGfz+P3f//38eUvfxkf/ehH5b+ztrYmmyT+8Ic/xIULF/DKK6+0\n6pJ11IcuJHV2RgkhKYoiXn31VZw9e1YV84/A1U1qMBjE5uYmZmZmMDMzo+rT6maRTCbh8/kAAC6X\nS/FweLLBS6fTJQ9pSZIq2mN7enpU8cCl59r0tsT3KBQKcruzkgJyO8ozDOkNXiPjbfZyfbTjqNvt\n1kUBrlYzgsEg1tfXWzrvt9P6UToDcydIlIckSZifn++oOfxa0DPnNptNVa29RGCWVzAlSUIsFsML\nL7yAY8eO4fjx4/B4PHjyySfx7LPP4o477sDNN9/c8gMLmkuXLuFTn/oUBEGAKIr4kz/5E9x11124\n6667cOrUKXzsYx/D7bffjueeew4mkwkjIyP41re+hcOHD7f60nXUgy4kdXZGCSEpSRJ+8Ytf4OjR\no+jr64PZbG6ZQCgUCmAYBolEAnNzc5icnFTVzb0VEGdav98Pk8kEl8uFwcHBpl5DeURAJpNBoVBA\nV1dXRTxJs0ScKIpYWVlBOBzGxMQE5ubmdAGJUgGplhxVOsNwu3gbMn/ZiOuNxWLw+Xzo6emB2+3W\nQ8RR6k47MzMDu92uyvvtbjIwSQVTiQOKTozy2A2xWAzLy8sYHByE2+3WTMcHmWt98cUXcfnyZfzm\nN7+B1+uFyWTC2bNncfz4cSwuLmJxcRHz8/P6c0SnXdCFpM7O8DwPQRDq+rd0hEckEkE8Hi9pTxsY\nGChpD2nkZjSbzYJhGGSzWTgcjoa1VGkJUj1hGAbd3d1wuVyqOxGn5+dog41q7bFKnVoLgoCVlRWs\nrKzAZrNhdnZWf/DjvUOYZDIJl8ulCgG5E3S8DfkoFoslBj/7dQBNJBLwer0wm83weDx1xyS1E2Rj\nHQwG5UMYLc5H15OBuR3lUR5a+B1qBtlsFktLSzAYDJifn9fk7xA5ML/77rtx+vRpnD9/HkNDQ/B6\nvXjrrbfw1ltv4cqVK3IF+vnnn8fk5GSrL1tHZz/oQlJnZ+oRkjtlQNLtIZlMBul0uqJ6QETmfk8k\nU6kU/H4/eJ6H0+nUM+zw3vwWwzDo6+uDy+XSVPVEkqSqBhuiKKK3t7dk/eylekDb7evRDO9BjFGS\nySScTmdbHMJwHFchMPd6QJFKpeD1emEwGODxePbkItmu0LOhw8PDcDqdmqkq7QX6gIL8t1AowGQy\nlZizkGcYmfdbW1vTozwoWJaFz+dDJpPBwsKC4qMUzeLdd9/FXXfdBaPRiAsXLuDQoUPb/n2e52E0\nGvU1oKN1dCGpszOCIIDn+R3/nhIZkIIgVFSfisViyeZuYGBgR3ME0qrJMAyMRiOcTqdmH1BKQhwk\nA4EADhw4AIfD0VbRJiS/cDftjbTxiSAI8iZvampKz8b8LSzLgmEYxONxOJ1O2Gw2zQvI7djpgIKs\nIaPRiNXVVYiiCI/Howr7fjVAZkP7+vo6djaU5/mKA4pcLodisYiBgQHYbDYMDg62fQbmTgiCgEAg\ngI2NjYaaLjWaaDSKBx98EK+//joeeOABfOADH9Dk96GjUye6kNTZGVEUwXFczT9vdAYkvblLp9Ml\n5ixWq7WkPba7u1tu1ezp6VFlq2YroOMqOjHvkK4ekDVULBZlsZjP5zExMaGpmZxG0mkCcieIQcvW\n1hbC4bC8dkwmU4XBj1oMopoJCYi3WCzweDya6m5oFHSUx8jICGZmZipcZNsxA3MnJEnCysoKQqGQ\nqmdmd4JlWTzxxBP4wQ9+gNtuuw233HKLagyBdHSaiC4kdXamlpAsj/AAmuvCSs+upNNpRKNRZLNZ\n2V1saGhIFpnt/GDeDjobc3x8HHNzc7pQwtWqAalAjoyMoKenR15LdDwAqX6rMV6iERSLRTAMg1gs\nBofDgcnJyY4TRdXI5/Pw+XzI5XJwu91ye3wtgyij0VghDtrx4CaTyZQ4juqtvVfZS5RHu2Rg7kS5\nsHY6nZqsyIqiiGeffRaPPPIIPvnJT+JLX/qSfnCi08noQlJnZ8qFpJoyIAVBwNraGsLhMEZHRzE3\nNwej0YhsNitXnjKZjPxgLjf3aVdxQM/66WYx78FxHEKhECKRSM3IF1J9otcPcW+s1h7bDkKrWCwi\nEAggGo3qApKCmAulUqk9xZuQFn26xZFUMcsNfrR4yJXP5+H1elEoFDA/P6+PDfwWpaI86AxMOqJE\nrRmYO5FKpbC0tITu7m7Mz89rsuVZkiS89tpruPPOO7GwsID77rtPzlfU0elgdCGpszOktXQnA51m\nwvM8wuEw1tbWdiWUyrPD0ul0hTigzX20uonmOA7hcBjr6+uYnp7GzMyMJjeqSsNxHILBIDY2NmC3\n2zEzM7PnzZcoihWzTyzLyuKgr69PrmBqRbTTAlKPwnmPYrEIv9+PRCKhqLkQx3EVM+B09Yk+5FJj\n9YmYLqVSKbjdboyOjmr2XqkkdJRHIw1jyp9jdIZhKzIwd4IcOBSLRSwsLGi2Yh0MBnH+/HnE43E8\n8sgjOHHiRKsvSUdHLehCUmdnNjc3EYlEMDs7i66urpYKyGKxiGAwiM3NzZoVpb0gCAJyuVxJ9Yll\n2ZK5FfKhxo0dgX5f7HY7pqenVX29zYJ+X2ZnZzE9Pa345mq34kBNlQOO4xAIBLC1taULSAr6fWlW\nZXa76hNxIG5WRFIt6MgKLRujKI1aojzKM1Sz2WxDMzB3grwvsVgMHo9HswcOyWQSjz76KH7+85/j\nnnvuwYc//GFNfh86Og1EF5I6O/Pqq6/i/vvvRyAQQG9vLxYXF3H06FEcO3YMx44dw9DQUMNvroVC\nAYFAAPF4HLOzsw23Tq9m7kM2dnR7bDMeytvBsiwCgQBisVhT3hetQFfaWvG+lIsD2iCqvD22meYs\nRChtbm7qEQQUPM/LDpJqeV/KI5Ja0WItCAKCwSDW19dV876oAdrlWc3vy3YzvPVkYO7m64XDYays\nrGBubg7T09OaFF4cx+Gpp57Cd7/7XXz2s5/FZz7zGc10mejoNBldSOrsHkmSkEqlcPnyZVy6dAmX\nLl3C5cuXkUqlYLfbcezYMSwuLuLYsWNYWFhQ5MabzWbBMAyy2SwcDkdLT8LLoyXS6XSFsQYRmY1+\n6NDB8HNzc7DZbKrcyDQb2ixGjZW2Whu7rq6ukk3dwMCAomuIbu1tVGVWi9CCoN6W52ZTq8W6fA3t\nJ4NXFEWsrKwgHA4r0vnRLkiShLW1NQQCAUxNTcldOlpjNxmYpIK5m1EPSZKwsbEBv9+PiYkJOBwO\nTb4vkiThJz/5Ce6//3783u/9Hm6//XY92kdHZ3t0Iamzf0RRRCAQwKVLl/DGG2/g8uXLWF5ehslk\nwqFDh2RxeezYsV0LwVQqBYZhUCwW4XQ6Vd0aQ3LD6PZYjuNKWhsHBgYUMffJ5XJgGAaZTAZOp7Nl\nrVRqg46rcDgcmhPWtdYQnZ9aj3OjLiCrIwgCVlZWsLKygunpadjtdk1ufGmq5RdyHAez2VyxhmrN\nTdNCyWazYW5uTp+xRvs4ju5EtTVULBblNUSLTPL9JxIJLC0tob+/H263W7PuxJcvX8add96JsbEx\nPPjgg3A4HA39eoVCAe9///vBsix4nsfNN9+Me+65p+TvsCyLW2+9FRcvXsTo6CieeeYZOJ3Ohl6X\njs4e0YWkTmMgbVlXrlzBG2+8IVcvNzY2YLPZsLi4iMXFRRw/fhyHDx+W22p+/OMf44knnsAdd9zR\nUNOCRkO3NtLtsQBkU5a9tBRlMhkwDIN8Pg+Xy6VqYd1M6Jbndss7pPNT6fZYenaOrKPyFmue5xEM\nBhGJRDRTaWsGoihidXUVoVAIk5OTmJ2dbXuhVG0NCYJQcUiRzWYRCAQwPDwMp9OpxwT9lr1EebQr\n9Bw4EZosy4LjOJhMJkxPT2N0dHTbQwq1sr6+jnvvvRc+nw8PP/wwbrjhhqY8QyRJQjabRX9/PziO\nw4033ojHHnsMZ8+elf/OP/zDP+DSpUv49re/jaeffho//OEP8cwzzzT82nR09oAuJHWaiyRJWF9f\nxxtvvIE33ngDb775Jq5cuYJEIgFRFGGz2fDHf/zH+OhHP9qWm9/ytrR0Og2WZUuqBkQcdHV1IZVK\nwe/3g+d5uFwuDA8Pt41Q2g90a6+SrppaoLzFOpPJIJ/Pw2g0ore3FzzPI5PJwG63w+FwtN3vUD2I\nooj19XUEAgFMTExgbm6uLStKu4UcdKXTaWxsbGBzcxMA0N3dXdEe2+o58FZBMjIB7CvKo90oFovw\n+XxIp9NwOBwwmUyazMDMZrN4/PHH8dxzz+ErX/kK/uiP/qhl98pcLocbb7wR3/rWt3DmzBn58zfd\ndBPuvvtunDt3DjzPY3JyEpubmx35+6ijWnQhqdM6BEHAv/7rv+LrX/86jh8/jo9//ONIJBJy9TIc\nDuPAgQMls5eLi4vo6/v/2Tvz8KjK8/1/JvtKVrKTZTIhkBARwqaCUBEo1JYWFIML4K4Um6poUdmk\nSADRooBLK+AKyFdBKkZa+9PgHgSVhD2ZTPYFsmeyznJ+f9BzOpOEPctMeD/XlcvLw2RyzuTM5L3f\n53nu27PPfZAaDAartsba2lpldi4wMJDAwMBedW20FZqbm5Vcv6tNQJ4P2SymrKwMHx8fnJ2daWpq\nsmpLu5jWxr6GJElUVFSQn59PQEAAUVFRotL2X+rq6sjNzcXFxYXY2Fg8PDw6uH9ablJ0hzmLLdLS\n0oJWq6Wpqcmuu2K6Gtl4qaKi4rzdHxebgdlbWc4mk4nt27ezceNG5syZw6OPPtpr7bgmk4nk5GRy\nc3P54x//yJo1a6z+fciQIezbt4+IiAgAYmNjyczMJDAwsDdOVyDojIv6I3B1rDgEPcrXX39Namoq\nN910E7t37yYsLKzDYyRJorq6Wpm9fP/99zl69ChNTU1ER0cr7bFDhgxBrVbb3I7npeDs7Iyfnx9w\nNm7F09OTxMREnJ2dlcpleXm51aLOsj22ry+Om5ub0el0ymzooEGD+uQi9lKxNIsJDw/nuuuu6/A+\nsGxtLCkpQa/XYzKZOo2W6CvVS0mSOHPmDDqdDl9fX4YNG2a3s1tdjVxpkySJgQMHWmX7WQrG4OBg\n5bgck6TX66mpqaGoqEgx+Gkfk2SvlV7LyIqYmBgxf/5fLOdmw8LCGDVq1Hk/J1QqFW5ubri5uVkJ\nnvYZmGfOnOnRDExJkvj6669Zvnw5o0aN4osvvuh1Qebo6Mgvv/xCbW0tf/jDHzhy5AhDhgzp1XMS\nCLoDUZEUdDkVFRU4Ozvj7+9/yd9rMpnQarVWs5c6nQ43NzcSEhKszH3soRVUkiSqqqrQ6XS4u7sT\nHR193jYqk8nUIbewra3NaubJ29vbpnILL5empiZ0Oh2NjY3ExMQQGBho87/PnsBSQF6OWYy8qLOs\ngvd0tER3IL+X8vLyFPOPq3GmrTPkcPiWlhY0Gk2XVNoMBkOnBj+Wn0Xy/WSrG33tozzsNbKiO6iq\nqiI3Nxc/Pz9iYmK6ZZPgYjMwryQq6dSpUyxZsgRHR0fWrFlDfHx8l1/HlbJixQo8PDxYuHChcky0\ntgrsANHaKugbSJJEQ0MDR44cUZxjs7Ozqa2tJTw8nCFDhpCQkEBSUhJxcXE2UcGTqyb5+fl4eXkR\nHR2Nh4fHZT9XZ9mX8m6vZfWyJ3MLL5fGxkZ0Op0wF2qHyWSiuLiY0tLSbokf6CxaQo4FaL9JYWuV\np+rqavLy8nBzc0OtVl/2e6mv0draik6no76+HrVa3SPvJbm10fJespXWRhlJkigtLaWwsNCuozy6\ng4aGBnJycnB2dkaj0eDu7t7j59AVGZhVVVWkpaXx888/k5aWxvjx423m78iZM2dwdnbG19eX5uZm\nJk+ezF/+8hduueUW5TGbNm0iOztbMdvZtWsXO3fu7MWzFgg6IISkoG9jNpspKipS2mOzsrLIycnB\nwcGB+Ph4pXI5ZMiQHnP8NJvNVFRUUFhYiI+PD1FRUd32h7r9H2M5+7K9MPDy8rKJuTlZQLa0tBAT\nE4O/v7/N/OHvTSzjKnpj0Wvp2ih/WZpqWFafeloY1NbWotVqcXZ2JjY2Fk9Pzx79+baK3KpZVVVF\nTExMr88Tt29tlKvgkiR1qIJ352bX1RLlcTnI86Fy1doWMxTPlYG5evVqvL29SUhIYPDgwRw/fpw9\ne/awcOFC7rrrLpvbJMjKymLu3LmYTCbMZjOzZs1i6dKlLF26lBEjRvC73/2OlpYW7r77bn7++Wf8\n/f3ZsWMHarW6t09dILBECEnB1Ye8oJGjSeTq5enTpwkMDLSavRw8eHCXLWrMZjNlZWUUFRXh7+9P\nVFRUr81tnUsYWM7NeXt7d8usSmfo9Xry8vJoa2tDrVbbRUtyT2ApIG0trqK9qUZPV8Hr6+vRarWo\nVCpiY2OtZv2uZmRTlPLyciIjIwkNDbXpFvf2m12NjY1Ws+CWAtPFxeWK7iMR5dE5RqNR2XRQq9V2\nOUJQXV3NTz/9xKeffsqhQ4eora3Fw8ODgICADoZ9sh+BQCC4YoSQFAhkZIdHy+rliRMnMBgMxMbG\nKpXLpKQkIiIiLnpxZjKZKC0tpbi4mP79+xMZGWkTrbXtsawYyO2xlnNz7bMvu4KGhgZ0Oh0Gg0Gp\nQArOLq5LSkooLi62OQF5Ic7Vkubo6NipMLhU9Ho9Wq0Ws9mMWq22yapJb2B5z1zO3KytYVl5spwF\nt+ymkKvgF6ooiiiPzrG8ZwYMGEBYWJhNbzqcC0mSOHjwIEuWLCEuLo6VK1cSGhoKnBWYR48e5ciR\nI8p/J0+ezDPPPNPLZy0Q9AmEkBQILoTBYODkyZNW1cuioiK8vb2V2Ut5p9Pb21vZya2trWX9+vWM\nGTOG+Ph4IiIi7LKFqv2CrqGhgba2NlxcXKxaYy8lK6yhoYG8vDxMJpOSjymwXtgFBwcTGRlpNwLy\nQhiNRhobG60Mftobs5zvPmpsbFSq1rGxsSKW4b9Yumr2tXumM87VTdHZfWQwGNBqtTQ3N3eZwVBf\nQJ7Pz8vLo3///koepD1SWFjI0qVLqaurY+3atQwdOrS3T0kguJoQQlIguBwkSaKmpoasrCzFOfbI\nkSM0NjYSFhaGJEmcOHGCW265hWeeeaZPCqW2tjYrUSBnhVk67Xl7e1u1NdbX15OXl6dUk8TC7ixm\ns5nS0lKKiooICgoiMjLSLjcdLhVLk6j295HcZu3i4kJ1dTWtra1oNBpRtf4vlhEnfn5+REdH22Sn\nQ3chSWZOn/479fUZuLhEEhj4OC0tZ+OS6uvrqampwWAw4O3tjb+/v7Lh1VPt+raK3N7r4eFBbGys\n3cbi1NXV8eKLL5KRkcFzzz3HtGnT7K4d92KRJAl5HX4137sCm0QISYGgq6isrOSll15i165d3Hjj\njQQFBXHs2DHy8vJwcXEhISFBcY4dMmRInzSSkSRJaWuURWZzczNwtiLl6OhIZGQkwcHBV4VQuhBX\nq4C8EJIkUVtbq2SHurm5YTabO52bs9eF8JUgR5x4enpetREn+fmpVFZuw2xuQqVywdk5lISEHygt\nraasrIyoqChCQkI6NfiR2/Ut7yV7cLO+EpqamsjNzcVkMhEXF2e37b0Gg4G33nqLN998k/nz53P/\n/ff36c/MsrIyXF1dlQ00g8HQp69XYHcIISkQXCm1tbWsXMiTU0UAACAASURBVLmSL774gj/96U/c\neeedVh/0kiSh1+s5evSoVfZlTU0NYWFhirlPUlISAwcOxNnZuc8saGpra8nLywMgODhYeS0aGho6\nuH56e3v3ahxAT2JpvBQYGEhUVJRYHPyXtrY2dDodtbW1HYLhzzU35+zsrIgCOZ7EXlv1zkddXR25\nubm4uLgQGxt71UacmM1tHDwYCJiUYyqVJ0bjQkJDZ13Q1fh80RKWmxSXO8drS8jvp7q6Oruu6EuS\nxL///W9WrlzJpEmTePrpp6+K+eiHHnoIrVbLf/7zH1auXMnnn39Oamoq48aNo3///r19egKBEJIC\nwZXS0NDAp59+ym233XZJ5hbyPJyluDx58iQqlYqBAwcqLnNJSUkEBwfblcCqqalBp9Ph6OiIWq3u\n1FFTdv1s3x4rVwvaV536grg2m82Ul5dTWFgoBGQ7LOMq5GrSxf7O27fH2mJu4ZVgaTCk0Wiueoda\ns7mFgweDsBSS4EF09CaCgmZd9vPKc7yW95FcAZLnLuV7ydY3KkwmE0VFRZSVlREdHX1J7ydbIzs7\nmyVLlhAYGEhaWhpRUVG9fUrdSklJCeHh4QCKk/nvf/97fH19iY2N5cCBA0RGRvL000/38pkKBEJI\nCq6AoqIi5syZQ0VFBSqVigcffJDU1FSqq6u5/fbbyc/PJzo6mp07d+Ln54ckSaSmppKeno6Hhwdv\nvfUWw4cPB+Dtt99m5cqVACxevJi5c+f25qX1GvLMmBxNIgvM8vJyAgICFHEpR5O4u7vb1OKguroa\nnU6Hs7MzMTExl7XgNZvNHcx9WltblcWcpcGPvbhSWgrIgIAAoqKi7L7S0VUYjUYKCgo4ffp0l8ZV\ntM8tbGhosGprtIeNiubmZqtcPzFT/D+OHp1OY+NXQBvggKOjD9dc8wvOzoFd/rPkjQrLzyWTydSp\nwU9vb1RIkkR5eTn5+fm9kjnblZSXl7NixQp0Oh1r165l1KhRNvk+7UqMRiOPPfYYjzzyCHV1dXh6\nepKdnc1DDz1Efn4+gYGB7Nu3j23btrFgwQJGjRrV26csuLoRQlJw+ZSVlVFWVsbw4cNpaGggOTmZ\njz/+mLfeegt/f38WLVrE6tWrqampYc2aNaSnp7NhwwbS09PJzMwkNTWVzMxMqqurGTFiBAcPHkSl\nUpGcnMyhQ4f6pEHN5SJJEqdPn1bMfbKysjh+/LjiYGmZfRkVFdWjixnZeCgvLw9XV1diYmK6Zf7G\nYDBYVS/lxZyluY9cdbKVxYa8qCsoKBACsh2WeYcRERGEh4f3yH3bfqNCbmu0jJWQ22N7q1rc2tqK\nTqejvr4etVpNQECAzdzTvY0c5SFJrXh5vUdz83e4ug4gKupF3Nxie+w8LpSjaikue+ozqbq6mtzc\nXHx8fIiJibHbz5rGxkZeeeUVPvnkExYvXsyMGTN6XaB3N2azGZVKhUqlYtmyZaxfv55BgwaxbNky\npk2bRlhYGC+++CKzZ8+muLiY999/n/Lycv72t7/19qkLrm6EkBR0HdOnT2fBggUsWLCAjIwMQkND\nKSsrY8KECZw8eZKHHnqICRMmMHv2bADi4+PJyMhQvt544w2ADo8TnBuj0cipU6esqpeFhYV4eXlZ\nicvExET69evXpYsZSZKUCqSbmxsxMTF4enp22fNf7Dk0Nzd3MPeRTVkssy97clFlKSD9/f2vOkfN\n82EymSgpKaGkpMSm8g4NBkOHeJL2c7zdXXWybO+NiYkhKChICMj/0tLSYhdRHpaGY7K4bGpqwsHB\nocOmV1dVwvV6PTk5OTg6OqLRaOx2dtZkMrF9+3Y2bNjAvHnzWLBgQZ830zKZTMrnn9xG/eabb7J6\n9Wqee+457rzzTgD+7//+jyeeeILCwkIA/vOf/7B161YWLVpEUlJSr52/4KpHCElB15Cfn8+NN97I\nkSNHiIyMpLa2Fjj7R9XPz4/a2lpuueUWFi1axNixYwGYOHEia9asISMjg5aWFhYvXgzAX//6V9zd\n3Vm4cGGvXY89IzteysJS/tLr9URGRirOsYmJiWg0mkue9ZEkiaqqKnQ6He7u7r0iIC+EyWSyqhQ0\nNDRYZRZaZl92pSiQJImKigry8/OVSIa+vhC6WCwzMkNCQhgwYIDNz5ldqOpkuVFxJa6fltXZrmzv\n7QvI4rq6uhq1Wk1gYKBdimuTydTB4Ke1tRVHR8cOBj8XWwm3FNdxcXF2az4jSRJff/01y5YtY/To\n0SxdupTAwK5vUbZlNmzYwAcffEBKSgq///3vKSkp4cEHH+Trr7/Gy8sLBwcHxowZw0033cSqVauo\nr6/HZDKJzi1Bb3NRH8a2/Zde0Ovo9XpmzpzJ+vXr6devn9W/ya0agp5DpVLh5+fH+PHjGT9+vHLc\nbDaj0+nIysri8OHDfPzxx2i1WpydnRk8eLDiHJuYmNjpYs1sNrN//37FNj8xMdFmd74dHR3x8fGx\nWljJ86dyxamqqkoRBZYzc97e3pdcKZAFZEFBAb6+vgwbNkwIyP8iz4cWFBQQFBTEiBEj7MZgSKVS\n4ebmhpubm9XC1tL1s66ujpKSksty/bQU12FhYYwaNcomqrO2gKVZTFRUFBqNxq7/ljg6OuLt7d1h\nbtxoNCrCsqKigry8PCuDH8sv+d4wGo3k5+dTWVmJWq22cja2N06dOsWSJUtwdHTknXfeIT4+vtt/\n5rn8HSzJyMhg+vTpxMTEADBjxgyWLl16xT9bjjGSycrKYvny5URHR7N06VI+++wznnjiCd555x3U\najWvv/46Tz31FG1tbbz55pvcd999SJKkrLUkSbLb373g6kEIScE5MRgMzJw5kzvvvJMZM2YAZ2Me\nysrKlNbWoKAgAMLDwykqKlK+t7i4mPDwcMLDw8nIyLA6PmHChJ68jKsCBwcHYmNjiY2N5Q9/+ANw\n9o9QY2MjR48eJSsri88++4y1a9dSVVVFaGiokn155swZ3n//fRISEnj99ddtVkCeD5VKhaurK66u\nrucUBbW1tRQXFyszc5YVp86cGuXZ1fz8fHx8fLj22muFgPwvltXZgIAAkpOT+0x7r6VgtER2/Wxo\naOD06dOKKGhvyuLh4cHp06cVcT1y5Eibr872FHI0TmFhIaGhoX1eXDs5OeHr69uhVdfSibikpITG\nxkZMJpNSJe/fvz8JCQl4eXnZpZCorKwkLS2NX375hbS0NMaPH99j1+Hk5MSLL75o5e8wadIkEhIS\nrB43btw49u7d22U/11JENjc34+7uTkNDAx9//DH79u1j8uTJDB06lHXr1vHee++RlpbG3XffzYED\nB9BqtXz//fdkZmZaPac9/u4FVx+itVXQKZIkMXfuXPz9/Vm/fr1y/MknnyQgIEAx26murmbt2rV8\n+umnbNy4UTHb+dOf/sSBAweorq4mOTmZn376CYDhw4dz6NAhu8276gvIlZLXX3+dd955B39/fzw8\nPGhtbSUuLk5xjk1KSiIkJKRPtuEZDIYOkRJGoxF3d3e8vLwwm81UVlbi5+dHTEzMVRkK3xmSJHHm\nzBl0Oh2+vr5XfXuvXAmXW6wrKyupr6/H0dGRfv360a9fP5s0iupp5PsmLy+PgIAAoqOj7aZy3d1I\nkkRlZSW5ubn4+vri5+enzIY3NTV1MPjx8vKyOUdvmZaWFt544w22b9/OE088wV133dXrGwWyv8Ok\nSZOUYxkZGaxbt+6KhaRer8fLy0uZhSwtLWXx4sW4u7tz6623cuONNzJ//nwaGxt57733MJlMvPba\na5w+fZoVK1bw7bffUlBQwG233aa8H4xGo9h4EtgKYkZScPl88803jBs3jqSkJEVIrFq1itGjRzNr\n1iwKCwuJiopi586d+Pv7I0kSCxYsYN++fXh4eLB161ZGjBgBwJYtW1i1ahUAzz77LPfcc0+vXdfV\njtls5qOPPuKFF15g9OjRPPXUUwwYMEBZEB8/flxxjs3OzqasrAw/Pz8SEhIUgZmQkNAnF8Vms5nS\n0lIKCgpwcnLCxcWF1tZWVCqV1SLO29u7z1TfLhZ5djYvLw9vb28hrttRXV2NVqvF09MTtVqNq6tr\nh5k5S6Oo9u2xfe29ZEltbS05OTnKayPum/9RV1dHbm4ubm5uxMbGdvramM1mRVja6r1kNpvZs2cP\na9eu5dZbb+WJJ56wic4WS38Hy9GcjIwMZs6cSUREBGFhYaxbt47ExMRLeu6srCwmTpzImTNnADh+\n/DgLFy5kzpw5ODs789xzz7Fq1SoGDx7M5MmT2bhxI7/+9a958MEHiY6O5plnnrF6PktjHoHARhBC\nUiAQWPP//t//45NPPuGpp54iLCzsgo+Xd8vl2cusrCyOHTtGa2srarVacY2Vo0ns8Q+hfI06na5T\nkWQymZRICXkGs62tDRcXlw7mPvZ4/RdCFkkeHh6o1Wrc3d17+5RsBlkIuLi4oFarL2hMZXkvWZqy\ntM9R9fT0tPuqhBzloVKpiI2N7ZbYIHulubmZnJwcjEYjcXFxl5XJ29m91NbWpkTdWIrM7qr+SpLE\njz/+yJIlS4iPj+evf/0roaGh3fKzLhW9Xs/48eN59tlnldEcmfr6eqWFPT09ndTUVHJyci7qeU0m\nEyqVCgcHB66//np+85vf8Oyzz/L999/zySefMH36dJYsWUJwcDDr169XOrg2b97M9OnTKS4u5uWX\nX+6ReVGB4AoRQlIgsMRkMjFixAjCw8PZu3cvOp2OlJQUqqqqSE5O5t1331WqUHPmzOHQoUMEBATw\nwQcfEB0dDUBaWhqbN2/G0dGRV155hSlTpvTuRfUSRqORnJwcq+plQUEBHh4eJCYmWlUwfXx8bLLi\nYikgvby8iImJuSSRZGnuI3+1b0Pz9va+IsfP3qS2thatVnvRIulqQq/Xo9VqMZvNaDSayxIClljO\nzMlfZrO5QzyJh4eHzbea20uUR29gMBjIy8ujrq6O2NhYAgICuuVntBeYnc3yXunGV2FhIUuXLqWu\nro61a9cydOjQLryKK8NgMHDLLbcwZcoUHn/88Qs+Pjo6moMHD16Sm+zRo0fZsWMHr732GoWFhWRn\nZ3P//ffj6+vLqlWrGDduHADl5eU4Oztzxx138Otf/5rHHnvssq9LIOhhhJAUCCx56aWXOHjwIPX1\n9ezdu5dZs2YxY8YMUlJSePjhhxk6dCiPPPIIr776KllZWbz++uvs2LGD3bt388EHH3Ds2DFmz57N\ngQMHKC0t5eabb+bUqVN9sgp1OUiSRH19vZW4zMrKoqGhgQEDBlg5x2o0ml6bkbKMOPH09LxkAXmh\n55ZbGi2zL52cnDpkX9rqjFh9fT1arRYHBwfUavUVi6S+RHNzM1qtlpaWlm4XSZIk0dLSYhVz09TU\nhEql6tDS2FWZhVeCwWBAp9NRU1Nj11Ee3YHZbKawsFBxqQ0NDe3R18Zyltcy6sZsNitz4bK4vNBm\nRV1dHevWrWP//v2sWLGCqVOn2tTv+Vz+DpaUl5cTHByMSqXiwIED3HrrrRQUFFz0daSmprJ//35S\nU1NZtWoVv/71r3nppZeYO3cukydPZt68ebS0tHD//fdz/fXXM3/+fN566y1eeOEFjh49KtxYBfaC\nEJICgUxxcTFz587l2Wef5aWXXuKTTz6hf//+lJeX4+TkxPfff8/y5cv517/+xZQpU1i+fDnXXXcd\nRqORkJAQzpw5w+rVqwF4+umnAaweJzg3ZrOZ/Px8srOzOXz4MNnZ2eTm5uLk5MSgQYOU7MshQ4Z0\nq9W9pYD08PAgJiamx+Z4LGMAZFFgNBqtKk7e3t69WnFqaGggLy8Ps9mMWq2229y67qC1tRWdTkd9\nfT1qtZqAgIBeWwiazeYOFSfZifhyMwuvhPZRHj0tkmwZSZKUeJzg4GAiIyNtauNRkiRl/lK+p5qa\nmoCzLe3ffPMNSUlJDBs2jOjoaN5++202b97M/PnzeeCBB2yy/fpc/g6FhYUAPPzww2zcuJHXXnsN\nJycn3N3deemll7j++usv6vlbW1t59NFHeeqpp9BoNBQWFjJkyBCOHj1KSUkJq1evxsHBgePHjzNt\n2jRWrlyJu7s7ra2tvPbaazz88MM2sfEjEFwEQkgKBDK33norTz/9NA0NDaxbt4633nqLMWPGkJub\nC5zNnpo6dSpHjhxhyJAh7Nu3j4iICABiY2PJzMxk+fLljBkzhrvuuguA++67j6lTp3Lrrbf22nXZ\nK3Ll7tixY8rsZXZ2NmfOnCEkJITExESlghkfH39Ff3glSaK6upq8vDzc3d1Rq9U2YQQhW/1btsc2\nNjZ2qDjJ5j7dtfBobGwkLy+PtrY2YmNjRSuiBQaDgfz8fKqqqoiJiSEoKMhmF4ByS6Pl/dR+s0Ku\nOnXFZkX7KI8BAwbYlEjqbaqrq8nNzaVfv36o1Wq7MuiSnb337dvHkSNHyMrKUkzIJk6cyPDhw5XN\nPzkCrC/R3vjGsoLY0NDA6NGj+fDDD5VIkTvuuIO2tjY+/PBD6uvryc7OJjw8XBmJERVIgZ1yUTet\n7W0nCQRdzN69ewkKCiI5Odkq01LQe8hiaeTIkYwcOVI5Lgfcy+Jy06ZNnDhxQplFk419kpKSCAsL\nO++C2Gw2U11dTX5+Pm5ubiQkJNjUnJ9KpcLNzQ03Nzf69++vHLesOFVXV1NYWKgYsrTPvryShXtz\nczN5eXk0NTURGxsrInksMJlMFBYWUl5eTmRkJLGxsTY/m+js7Nwhs1DerJCFZVVVFY2NjVc0y9s+\nymPEiBE226bdG1iaDCUmJtrUZ87F4uDgwIABAxgzZgx79+5Fo9Gwc+dOAgICOH78ONnZ2ezdu5fV\nq1dz+vRp/P39+dvf/mZTc5JXgvy5mpmZyahRo5T3hcFgwNvbm6lTp/Lkk0/y6aefApCYmMiSJUv4\n8ccfGTlyJDfccANw9rNcpVIJESno0wghKejzfPvtt/zzn/8kPT2dlpYW6uvrSU1Npba2VslsKi4u\nJjw8HIDw8HCKioqIiIjAaDRSV1dHQECAclzG8nsEXYODgwNhYWGEhYUxdepU5XhbWxsnTpzg8OHD\n/PDDD/zjH/+gpKQEX19fK+dYWSymp6eTlpbG448/zpQpU+xqMefg4IC3tzfe3t5WDojtQ8xlQxZ5\nxkkWmRfKmGtpaUGn09HQ0NDrbZq2hlyJKS4uJiwsjFGjRtl1lc1ys8LSSMRsNiuzvPX19ZSWltLS\n0qI4WbaPlJCpqakhNzcXT09Prr32WhHlYUFraytarZbGxkbi4uLsurJfXl7OihUr0Ol0rF271kpM\ntd/8A6isrOxTbs7ff/89y5Ytw8XFhaFDhxIfH8+cOXOU1+DFF1/khhtu4LHHHuP48ePEx8eTkZHR\n4XWx9c0ngaArEK2tgqsKyyDi2267jZkzZypmO9dccw3z589n06ZNZGdnK2Y7u3btYufOnRw9epQ7\n7rhDMduZOHEiOTk5dr3QtGfkmUdLc5/vv/+eM2fOMGDAAMaOHcuYMWMYMmQIMTExffL3JM84WbYz\nyhlz7QWBJEnk5+dTW1tLTExMt86j2huSJFFWVkZBQQFBQUFERUXZ5PxXd2M0GpX2WLkq3tbWhqOj\noxItERMTQ2BgYJ98P10OJpOJ/Px8zpw5Y/PtzxeisbGRV155hU8++YTFixczY8aMq0oMyS2oTz/9\nNLfeeisRERHcddddBAQE8N577+Hk5KS0vZaUlHDixAmysrKsnFhFG6ugDyFmJAWC9lgKyby8PFJS\nUqiurmbYsGG89957uLq60tLSwt13383PP/+Mv78/O3bsQK1WA/D888+zZcsWnJycWL9+vVXVTNB7\nfPPNNzz33HMEBATw7LPP4uLiYjV7qdPpcHd3V2Yv5WgSX1/fPvlH32QyKcKyrq6Oqqoq2tra8PDw\nICAgwCr78mpaKLZHbtPU6XT4+fkRHR1tV7Ns3Y0c5dHY2EhwcDDAOR0/5XiSvvh+6gxJkigpKaGo\nqIjw8HAiIiLs9r1kMpnYtm0bmzZtYu7cuSxYsABXV9fePq1uxWw24+DggNlsBmD37t0EBweTnJzM\nTTfdxK9//Ws+/fRTJk2axIoVKy64cSI/n0DQhxBCUiAQ9G1MJhO/+93v8PT0ZOnSpQwZMqTTx0mS\nRENDg1UsSXZ2NvX19YSHh1uZ+8TFxfWJmS+DwUBhYSGnT58mKiqK4OBgDAZDhwgASZI6mPtcDa6C\n1dXVaLVaPD09UavVok3TgouJ8rCMurGshqtUqk7bY/vK/STnz+bl5eHv7090dLTdfl5IksTXX3/N\nsmXLGD16NEuXLr2kLMW+QmtrK/Pnz0ej0fDnP/+Z1NRUvvvuO3755RelM2HPnj1MnDgRLy+vDt8v\nqpCCPooQkgJBX6W2tpb777+fI0eOoFKp2LJlC/Hx8dx+++3k5+cTHR3Nzp078fPzQ5IkUlNTSU9P\nx8PDg7feeovhw4cD8Pbbb7Ny5UoAFi9ezNy5c3vzsi6L0tJSwsLCLut75Xy3rKwspYKZm5uLo6Mj\n8fHxSuVSdie0h8WCpVFMREQE4eHhFzQlampqsmqPleMk2pv79IV2z7q6OnJzc3F2diY2Ntau5me7\nG8t753KjPEwmU4d4Etksqr3AtLf7qb6+npycHFxdXdFoNHa9+XDy5EmWLFmCs7Mzq1evJj4+vrdP\nqVtpb3xTU1PDU089xd13382NN97Iv//9bz766CN+//vf4+fnxx//+Ec2bNiASqVi+fLlREREsG7d\nOvz8/Hr5SgSCHkMISYGgrzJ37lzGjRvH/fffT1tbG01NTaxatQp/f38WLVrE6tWrqampYc2aNaSn\np7NhwwbS09PJzMwkNTWVzMxMqqurGTFiBAcPHkSlUpGcnMyhQ4eu+j+U8tzhsWPHrOYvz5w5Q//+\n/UlISFCql4MGDbpot8vuxmQyUVxcTGlpKeHh4YSHh1/RHJtl9VKemTMajR3MfeylnVGv16PVahUH\nYG9v794+JZvBbDZTWlpKUVERYWFhREREdPkMpKVZlFwNt7yfLNtjba1FsLm5Ga1WS1tbG3FxcXZ9\n71RWVpKWlsYvv/xCWloa48ePt4v375VgWTEsKyvDx8cHJycnVq1aRWlpKX//+98BWLZsGWazmWee\neYYPPviAH3/8kZ9++on77ruP+++/vzcvQSDoDYSQFAj6InV1dVx77bXk5eVZLQBk57jQ0FDKysqY\nMGECJ0+e5KGHHmLChAnMnj3b6nHy1xtvvAHQ4XECa+Rwcbl6mZ2dzfHjxzEajWg0GqVymZSUdMEq\nYFdi6TQaEhLSraHnkiTR0tJiVb1samrq0M4oZ1/aArIIaGlpITY29qrfKLGkfZRHT7dpyveT5YaF\nfD/J7daenp691m4t54hWV1cTGxtr122fLS0tvPHGG2zfvp0nnniCu+6666oyTDpz5gyPPvooVVVV\nREZG8tRTT9HW1sbKlSu54447mD59OhkZGdxzzz2kpaWRkpICWM8+ijlIwVWGyJEUCPoiOp2O/v37\nc88993D48GGSk5N5+eWXqaioUOIiQkJCqKioAKCkpIQBAwYo3x8REUFJSck5jws6R6VSERoaSmho\nKFOmTFGOGwwGxb3vxx9/ZMuWLRQXF9OvXz8rc5/ExES8vLy6bDFsGQgfFBTUI3l+KpUKd3d33N3d\nrYLILdsZKysryc/Pp62tDRcXF6vqpaenZ48tXltbW9HpdNTX14uYk06whSgPy/vpXFmqtbW1FBcX\nK+3W7dtju+OeN5vNFBcXU1JSQmRkJBqNxm7vHbPZzO7du3nxxReZOXMmP/zwAx4eHr19Wj3OCy+8\nwK9+9Sseeughhg4dyrp161i2bBlTpkzhpZdeYvr06VRVVSmGW0ajEUdHRxwcHBSnViEiBYKOCCEp\nENgZRqORn376iQ0bNjB69GhSU1NZvXq11WNECHLP4ezsTFJSEklJSdx5553A2UpLTU2NUr3ctm0b\nR44coampiejoaCvnWLVafUniSq6MFhQUEBAQQHJycq9X/xwdHenXrx/9+vWzOt7a2qpUm4qKitDr\n9UiShIeHh5XA7Mr2YIPBQEFBAZWVlURHRxMfHy/eCxbo9XpycnJwcHBQcldtDcssVUsMBoMST1Je\nXo5er8doNOLm5mYlLi/XjViSJE6fPo1OpyMoKMiuc0QlSeLHH39kyZIlxMfH89lnn1nl0vZF2lcM\nd+7ciUajYfjw4Xh4eFBeXs60adOIj49n2bJlSrzH119/zahRo/Dz8+PVV19l8ODBVs9rr/eAQNAT\nCCEpENgZERERREREMHr0aABuvfVWVq9eTXBwMGVlZUprq1wxCg8Pp6ioSPn+4uJiZYYuIyPD6viE\nCRN68lL6LCqVCn9/fyZMmGD1mppMJrRaLdnZ2Rw+fJgPP/yQvLw83NzcGDx4sDJ7mZiYiL+/v5UA\nMpvNbNu2jYiICEJDQxk2bJjNW/S7urri6upKQECAcsxsNivZl3V1dZSUlNDc3HzF1SZLo5jIyEhG\njRolKggWNDc3k5eXR3NzMxqNBl9f394+pUvG2dkZX19fq3OXJMlqw6KqqkpxI5Y3LORNi/NtWNTW\n1pKTk4OXlxfDhw/v9c2ZK6GgoIBly5ZRX1/Ppk2buOaaa7r9ZxYVFTFnzhwqKipQqVQ8+OCDpKam\nWj3mfMZvXUH79/svv/zCq6++SkZGBlqtVnldJk6cCMB3333H9ddfz+uvv05RUREajUY5T0BsQAkE\nF4GYkRQI7JBx48bx5ptvEh8fz/Lly2lsbAQgICBAMduprq5m7dq1fPrpp2zcuFEx2/nTn/7EgQMH\nqK6uJjk5mZ9++gmA4cOHc+jQIfz9/Xvz0q46JElCr9dz5MgRq+zL2tpawsLCSExMRKVSkZ6eTmJi\nImvWrOmTlQWj0Wg1K2dZbbJ0j21vxmI5I9pdRjH2zMVEefRFZDdiS4OflpYWHBwcrDYrHBwcKCgo\nAECj0dhkhfZiqaurY926dezfv58VK1YwderUHvtdM+7VpQAAIABJREFUl5WVUVZWxvDhw2loaCA5\nOZmPP/6YhIQE5THnMn67XCRJQpIk5fNAr9ezbt065s2bR3R0NK2trYwePZr169dTV1fHxx9/zMyZ\nM5k0aRKPPfYYWVlZfPjhh4SEhCjPKbexCgQCYbYjEPRZfvnlF8WxVa1Ws3XrVsxmM7NmzaKwsJCo\nqCh27tyJv78/kiSxYMEC9u3bh4eHB1u3bmXEiBEAbNmyhVWrVgHw7LPPcs899/TmZQksMJvNfPDB\nBzz//PO4u7sTHR2NVqvFwcGBuLg4K3OfoKCgPll9u5AZi9lspr6+nv79+6NWq+02z6876Iooj76I\n0WiksbGR2tpaSktLaWlpwdnZuYMbcU/O814pBoOBrVu3snnzZubPn88DDzzQ69Eq06dPZ8GCBUya\nNEk5di7jt8vZGLMUfM3NzRw4cIDx48czdepUpk6dykMPPYSrqyvvv/8+Gzdu5Pvvv2f79u3885//\npKioiBEjRvD888/b9caBQNDNCCEpEAgE9si3337LsmXLCAkJYdmyZcTFxQH/E1bHjx+3ql5WVFQQ\nGBhoNXs5ePBgm4km6UokSaKiokJpCXZ3d6e5uZnW1lbF3Mfyy17EQFfRE1Ee9ozJZKKgoIDTp08T\nHR1NcHAwKpXKqj1Wjicxm82dxpPYynvKbDbzr3/9i1WrVjF58mQWLVqEj49Pb58W+fn53HjjjRw5\ncsRqbvqWW25h0aJFjB07FoCJEyeyZs0aZWPzcli3bh0//vgj1dXVbN26lbKyMp555hk2bNhAfHw8\nFRUVjB07lscff5z58+dTX1+PwWBQ2u1FBVIgOCfCtVUgEAjsDYPBwLvvvsvLL79MYmKi1b/JLpfD\nhw+3mi2STUJkc5+///3vSjSJWq1WXGOHDBlCZGSk3VYvq6ur0Wq1eHp6Mnz48A5Oo5ZZhcXFxR3E\ngFxtcnd3txkx0FVYRnkEBgb2iItvt1Fbi+PevWA0Yp4yBakLWrklSaK0tJTCwkLCwsI6zNB2Ns8r\nZ8rK1fDy8nKam5txcHBQ4knkLxcXlx69p7KysliyZAlBQUHs2rWLqKioHvvZ50Ov1zNz5kzWr1/f\nwXyrK2loaOCRRx7BxcWF22+/neeff57333+fv/zlLyQkJPD222/zzDPPoNVqGTlyJF9++SWPPPII\n3t7eqFQqzGYzKpVKiEiB4AoRFUmBQGAT/O1vf+PNN99EpVKRlJSk7C6npKRQVVVFcnIy7777Li4u\nLrS2tjJnzhwOHTpEQEAAH3zwAdHR0QCkpaWxefNmHB0deeWVV6yiOq42DAYDp06dsqpeFhYW4u3t\nbSUuExMTlQWWLVJXV4dWq8XJyYnY2NhLakeTJKnDrJwsBtpnX9qr8LKM8lCr1b0S5dFlVFTgdv31\nUF8HEqicnWn58kukQYMu+ymrqqrIzc3Fz8+PmJiYK/49W8bdyF+tra04Ozt3qIh3dYtpeXk5K1as\nID8/n7Vr1zJy5Eibed8aDAZuueUWpkyZwuOPP97h37uytbWqqoopU6bw5Zdf4u3tza5du/jiiy+Y\nM2cO4eHhpKWl8dNPP6HX69myZcsVVT0FgqsU0doqEAjsg5KSEsaOHcuxY8dwd3dn1qxZTJs2jfT0\ndGbMmEFKSgoPP/wwQ4cO5ZFHHuHVV18lKyuL119/nR07drB7924++OADjh07xuzZszlw4AClpaXc\nfPPNnDp1Suw6WyBJErW1tWRlZSni8siRI+j1eiIjI62cY2NjY3t11kqv16PVajGbzWg0mg5xEFeC\nPCsnG/vo9XoMBgOurq5W5j6XGyXRE1hGedi7UYyMw2OpOG7ejLPp7HLDDBjH34gx/bNLfq6GhgZy\ncnJwdnZGo9Hg7u7exWdrjWVFXG6PNRqNnbbHXuo91djYyMsvv8zevXtZvHgxM2bMsKn7UpIk5s6d\ni7+/P+vXr+/0MecyfrscGhsb+fOf/8xvfvMbfv/739PY2Mhvf/tbhg0bxvLly/H29uaHH35gzJgx\nyveINlaB4JIQra0CgcB+MBqNNDc34+zsTFNTE6GhoXzxxRds27YNgLlz57J8+XIeeeQR9uzZw/Ll\ny4Gz8ScLFixAkiT27NlDSkoKrq6uxMTEoNFoOHDgANddd10vXpltoVKp8PPzY/z48YwfP145bjKZ\n0Ol0Snvsrl270Gq1uLi4kJCQYCUwAwICurUK0tzcjFarpaWlhdjYWPz8/Lr8Zzg5OeHj42M1U9ZZ\nlIRerwdQWhllkenq6tprlSD59WltbSU2NtYuozzOxfFDXzPM9L89aweg7FQ2/S/hOVpaWsjNzaW1\ntZW4uLhubbG0xMXFBX9/fyvn6/aGUadPn6apqQnAqj3W29u703vKZDKxbds2Nm7cyLx588jMzLTJ\n2J9vv/2Wd999l6SkJK699loAVq1aRWFhIQAPP/ywsjmo0WgU47fLxcPDg4EDB5KZmcnIkSMJDw8n\nNDSUmpoaPvvsM2bNmqWISFlAChEpEHQ9QkgKBIJeJzw8nIULFxIZGYm7uzuTJ08mOTkZX19fpSIW\nERFBSUkJcLaCOWDAAOB/gqCqqoqSkhKrHWjL7xGcH0dHRzQaDRqNhhkzZgBnF8GNjY0cPXqUw4cP\n8+mnnyrRMqGhoSQmJioCc+DAgVc8J9ba2opOp6O+vh61Wt3tgrU9KpUKNzc33NzcCAwMVI7LURIN\nDQ3U1NRQVFRES0sLTk5OVtXL7mhltKStrY38/HxqamqIjY3t8denJ3jX34E4Z/AynP3/JifYHe7E\ngxfxvUajEZ1OR3V1tc1Enchzze7u7vTv/z85bDablfbY2tpaiouL+eSTT0hPT2fgwIEkJibi6enJ\njh07GDt2LF9++aXVPWlrjB07lgt1uKlUKjZt2tQlP0+lUnHvvfeyZs0a7rrrLvR6PUlJScTHx/P9\n998zdOhQ4uPjAYSAFAi6ESEkBQJBr1NTU8OePXvQ6XT4+vpy2223sW/fvt4+raselUqFl5cXo0eP\nZvTo0cpx2Rn08OHDHD58mPXr13Py5EkABg4caBVNEhwcfMEWPIPBQEFBAZWVlURHRxMfH9/rAsAS\ny3lKSwwGg1JpKi0tRa/XYzKZcHd375B9eSXX0z7KIy4uzqZen67ko+ibCRpxkscOmHGQ4KNBKlYP\nvfG8QtJsNlNcXKxsMI0cOdKm2j47w8HBAW9vb6t27WHDhjF//nz27dvHhx9+SHl5OW5ubuzfv585\nc+aQlJSkfA0aNMgmK5M9SUBAAGvXrmX//v04ODgwbtw4Tpw4wf/93/9d9a+NQNBTCCEpEAh6nf/8\n5z/ExMQoO/YzZszg22+/pba2FqPRiJOTE8XFxYSHhwNnK5hFRUVERERgNBqpq6sjICBAOS5j+T2C\nrsPBwYGIiAgiIiL4zW9+A5ytXra1tSnRJF9//TWvvvoq5eXl+Pn5WUWTJCQk4O7ujl6vZ82aNZSW\nlrJixYoOTpq2jrOzM35+flatt5ZOn3q9vlOnT1lkuri4nPf520d5jBo1qs9XV569YTEPu/4/nh5f\niEoC2gJ4PubFTh8ruxXrdDr69+/PyJEjez0/8UqorKwkLS2NX375hbS0NMaPH49KpVIcZ+V55s8/\n/5wTJ06wbds2YmNje/u0ex3LFv1BgwaxZMmSXjwbgeDqQpjtCASCXiczM5N7772XH3/8EXd3d+bN\nm8eIESP46quvmDlzpmK2c8011zB//nw2bdpEdna2Yraza9cudu7cydGjR7njjjsUs52JEyeSk5PT\n5xfftowcSyHPXmZlZXH06FHKy8sBGDVqFH/4wx8YPnw4UVFRdiUkLwXZ6dPS3KetrQ1XV1er1ljZ\n3McyyiMqKspuHWUvhy1vm1j17kFMkonUGSNIne9C+wJsbW0tubm5eHh4EBsba9cVqJaWFuWzbOHC\nhdx5553iM0sgEPQ2wrVVIBDYD8uWLeODDz7AycmJYcOG8eabb1JSUkJKSgrV1dUMGzaM9957D1dX\nV1paWrj77rv5+eef8ff3Z8eOHajVagCef/55tmzZgpOTE+vXr2fq1Km9fGUCGZPJxPbt23nxxReZ\nPn0606ZNIy8vT3GPLSgowMvLSzH3kSuY/fr167OtnLK5jyww6+rqaG1txcXFhaCgIPz8/PDy8sLN\nza3PvgaXQlNTEzk5OZjNZuLi4jq0G9sTZrOZ3bt3s27dOm699VaeeOIJPDw8evu0BAKBAISQFAgE\nAoGtcODAAf74xz8yfvx4Fi1a1KlxiCRJ1NXVWUWTZGdn09DQ0CGaRKPR2HUbY3saGhrIzc3FwcFB\naVeUK5cNDQ2KuY+ly2d3m/vYEm1tbeTl5VFfX49Go7FyRrU3JEniwIEDLF26lPj4eP76179eVpai\nQCAQdCNCSAoEAoHANigqKkKlUhEREXHJ32s2m8nPz1faY7Ozs8nNzcXZ2ZlBgwYpAnPIkCE24dR5\nKVhGeWg0Gqs4kvYYDIYO7bFGoxE3N7cO5j59pUXY0mgoOjqakJAQu/r9tqegoIClS5fS0NDA2rVr\nueaaa3r7lAQCgaAzhJAUCAR9jy1bthAeHs6UKVN6+1Q6cO+997J3716CgoI4cuQIANXV1dx+++3k\n5+cTHR3Nzp078fPzQ5IkUlNTSU9Px8PDg7feeovhw4cD8Pbbb7Ny5UoAFi9ezNy5cwE4dOgQ8+bN\no7m5mWnTpvHyyy/b9aL6SpAkiaamJiWaRK5gVlVVERISYhVNEh8ff8XRJF1NV0V5tM8pbGhooKmp\nCZVK1am5jy29BudDkiTKysooKCggNDSUAQMG2PXcYF1dHevWrWP//v2sWLGCqVOn2s3vQiAQXJUI\nISkQCPoeEydO5OGHH+a2224D/hc2vXfvXnx9fRk7dmyvndtXX32Fl5cXc+bMUYTkU089hb+/P4sW\nLWL16tXU1NSwZs0a0tPT2bBhA+np6WRmZpKamkpmZibV1dWMGDGCgwcPolKpSE5O5tChQ/j5+TFq\n1CheeeUVRo8ezbRp0/jTn/4kZkDbYTabKS8vV6JJsrOzOXHiBJIkodForKJJQkNDe7xy11MVNpPJ\npGRfyiJTnr20NPfx8vKyOYFWVVWFVqvFx8cHtVpt10ZDBoOBrVu3snnzZv74xz9y//33XzXtyAKB\nwK65qD9M4tNMIBDYDc3NzahUKsrKyti/fz+DBg1SIkPeffddRo0axfXXX4+DgwOSJGE2m1GpVD0m\nFm688Uby8/Otju3Zs4eMjAwA5s6dy4QJE1izZg179uxhzpw5qFQqxowZQ21tLWVlZWRkZDBp0iRl\nBmzSpEns27ePCRMmUF9fz5gxYwCYM2cOH3/8sRCS7XBwcCAsLIywsDDltZEkCYPBoESTfPfdd7zx\nxhuUlpZ2Gk1ypbmPndE+ymP06NHdel86Ojp2yCmEs5VQWVgWFxfT2NiI2WzukH3p7u7e4xUzvV6v\nuCwnJSXh7u7eoz+/KzGbzfzrX/9i1apVTJ48mW+++ea8bcsCgUBgjwghKRAI7IaKigp++OEHhg0b\nxhdffIFer2fXrl3069ePxsZGrrnmGmVxrlKpOq20yAJTkiScnJxoa2u7YJ7flZ6zbKQREhJCRUUF\ngBKeLhMREUFJScl5j1vOF8rHBRdGpVLh4uLC0KFDGTp0qHJckiSqqqqU2cu33nqLY8eO0draSnR0\nNEOGDFFEZnR09GVV7iyzDgMDAxkxYkSvVthcXFzw9/e3MquR24Tl1tjS0lJaWlpwcHDoYO7THefe\n0tKCVqulubmZuLg4uxdcWVlZPPvss4SEhLBr1y6ioqJ6+5QEAoGgWxBCUiAQ2A0nTpwgMDCQF154\nAYB58+aRnp7Ob3/7W/R6PRERERiNRt555x3eeOMNIiIiePTRR5kwYYLyHO0F5vr16zEajfz5z3/G\nw8MDs9ncbZUilUol5qJsCJVKRWBgIDfddBM33XSTctxoNJKbm6vMXm7fvp2CggLc3d2V2Uu5gunj\n43PO32lubi41NTV4eXkxbNgwm806lOcpPT09CQ4OVo4bjUbF3KeiogKtVovBYMDNza3T7MtLxWg0\nkp+fT2VlJWq1mv79+9v1+6OsrIwVK1aQn5/PCy+8wMiRI+36egQCgeBCCCEpEAjshqNHjzJu3Djg\nbFzC8OHD0Wq1VFRU4OHhQUBAAHv27OHll1/m888/Z8+ePWzatIkbb7yRtrY2PvvsMzZs2EBsbCw3\n3XQTKSkpNDU14e3treS3nWtBLEnSZS0Kg4ODKSsrIzQ0lLKyMoKCggAIDw+nqKhIeVxxcTHh4eGE\nh4crrbDy8QkTJhAeHk5xcXGHxwu6HicnJwYNGsSgQYO4/fbbgbO///r6erKzs8nKymLXrl0899xz\nNDQ0EB4eblW9rK2tZdmyZYSGhvLaa6/h6enZy1d0eTg5OeHj42NVIZQkySr7srKyksbGRlQqFR4e\nHlbtsa6urp2+Z8xmMyUlJRQXFxMREcGoUaPs2mW2sbGRl19+mb1797J48WJmzJjRI9fTmbmXJRkZ\nGUyfPp2YmBgAZsyYwdKlS7v9vAQCwdWDEJICgcBu+O6775SZyMbGRrRaLTfccAMnTpwgIiKCmpoa\njhw5wr333ktQUBA333wz+/fvJzMzk7y8PDZs2MDGjRv56aefaGhooLW1ldraWuLj44GzZjktLS1M\nnjy5w89uvyDOycnh1KlT/OY3vznvOf/ud7/j7bffZtGiRbz99ttMnz5dOb5x40ZSUlLIzMzEx8eH\n0NBQpkyZwjPPPENNTQ0A//73v0lLS8Pf359+/frxww8/MHr0aN555x0effTRK35NBReHSqXCx8eH\nsWPHWhk6mc1mCgoKyMrKYv/+/SxfvhyTyURMTAxubm68+eabSjSJvVfc4Ozr4Obmhpubm1UWqNls\nprGxEb1eT01NDYWFhbS2tuLs7GxVvWxubqagoIDAwEBGjhxp18YzJpOJbdu2sXHjRu655x4yMzN7\ntOo8b948FixYwJw5c875mHHjxrF3794eOyeBQHB1Yb+f4AKB4KrCZDJRVFREQ0MDH330EV9//TWt\nra1MmTKFTZs2ER0dja+vL8XFxUqMRmtrK7GxsWRmZqLX67nvvvsYMWIEI0aMAODw4cPKzNf69ev5\n/vvvmTRpEoDS4ipJEllZWZSVlZGcnEz//v2RJAlvb28MBoNyfpIkMXv2bPbv309lZSURERE899xz\nLFq0iFmzZrF582aioqLYuXMnANOmTSM9PR2NRoOHhwdbt24FwN/fnyVLljBy5EgAli5dqsyzvfrq\nq0r8x9SpU4XRjg3g4OBAv379+Oqrr/juu+94/fXXmTx5Mi0tLRw7dozDhw/z+eef89JLL3HmzBmC\ngoKsokkGDRp0zsqdPeHg4NCpuY/BYFAql1qtFkmScHFxobGxkYKCAqvsS3t5DSRJ4quvvmLZsmVc\nd911ZGRkEBAQ0OPn0Zm5l0AgEPQkIv5DIBDYDcePH0er1fLpp5/S2trK8uXLiYyMZNKkSdx22208\n+OCDTJ48mUceeYQ//OEPrFu3jsLCQmbOnMm2bduYM2cON9xwA01NTXh4ePDll1+yevVqqqurmTt3\nLtOnT2fAgAGKGY+joyO7du3in//8J/X19Zw6dYq5c+fy5JNPsn//fmJiYggKCsLR0fGcJiSWzyXo\nexw/fpw77riDhQsXMnv27PO2NEqS1Gk0iclk6hBNEhYWZtftnjLNzc3k5OQo1+jt7Y0kSTQ3Nyvt\nsXq9nubmZhwcHPD09LRqj+1OI6zL4eTJkyxZsgRnZ2fWrFnDwIEDe/V88vPzueWWW87Z2jpz5kwi\nIiIICwtj3bp1JCYm9sJZCgQCO0TkSAoEgquDH374gYiICCIiIvjuu+9ITU3F3d0dT09Pnn32WcaO\nHUtycjLr169XZiwBtm7dyg8//MA///lP0tPTGTZsGAaDAWdnZ6UiuWTJEsrLy/nHP/4BnG2plSSJ\nBx54gMmTJ5OQkMC8efMICQkhMDCQqVOnMnv2bNzc3OymwnI+OpvDevLJJ/nkk09wcXEhNjaWrVu3\n4uvrC0BaWhqbN2/G0dGRV155hSlTpgCwb98+UlNTMZlM3H///SxatAgAnU5HSkoKVVVVJCcn8+67\n79qceDgfZrMZg8FwRS2NbW1tnDx5UjH3yc7OpqSkBB8fHytzn8TERDw9Pe3ivjIYDOTl5VFXV0ds\nbOxFVexMJpMSTSJ/tbW14erqauUee7nmPldCZWUlq1at4vDhw6SlpTF+/Hib+D2cT0jW19crzrvp\n6emkpqaSk5PTC2cpEAjsECEkBQLB1UlLSwsnTpzAxcWFhIQEAPbv38/ChQsJDw8nMTGR559/nr/+\n9a84OTmRmJjIli1b+OijjzpUDvPy8li3bh1OTk488MADJCUlkZ+fzzPPPMOCBQu4/vrrASgoKODm\nm29m/PjxrF27lm+++YbXXnuNyspK7rvvPu699167EkgyX331FV5eXsyZM0dZrP773//mpptuwsnJ\nib/85S8ArFmzhmPHjjF79mwOHDhAaWkpN998M6dOnQJg4MCBfP7550RERDBy5Ei2b99OQkICs2bN\nYsaMGaSkpPDwww8zdOhQHnnkkV67XltBkiSqq6uVaJLs7GyOHj1Kc3Mz0dHRVs6xMTExNlPxllvQ\ny8rKiIqKIjQ09IoElyRJSvalXL2UN3Pam/t0x+ZNS0sLr7/+Ojt27GDhwoXceeedNvNaw/mFZHui\no6M5ePCg1WyrQCAQnIOL+jAVM5ICgaDP4ebmxrXXXgv8z211/PjxfPLJJ2RnZ1NZWQmczdTz8fHh\nd7/7Hf/5z39IS0tj0aJFVgYgarWaV199lV27djFp0iR++ukn6uvrqaurQ6PRKI/7y1/+wpw5c3jy\nySfZvXs33333Ha+++irBwcEsWLCAMWPGKOdkT3Q2h2VpRjRmzBg+/PBDAPbs2UNKSgqurq7ExMSg\n0Wg4cOAAABqNBrVaDUBKSgp79uxh8ODBfPHFF2zbtg2AuXPnsnz5ciEkOWtqExAQwK9+9St+9atf\nKcdNJhNarVapXu7cuROdToebmxsJCQlWAtPPz6/HqmZy225+fj4hISGMGjWqSwSXSqXC1dUVV1dX\nq6qm2WxWsi/r6uooLi6mpaUFJyenDtmXl2PoYzab2b17N+vWreO2227jhx9+UJyd7YXy8nKCg4NR\nqVQcOHAAs9ncK7OcAoGg7yKEpEAg6NNYLqRDQkIICQlR/l+upgE88cQTbN++HScnJ0V8VlVVsWzZ\nMiZMmEBMTAwxMTE0NTVRVlaGu7s7QUFB1NTUkJKSwnXXXcfChQtxc3Nj165dnDx5kgMHDjBo0CA+\n+ugjbrnlFrsUkhdiy5YtSkRGSUkJY8aMUf4tIiKCkpISAAYMGGB1PDMzk6qqKnx9fZWFvuXjBZ3j\n6OjIwIEDGThwILfddhtwVsQ1NDQo0SR79uzh+eefp7a21iqaJCkpibi4uHPO814u1dXV5Obm0q9f\nP5KTk3uk8i63bHp5eVkdNxgMSvZlWVkZer0eo9GIu7u7lXush4dHp+2xkiRx4MABli5dyuDBg/nX\nv/5l9ZlhS8yePZuMjAwrcy/ZAOzhhx/mww8/5LXXXsPJyQl3d3d27NhhE+24AoGg7yCEpEAgEABR\nUVHK3J682HJxcSEpKYk9e/ZQWVnJAw88gEajYffu3fj4+FBbW0tKSgoTJ07kqaeeAs6ai7i4uPCP\nf/yDuLg4fv75Z26++WYlYqQv8fzzz+Pk5PT/27vfmCrr/4/jr8uOMhyJfwijc4alJ03OAcNCcW5q\nY4zJTPtrUA3pRGMJ02wu3dQm/ZFya8sEY5UETtOtbkgzQJoCdgcx/IcQiQnFcRqasDTLI8fre8N5\nfl++gj9PFkfg+bjj9r4u2Ofilq99Pu/3Ry+88EKglzKoGYahESNGaObMmZo5c6avfvXqVbW1tfmO\nx5aVlam5udkXRq/vXDqdTt/OlT8uXryoEydOyDAMOZ3OO2LHbujQoRo5cqSvZ1e6Fg7/+usv3/HY\n9vZ2Xbp0SZWVlTp06JAcDoemTJkiq9WqvLw8XbhwQfn5+YqJiQngl/z/tm/fftPn2dnZys7O7qPV\nABiMCJIA0Iu7775bmZmZyszM7FafO3euEhIS9MMPP6iyslIXLlxQRUWFZs+erYyMDD388MPaunWr\nNm7cqISEhACt/t9VVFSkXbt2ac+ePb4AYrVa1dbW5nvH7XbLarVKUo/1MWPGqLOzU11dXbJYLN3e\nx+0bMmSIxo0bp3Hjxunxxx+X9H+h6vrVJHv37tWGDRt09uxZhYWF3XA1SU99h7/88ouOHTume+65\nRw8++GC30HYnMgxDwcHBCg4O9t1DK0nR0dE6fPiwamtrtXnzZjU1NSkoKEgTJkxQUVGRYmJiFB0d\nraioKAUHBwfwCwDgzsSwHQC4TZcuXdLhw4fV0dGhhIQEnT17VtnZ2XK73Ro1apRefPFFpaenB3qZ\nf9v/DvQoLy/X66+/rurq6m7/MW9oaNDzzz/vG7aTkJCg5uZmmaapiRMnas+ePbJarYqLi9MXX3wh\nh8OhZ599Vk8//bRv2E5MTIwWL14cqE8dtEzT1K+//urbvTx69Kiampp05coVTZgwQU6nU3a7XVVV\nVdq3b59ycnK0YMGCfn1U8sqVKyosLFRhYaGysrKUkZEhi8Wi9vZ21dfX+44KNzY2yuPx6PPPP9eU\nKVMCvWwA6AtMbQWAQGpra1N9fb1sNtsdf0yuN//dhzV27Fjl5OQoNzdXly9f9g3uiI+PV0FBgaRr\nx10LCwtlsVj04Ycfau7cuZKk0tJSvfbaa/J6vXK5XFq1apWka1NxU1JSdP78ecXGxmrr1q23dZUG\n/llXrlxRQ0OD8vLy9PXXX2vy5Mnq7OxUSEiIr/fy+r8hISH9IlhevXpVu3fv1rvvvqukpCStXLlS\noaGhN/0Zr9cr0zT/1uAeAOiHCJIAAODvMU3jPMwSAAAIGElEQVRTpaWlWrt2rRITE7VixQqFhobK\nNE11dHTo6NGjvnsvjx07pj/++EPjxo3zHY11OBwaP378HRO+TNNUfX29Vq1apYiICK1bt06RkZGB\nXhYA3IkIkgAA4O/Ztm2bvv32W7399tvdpu72xuv16uTJk93uvjx58qSCgoJ8V5NcD5ijR4/u093L\n06dP66233tLPP/+s9evXKy4url/sngJAgBAkAQDoicvl0q5duxQeHn7DZe4ffPCBli9f7htAY5qm\nli5dqtLSUg0fPlxFRUWaOnWqJKm4uFjvvPOOJGn16tVatGiRJKmurk7p6en6888/lZycrA0bNvS7\n4HL9Gpzb/R0XL15UQ0ODr/eyvr5eHR0duu+++7oN95k4caKGDh36j/6dLl68qA0bNuibb77RmjVr\n9OSTT/Z47QcAoBuCJAAAPdm3b59CQkKUlpbWLUi2tbUpIyNDTU1NqqurU1hYmEpLS7Vx40aVlpZq\n//79Wrp0qfbv36/z58/r0Ucf1ffffy/DMPTII4+orq5Oo0aN0rRp0/TRRx9p+vTpSk5O1pIlS3z9\norjWp+h2u7vtXh4/flyGYfR4NYm/4c/r9Wrbtm3Kz8/XSy+9pKysLHpvAeDW3VKQvDMaFwAA6EOz\nZs1Sa2vrDfVly5Zp/fr1WrBgga9WUlKitLQ0GYah+Ph4dXZ26vTp06qqqlJiYqJGjx4tSUpMTFR5\nebnmzJmj33//XfHx8ZKktLQ07dy5kyD5X4YMGaLIyEhFRkZq3rx5kq7tXno8Ht/VJNXV1crLy9OZ\nM2c0ZswY32Afp9OpyZMnKzg4+IbdS9M0VV1drbVr12rGjBmqqqryDYUCAPyzCJIAAOhaYLRarTdc\n8XDq1KluPYI2m02nTp26ad1ms91Qx80ZhqGgoCDFxsYqNjbWVzdNU+3t7b7dy08//VRNTU3yeDy+\nq0kcDoeGDx+ugoICDRs2TFu3btXEiRMD+DUAMPARJAEAg96lS5e0bt06VVRUBHop+B+GYWjs2LFK\nTExUYmKir97V1aXjx4/ryJEjOnTokL788kt99tlnmj17dr/rRwWA/oiOcwDAoPfTTz+ppaVFU6ZM\n0f333y+3262pU6fqzJkzslqtamtr873rdrtltVpvWne73TfU8c+yWCyKiopSamqqcnNzdeLECc2Z\nM4cQCQB9hCAJABj0oqOj1d7ertbWVrW2tspms+ngwYO69957NX/+fG3ZskWmaaqmpkahoaGKiIhQ\nUlKSKioq1NHRoY6ODlVUVCgpKUkREREaMWKEampqZJqmtmzZ0q3nEv2Ty+VSeHi4nE5nj89N09SS\nJUtkt9sVExOjgwcP9vEKAaBvESQBAINOamqqZsyYoR9//FE2m02bN2/u9d3k5GSNHz9edrtdr7zy\nijZt2iRJGj16tNasWaO4uDjFxcXpzTff9A3e2bRpkzIyMmS32zVhwgQG7QwA6enpKi8v7/V5WVmZ\nmpub1dzcrE8++USvvvpqH64OAPoe138AAADcgtbWVs2bN++Gu0clKTMzU3PmzFFqaqokadKkSaqq\nqlJERERfLxMAbtct9QiwIwkAAHCbepviCwADFUESAIABpLdevo0bN+qhhx6Sw+HQG2+84avn5ubK\nbrdr0qRJ2r17t69eXl6uSZMmyW6367333vPVW1paNH36dNntdj333HPyeDz//kcBAO44BEkAAAaQ\nnnr5KisrVVJSoiNHjqihoUHLly+XJDU2NmrHjh1qaGhQeXm5Fi9eLK/XK6/Xq6ysLJWVlamxsVHb\nt29XY2OjJGnFihVatmyZTpw4oVGjRt20v3Qw6W2KLwAMVARJAAAGkFmzZvmG/lz38ccfa+XKlQoK\nCpIkhYeHS5JKSkqUkpKioKAgPfDAA7Lb7aqtrVVtba3sdrvGjx+vYcOGKSUlRSUlJTJNU3v37tUz\nzzwjSVq0aJF27tzZtx94h+ptui8ADFQESQAABrjjx4/ru+++0/Tp0zV79mwdOHBAUu99fb3Vf/vt\nN40cOVIWi6VbfTDoadJvQUGBCgoKJPU+3RcABipLoBcAAAD+XV1dXTp//rxqamp04MABLVy4UCdP\nngz0svqV7du33/S5YRjKz8/vo9UAQOARJAEAGOBsNpueeuopGYahadOmaciQITp37txN+/p6qo8Z\nM0adnZ3q6uqSxWKhDxAABjGOtgIAMMA98cQTqqyslHTtmKvH41FYWJjmz5+vHTt26PLly2ppaVFz\nc7OmTZumuLg4NTc3q6WlRR6PRzt27ND8+fNlGIYee+wxffXVV5Kk4uJiLViwIJCfBgAIEHYkAQAY\nQFJTU1VVVaVz587JZrMpJydHLpdLLpdLTqdTw4YNU3FxsQzDkMPh0MKFCxUVFSWLxaL8/Hzddddd\nkqS8vDwlJSXJ6/XK5XLJ4XBIkt5//32lpKRo9erVio2N1csvvxzIzwUABIhhmqY/7/v1MgAAAACg\nXzFu5SWOtgIAAAAA/EKQBAAAAAD4hSAJAAAAAPALQRIAAAAA4BeCJAAAAADALwRJAAAAAIBfCJIA\nAAAAAL8QJAEAAAAAfiFIAgAAAAD8QpAEAAAAAPiFIAkAAAAA8AtBEgAAAADgF4IkAAAAAMAvBEkA\nAAAAgF8IkgAAAAAAv1j8fN/4V1YBAAAAAOg32JEEAAAAAPiFIAkAAAAA8AtBEgAAAADgF4IkAAAA\nAMAvBEkAAAAAgF8IkgAAAAAAvxAkAQAAAAB+IUgCAAAAAPxCkAQAAAAA+IUgCQAAAADwy38ARdeA\njMH+Qz0AAAAASUVORK5CYII=\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x1054a5a10>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_metric('iops')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Latency" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "32f6ab707a63403aaa4ffced1f664f2d" + } + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "show_metric('lat.mean')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5IAAAH+CAYAAADu2DEaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlwHOWZP/Dv3KP7si1b0ugAC1m2MT6RbZCTJRAvFMcG\nh6wNxVE4m4KELIGkNuSA8m62clRIJVy7UJRJDFWBZEmxUFvZVPAG/6xgAjbBVBJzmNjS9IxuzaEZ\n9Zzd/ftD6abn1Bw9M++0nk8V5URnt+bq7zzv8z4GSZJACCGEEEIIIYTkyljpAyCEEEIIIYQQUl0o\nSBJCCCGEEEIIyQsFSUIIIYQQQggheaEgSQghhBBCCCEkLxQkCSGEEEIIIYTkhYIkIYQQQgghhJC8\nUJAkhBBCCCGEEJIXCpKEEEIIIYQQQvJCQZIQQgghhBBCSF7MeX69VJKjIIQQQgghhBDCAkMuX0QV\nSUIIIYQQQggheaEgSQghhBBCCCEkLxQkCSGEEEIIIYTkhYIkIYQQQgghhJC85LvZDiGEEEIIIYQw\nJxaLweVyIRwOV/pQqoLdbkdXVxcsFktB32+QpLw2YqVdWwkhhBBCCCHMOX/+PBoaGtDW1gaDIaeN\nR5ctSZIwNzeHQCCAvr6+5E/Trq2EEEIIIYSQ5SEcDlOIzJHBYEBbW1tR1VsKkoQQQgghhBBdoBCZ\nu2L/VhQkCSGEEEIIIYTkhYIkIYQQQgghhOjMHXfcgRdffLFkP5+CJCGEEEIIIWR5mpkBTp5c/Fdj\nkiRBFMWCvjcej2t8NNqjIEkIIYQQQghZfp5/HujpAa66avHf558v+keOjo5iYGAAt912GzZu3IiD\nBw8CAB555BFccMEFAIBz587hsssuS/neO+64A3fddReGhobwL//yL1hYWMCdd96JSy+9FFu2bMHL\nL7+s/I7h4WFs3boVW7duxYkTJwAsBtd77rkHAwMDuPLKKzE9PV30+WRDcyQJIYQQQgghy8vMDHDw\nIBAKLf4HLP7/K68EVq4s6kefPXsWR44cQW9vL6677joAwMjICNra2uB2uzEyMoI9e/ak/V6Xy4UT\nJ07AZDLhm9/8Jq644go888wz8Pl8uPTSS3HllVdi1apVePXVV2G323H27FkcOHAAp06dwksvvYQP\nPvgAZ86cwdTUFNavX48777yzqHPJhoIkIYQQQgghZHkZHQWs1o9DJABYLIsfLzJI9vT0YOfOnQCA\nYDCIQCAAjuNw88034/jx4xgZGcGNN96Y9ntvuukmmEwmAMBvf/tbvPLKK3j44YcBLI43cTqd6Ojo\nwD333IPTp0/DZDLhww8/BAAcP34cBw4cgMlkQkdHB6644oqizmMpFCQJIYQQQgghy0tvLxCNJn4s\nFlv8eJHq6uqU/71792789Kc/xcDAAIaHh/HMM8/gjTfewI9+9KMlv1eSJPzqV7/CwMBAwtccOnQI\n7e3tePfddyGKIux2e9HHXAjqkSSEEEIIIYQsLytXAocPAzU1QGPj4r+HDxddjUw2PDyMhx9+GHv2\n7MGWLVvw2muvwWazoampacnv3bt3Lx577DFIkgQAeOeddwAAfr8fa9asgdFoxHPPPQdBEAAAe/bs\nwS9+8QsIgoCJiQm89tprmp5LMgqShBBCCCGEkOXnwAFgbAw4enTx3wMHNP8Vw8PD4DgOe/bsgclk\ngsPhwOWXX658/qGHHsIrr7yS9nsffPBBxGIxbNq0CRs2bMCDDz4IAPjiF7+II0eO4JJLLsH777+v\nVDE/85nPoL+/H+vXr8dtt92GXbt2aX4+agY54eYory8mhBBCCCGEkHJ47733MDg4WOnDqCoZ/maG\nXL6XKpKEEEIIIYQQQvJCQZIQQgghhBBCSF4oSBJCCCGEEEIIyQsFSUIIIYQQQggheaEgSQghhBBC\nCCEkLxQkCSGEEEIIIYTkhYIkIYQQQgghhFSZU6dO4Z//+Z8BAMeOHcOJEyfK+vvNZf1thBBCCCGE\nEMKImYUZjPpG0dvci5V1KzX92ZIkQZIkGI3a1+7i8Ti2b9+O7du3A1gMkvX19di9e7fmvysTqkgS\nQgghhBBClp3n//Q8en7Sg6ueuwo9P+nB839+vuifOTo6ioGBAdx2223YuHEjDh48CAB45JFHcMEF\nFwAAzp07h8suuyzh+wRBQF9fHyRJgs/ng8lkwvHjxwEAe/bswdmzZ3Ho0CHceuutuOyyy3Drrbfi\n2LFjuPbaazE6Ooonn3wSP/7xj7F582aMjIxgZmYG+/btw44dO7Bjxw68/vrrRZ9bMqpIEkIIIYQQ\nQpaVmYUZHHzlIELxEELxEADg4MsHcWXflUVXJs+ePYsjR46gt7cX1113HQBgZGQEbW1tcLvdGBkZ\nwZ49exK+x2QyYWBgAGfOnMH58+exdetWjIyMYGhoCBzHob+/HwBw5swZ/P73v0dNTQ2OHTsGAOjt\n7cVdd92F+vp6fO1rXwMA3Hzzzbjvvvtw+eWXw+l0Yu/evXjvvfeKOq9kFCQJIYQQQgghy8qobxRW\nk1UJkQBgMVkw6hstOkj29PRg586dAIBgMIhAIACO43DzzTfj+PHjGBkZwY033pjyfcPDwzh+/DjO\nnz+Pb3zjG3j66afxiU98Ajt27FC+5vrrr0dNTc2Sx3D06FGcOXNG+f/z8/MIBoOor68v6tzUaGkr\nIYQQQgghZFnpbe5FVIgmfCwmxNDb3Fv0z66rq1P+9+7du/HTn/4UAwMDGB4exsjICN54442Upa3A\n4hLWkZERvPXWW7jmmmvg8/lw7NgxDA8Pp/3Z2YiiiD/84Q84ffo0Tp8+DbfbrWmIBChIEkLIsiCK\nIqLRKOLxOARBgCRJlT4kQgghpGJW1q3E4RsOo8Zcg0ZbI2rMNTh8w2HNN9wZHh7Gww8/jD179mDL\nli147bXXYLPZ0NTUlPK1l156KU6cOAGj0Qi73Y7NmzfjqaeeSlkGm05DQwMCgYDy/z/96U/jscce\nU/7/6dOntTkhFQqShBCiU5IkQRAERCIRRCIR8DyvLLHx+/3w+/0IBoPgeR6RSASxWIxCJiGEkGXj\nwMYDGPvKGI7eehRjXxnDgY0HNP8dw8PD4DgOe/bsgclkgsPhwOWXX658/qGHHsIrr7wCALDZbHA4\nHMqy2OHhYQQCAVx88cVL/p7rrrsOL730krLZzqOPPopTp05h06ZNWL9+PZ588knNz82Q5wUDXV0Q\nQgjjRFGEIAhKKDQYDACAaDSq/G/5uV/emlz9dQBgMBhgNBphMpkS/jUYDMp/hBBCCEvee+89DA4O\nVvowqkqGv1lOL/K02Q4hhOiAJEkQRRHxeByiKAL4OAzKn1eTg2C6QCh/rRxIk0MmgJSAKf9HIZMQ\nQghZHihIEkJIFUtXfSw2zGULmcDHoVUQBMRisYTPzczMYMWKFbBarQkhUw61FDIJIYQQfaAgSQgh\nVWap6mOpZQuqk5OTaG5uhtFoTAmZABKql+mqmYQQQgipDhQkCSGkShRbfSxHUFNXH5PJS2YFQUA8\nHqe+TEIIIaSKUZAkhBCGydXHWCyGc+fOoa+vr6zVx0LIVdJk1JdJCCGE6AcFSUIIYVBy9REApqam\ncOGFFxb8M9OFM60V+vPz7ctMPhc5YFJfJiGEEFIeFCQJIYQRle591ILBYCjJHMpsVUf598Xj8SX7\nMs1ms/I3pZBJCCGkWp06dQrPPvssHn30URw7dgxWqxW7d+8u6zFQkCSEkAorxc6rmZS6KlmqILnU\n71T/q5bclxmNRlO+l/oyCSFk+ZqZAUZHgd5eYOXK8v1eQRBgMpkK+t54PI7t27dj+/btAIBjx46h\nvr6+7EGyet7mJoQQHZEkCYIgIBKJIBKJIB6PA0DJev7KFYoqESSzkc9bvfRVvQTWYDBAFEVEo1GE\nQiEsLCwgEAhgfn4ebrcb09PTWFhYQDgcRiwWU6rFLJ0jIYSQwjz/PNDTA1x11eK/zz9f3M/74Q9/\niEcffRQAcN999+GKK64AAPzud7/DLbfcgvr6enz1q1/FJZdcgjfeeEP5PkEQ0NfXB0mS4PP5YDKZ\ncPz4cQDAnj17cPbsWRw6dAi33norLrvsMtx66604duwYrr32WoyOjuLJJ5/Ej3/8Y2zevBkjIyOY\nmZnBvn37sGPHDuzYsQOvv/56cSeWAQVJQggpI3njnEgkgmg0qlQI9bLMkrUgmU1yyDSbzQlB0+v1\nwu/3IxaLIRwOIxgMIhgMYn5+Hn6/H/Pz80rIjEajFDIJIaSKzMwABw8CoRDg9y/+e/Dg4scLNTw8\njJGREQCLS0+DwSBisRhGRkawZ88eLCwsYGhoCO+++y4uv/xy5ftMJhMGBgZw5swZ/P73v8fWrVsx\nMjKCSCQCjuPQ398PADhz5gyOHj2K51WJt7e3F3fddRfuu+8+nD59GsPDw7j33ntx33334eTJk/jV\nr36Fz3/+84WfVBa0tJUQQkpMD72PuaqmILkUOWimW3okSRIkSVqyL1MOpdSXSQghbBkdBazWxQAp\ns1gWP17oEtdt27bh7bffxvz8PGw2G7Zu3YpTp05hZGQEjz76KEwmE/bt25f2e4eHh3H8+HGcP38e\n3/jGN/D000/jE5/4BHbs2KF8zfXXX4+ampolj+Po0aM4c+aM8v/n5+cRDAZRX19f2IllQEGSEEJK\npJy9j6zQU5DMJpfNf+S+zHTfS32ZhBBSWb29QFLbPGKxxY8XymKxoK+vDz/72c+we/dubNq0Ca+9\n9ho++ugjDA4Owm63Z+yL3LNnD/7zP/8T4+Pj+Ld/+zf88Ic/xLFjxzA8PKx8TV1dXU7HIYoi/vCH\nP8Butxd+MjnQ39vhhBBSQeXufSTsKaYvc35+HoFAgPoyCSGkxFauBA4fBmpqgMbGxX8PHy5+w53h\n4WE8/PDD2LNnD4aHh/Hkk09iy5YtS77+X3rppThx4gSMRiPsdjs2b96Mp556Cnv27FnydzY0NCAQ\nCCj//9Of/jQee+wx5f+fPn268BPKgoIkIYRoQO+9j7nSW0VS63NZqi9TDpnUl0kIIaV34AAwNgYc\nPbr474EDxf/M4eFhTExMYNeuXWhvb4fdbk+oKqo99NBDeOWVVwAANpsNDocDO3fuVH5OIBDAxRdf\nvOTvvO666/DSSy8pm+08+uijOHXqFDZt2oT169fjySefLP7E0jDk+eJDr1SEEPI3mXofSxUcT5w4\ngV27dhX889UBt1TOnj2LFStWoKWlpWS/o1ycTiesVitWr15d6UMB8HFfpvy/k1FfJiFkuXvvvfcw\nODhY6cOoKhn+Zjm9aFCPJCGE5EnufZSXrZart02u9hXye3ieh9vthsFgQG1tLWpqalBTU6P5hj96\nq0iypNi+zFAohLq6OlitViVgyrc/BU1CCCH5oiBJCCE5kHsfBUEoS/UxHaPRCFEUcw5/oihidnYW\nTqcToihi9erVEEUR8/PzmJycRDgchiiKsFgsqKmpSQiYNTU1BQ1KpiBZGfL9MN39Ub49zp07h76+\nPtjt9oSvS7f5j3pZNoVMQggh6VCQJISQLCpVfUwn15AWDofhcrkwOTmJtrY2rFu3DvX19YjFYhBF\nMeXYY7EYQqEQeJ5HMBjEzMwMQqEQBEGA2WxOCJdy2DSb0798UJBkj/r2lvsyZfJtJd/P5Y+pv0e9\nXFZdyaSQSQghyxsFSUIIScJC9TEduSKZjiRJmJ2dBcdxiMVi6Orqwq5du3KqKlosFlgsFjQ2NqZ8\nLh6PIxQKKUHT4/EgFAohHo/DZDLBbrcnVDJFUcx4jKTyku/D2SqZQP7zMuWASX2ZhBCifxQkCSHk\nb+SqTDgcxocffogNGzYwESBl6ap9kUhEqT62tLSgv78fDQ0Nmv1Os9mMhoaGtD9TEAQlZIZCIfj9\nfszNzWF6ehpOpxN2uz1lyazVamXm75kLPVVXCzkXreZlpqtmEkIIqW4UJAkhy1q66qPJZEIgEGDu\nYleuSEqSBI/HA47jEAqF0NXVhaGhoYzLTfO1sABEIkBDA2CxZP46k8mE+vp61NfXKx8bHR1FbW0t\nVqxYkRAyp6enEQqFEIlEYDAYlJCpDpo2m42pvzlLx6IFrXfszaUvU35zRv27JUlKqGRSXyYhhFQn\nCpKEkGVHXq6XqfdRPWaBJZIkgeM4zM3NobGxEX19fWhqasr5+3O5OP/Tn4x4800TDAYJ9fXA3r1x\nNDfnfozyHESj0Yi6ujrU1dWlfI0oiohEIspy2dnZWSVkAouztNR9mTU1NbDb7ZrvMLsclSugFRoy\nZdSXSQgh+bvjjjtw7bXX4rOf/WxZfh8FSULIspFr7yNLF6qSJMHn84HjOHi9XtTX12PHjh2wZCsV\nFmh21oA33jBizRoRZjPg9QL/7/+ZccMNqcsWM8nlb2c0GpWA2NramvA5SZKUkBkKheD1ejE+Po5w\nOAxJkmC1WlN2ly3FGBM9YuXNEerLJISwJBqdQTg8Cru9F1brSk1/tvx8Jr9GCYKQce+CeDyu2cqi\ncqmuoyWEkDwtVX1kVSwWw/j4ONxuN+rr6+FwOGAwGNDe3l6SEAksLmk1mQD5daypCZicBCQJyPVP\nVeyurfKyV7vdjpaWloTPSZKEWCwGnucRCoUwPz+PqakphEKhhDEmyX2ZhYwx0SuW7/OyXPsyJycn\nEQwG0dvbm/C96uWy1JdJCMlmaup5fPDBQRgMVkhSFAMDh9HefqConzk6Ooq9e/diaGgIb7/9Ns6c\nOYP7778fR48exRNPPIHLL79c+do77rgDdrsd77zzDi677DJ85zvfwZe//GX8+c9/RiwWw6FDh3DD\nDTdgdHQUt956KxYWFgAAjz/+OHbv3g1JkvDlL38Zr776KhwOB6xWa1HHni8KkoQQXWJ159VsJEnC\n/Pw8nE4nAoEAOjo6sH37duWFYXx8vOiqUrY+ufp6CaIIxGKLvZEejwGrV+ceIoHSjv8wGAywWq2w\nWq1oTrPeNtsYE5PJlBAulxpjokesVCSLoa5myqFRfqMgefMf6sskhGQTjc7ggw8OQhRDAEIAgA8+\nOIiWliuLrkyePXsWR44cwc6dO2EwGDA0NIQf/ehHab/W5XLhxIkTMJlM+OY3v4krrrgCzzzzDHw+\nHy699FJceeWVWLVqFV599VXY7XacPXsWBw4cwKlTp/DSSy/hgw8+wJkzZzA1NYX169fjzjvvLOrY\n87F8XkEJIbpXrdXHeDyOiYkJuFwu1NTUwOFwoLW1NW3fWClHa7S1AcPDAt54wwxRlNDcDAwP576s\nFajsHMlCx5jIS22Tl8yy2itbDJYfB/lKflOk2L7MbJVMPf3dCCGLwuFRGAxWyCESAAwGC8Lh0aKD\nZE9PD3bu3Alg8bll3759Gb/2pptuUt4Q++1vf4tXXnkFDz/88N+OMQyn04mOjg7cc889OH36NEwm\nEz788EMAwPHjx3HgwAGYTCZ0dHTgiiuuKOq480VBkhBS9aqx+ggA8/Pz4DgOPp8Pa9aswdatW2Gz\n2TJ+fTlC2rp1Evr6YohEgLq6xaWu+ZA322FNvmNMeJ4Hz/MwGAzweDxVP8YE0EdFUk0UxZxvg1z6\nMuUZqJn6MpM3/6G+TEKqm93eC0mKJnxMkmKw23uL/tnqjebsdnvWFgv110qShF/96lcYGBhI+JpD\nhw6hvb0d7777LkRRhN1uL/oYtUBBkhBSlaq1+ij3drlcLlgsFjgcDqxfvz7nTWrKEdJstsX/ClVt\ngSXdGBNgcbmRwWBAS0uL0peZbYyJHDZZG2OixupxFUK9gUWxcunLXGrzH+rLJKS6WK0rMTBw+G89\nkhZIUgwDA4c133AnH3v37sVjjz2Gxx57DAaDAe+88w62bNkCv9+Prq4uGI1GHDlyBIIgAAD27NmD\np556Crfffjump6fx2muv4eabby7b8VKQJIRUlXJVH9VjLLQQDAbBcRw8Hg/a29txySWX5P2OohYb\n2ZSa3i6cDQYDamtrUVtbm/K55DEmc3NzcLlczI4xqbaAvxSt52JmksuS2XR9mfL3JPdlqpfL6u3x\nQki1aW8/gJaWK0u2a2s6Dz30ELZv347rr78+5XMPPvggvvKVr2DTpk0QRRF9fX34n//5H3zxi1/E\nvn378Oyzz+Lv//7vlSrmZz7zGfzud7/D+vXr0d3djV27dpX8+NUMeb6w6OtViBBSFTJVH9X/au3N\nN9/Etm3bitqMRRRFpfpoMpngcDiwYsWKgoPEX//6V9TV1WH16tUFfb8gCIjFYiUNMpOTk4hGo+ju\n7i7Z7ygXl8sFo9GIjo6OvL83eYyJXNFUjzFJ15dZytvm1KlT2Lp1q25GpRRz+5SDfH0lP39RXyYh\npffee+9hcHCw0odRVTL8zXJ6AqKKJCGEWZXsfSxmGenCwgJcLhdmZmawatUqbNy4MW1Fq5zHVC6V\n3GyHJTTGpPREUWT6b5JrX6b8Bg8AeL1eiKKItrY26sskhDCPgiQhhCms9D7mG9pEUcT09DQ4jgMA\nOBwO9Pf3a1r9qYaQVg3HmI9SnIuWY0zksJlL5bxcS0HLRcseyUpI95wmL4uWzyuXvkyz2awETAqZ\nhJByoiBJCGECazuv5hokQ6EQXC4XpqamsGLFCqxfvz5hB7ZKHFMl6SlIVuq+p/UYE4vFostwobdg\nDHxcZc2nL1Pe+ElGfZlkudPjc0OpFPt6TUGSEFIxrFQf08kW2iRJwszMDDiOgyAI6Orqwq5du0q+\nzK4aQlo1HGM1K2SMidwXGwqFcO7cuYSwWY1jTGT5jP+oFvLS5my0nJcph1bqyyR6YbfbMTc3h7a2\nNro/L0GSJMzNzRU1SoSCJCGk7NTVx/fffx8XXXQRcxcxJpMpJUiGw2Gl+tja2oqBgYGUkRGlZDQa\n0y5zy1W5drikIFkZmcaYAIvB4uTJk2hqatLFGBOg+pe2plNs32e+fZnJQTNdXyaFTFJNurq6lD0K\nyNLsdju6uroK/n4KkoSQsshUfZybm2PyYtBoNCrv6M/NzYHjOEQiEXR1dWHnzp0V2eTDaDQyH9Io\nSLJJDgQrVqxI+Vy2MSaSJMFms6Usl63kGBOZHpevaTlyKJ2l5mVKkrRkX2ZyJZP6MglLLBYL+vr6\nKn0YywYFSUJISS3V+8jqBYgkSXC73Thz5gyam5tx4YUXpu1ZKyd5tiXrKEhWF7m3sqamBq2trQmf\nSx5j4vP5MD4+nnWMid1uL8sbLRQktbVUyASQ8EZg8vdSXyYhyw8FSUKI5ljufcxGkiR4PB5wHAev\n14v29nYMDQ0VNUtSS9Wy2Y6eLPdQrNUYE3XY1CpkVjJ0lQqr51RMX6bBYMD8/DxaW1upL5MQnWHj\n6ogQoguF7LwqV9kqefEUjUYxPj6O8fFxNDQ0oLe3F3V1dWhsbGQmRALVsWy0Go4xV3o6l1LIZ4zJ\nwsICZmdnNRljIqOKJBty6cv88MMPsW3bNurLJERn2LlCIoRUpWKrjyaTCYIglP3iSZIk+Hw+cByH\nYDCIzs5O7NixQ9kx0ePxMFf9q5aKJIUvAhQ/xiR5yWzyGBMKktVBvo3SVaKpL5OQ6kZBkhBSEK3m\nPqbbHbWUYrEYJiYm4Ha7UVtbi+7ubjQ3N6ccN4uhTYvNdkp98UVBkuSi0DEmBoNBCZYLCwsIBoNK\nVVQPwUKPQRLI/LyjVV9mcjUz2+8khGiHgiQhJGel6H2Ud0ctNb/fD47j4Pf70dHRgW3btsFqtVb8\nuPJRDZvtUJAkxVpqjEk4HFZ2l/V4PJiens44xkTe/KdaQoUeg2ShzwfF9mUmb/5DfZmEaI+CJCFk\nSVpVH9ORl7aWQjweV6qPdrsdDocDGzZsyHnJbTEzG0uBxn+Q5c5oNKK2tha1tbWYmJjABRdcgJqa\nGgCJY0xCoRDm5uaUWZksjzFR02OQLEXrQj4hU/4Y9WUSoj0KkoSQtMq182opgmQgEFB2Xl29ejW2\nbNkCm82W189gcWkrVSTLT0/nojfpwoEcENN9bS5jTNR9meUaY6KmxyApimJZ/465bP5DfZmEaIOC\nJCEkQSmrj+loFdgEQcDk5CRcLhcsFgscDgcGBweLWnLLWmgr9pjKdRGkl/BFF41sy2eznVzGmMgb\n/5R7jImaKIq6u9/Ju/SyolR9mXq73QjJBQVJQkhF5z4WW5EMBoPgOA5zc3Nob2/HJZdcArvdXvRx\nsRgkq6HaRxdTpFy0qt6px5g0NTWlfH6pMSbJu8vKO8wWSm8VSdaCZDb59mV+8MEHuOiiixKqltSX\nSZYTCpKELGPlrj6mU0iQFEURU1NT4DgORqMRDocDAwMDml6AsRgktTimUo9MqIawS/ShXOM/Sj3G\nRO+qKUhmky5k8jyfMPtU3ZeZjPoyiR5RkCRkmalk9TGdfMZ/8DwPjuMwMzODVatWYePGjaitrS3J\ncbEaJGn8ByGLWJgjqcUYE3XYZO05RwuVmBNcTsm7xaaTb1+mHDBpySxhHQVJQpYJFqqP6Sw1ZkMU\nRczMzIDjOEiSBIfDgf7+/pJfmLAYJGmzHUI+xno/YS5jTORK5szMjBI4T548WfVjTNTKvdkOi4rt\ny1Qvl6W+TMISCpKE6Jj8LmggEIDZbE5YRsPKC1CmMRuhUAgulwtTU1NYsWIFBgcHUVdXV9bjYm2O\nJIvhNpnegqSezkWPWHkey5d6jElbW5vy8ZMnT2L79u1KyMw0xiR5uSxrY0zU9LK0tVRy6cuUQ6a6\nCi9JEvVlkoqjIEmIDiVXH99//31ceOGFaZdfVZrJZEI4HAaweNxy9TEej8PhcGDXrl0VuQhhMbRV\nQ0irhmPMFV2EsU+Pt5F62WsySZIQjUbB8zzTY0zU9Boky1ERz3fzn+Svo75MUmoUJAnRiWy9j2az\nmblQJDMajYhGo/jrX/+KyclJtLS04KKLLqp46KUgWZhqOEZCWJTL48ZgMMBms8Fms+U9xsRsNidU\nMUs5xkRNr0EyHo8nbLRTblrMy0xeMkt9mSRfFCQJqXK59D6azea0vReVJEkS5ubmcP78efA8j/7+\nfgwNDVX0hVmN1SBZDShIEpK/YseZsDbGRCaKIqxWa9E/hzWsB+Rc+jLl5bLp8DyP5uZm6sskWbFx\nxUYIyUt6/U0rAAAgAElEQVS+O6+y1O8XjUbhdrsxPj6OpqYmdHV1wefzoaurq9KHloDFIFkN6CKD\nkMJoNRczk1zHmIRCoYxjTNRhM9cxJqwHrkJVuiJZjKWWzEYiEfz1r3/FxRdfnLJkVq5apqtm0pLZ\n5ac6HwGELFOF7rxqNpsrGiQlSYLX6wXHceB5Hp2dnUr1MRAIYG5urmLHlgkFycLQ0lZCClPqIJlN\nPmNMJicnlxxjYrValdclvQZJvZ6XwWCAIAiwWCwp55dLX2a2HWYpZOoPBUlCGKfF3MdKVSRjsZhS\nfWxoaEBPTw+ampoSjpvVwKbFzMblSG9BUk/nojd6u20qGSSzKWSMSSQSUfo5w+Gw8rxQzWNMklVz\nRXIpmc4tl75MOWRm68tUh0zqy6xu+nwEEKID6vAoXzAV+o5ephEbpSBJEvx+PziOQyAQQEdHB3bs\n2JGx14alZbd6Ju+IOzU1lTI+QMuLIT0FSbqwIeXEapDMJtMYE2DxOSccDuP999+H0Wis+jEmyfRa\nkQQW3wQu5HUh177MTCFT/s9sNisBk0Im2yhIEsIQLaqP6ahHbJRKPB7H+Pg43G43amtr4XA40NLS\nsuRxU5AsLXVPanNzM1atWoVYLAae55ULO/mCSL6gU/9byIUSveizRy/hXs+qMUhmIy97NZvNWLNm\nTcI4k3RjTCYmJhAKhZgdY5JM7xVJLTZaUstnXqZc0VZ/r3q5LMdxaG9vT9vvS8pLn48AQqqMltXH\ndErZIzk/Pw+n0wm/34+Ojg5s27Ytrx36KEiWht/vh9PpRCAQUHpSs1Wm4/G4clEn7+jI87wyNkC+\noFNXD1i6qCNL01vA19v56C1IytJV7rQcYyL/V+5QJwiCLnejBcofkvOdl/md73wHX/rSlzA0NFS2\nYyTpUZAkpEJKVX1Mx2QyaTr+Ix6PY3JyEi6XCzabDQ6HAxs2bCjouPW0FLLSBEHA5OQkOI6DzWZD\nd3c3WltbldtFvs+lu53MZjMaGxvTvsOrvqgLBoOYnp5WLuosFktKFZNuT/bo7TbR2/kA+g6S+ZxX\nrmNM1G96JY8xSV4yq3V1DVh8HaytrdX857IgFouhrq6u0ocBIH3I9Hq9WLFiRaUOiahQkCSkzEpd\nfUxHq6pfIBAAx3Hwer1YvXo1Nm/eDLvdXtTP1FtVoRySw2AoFILT6cTMzAza29s1uV3Uso0NkJfJ\n8jyPQCCAqakp8DyPt956CxaLJWW5bE1NTVVdLOslsGR6A6Fa6e18AP0GSVEUNV29UKkxJsn03CNZ\niqWtWqIgyQ4KkoSUQTmrj+kUs7RVEARMTU2B4ziYzWY4HA4MDg7q7iIuE9YuWNW7yc7NzcHpdCIe\nj8PhcKC/vz+nC1Etz8lisaCpqSmhcnDy5Els3749oZLp9/sxOTmZ0AOlDpe1tbXMbbTB0u1OErH2\nuNSCXoNkOW+rpcaYhMNhZQl/vmNMkum9R5LlcwsGg2lvY1J+7N5LCNGBSlQf0ylkaevCwgI4jsPs\n7Cza29uxadOmhM0SlgN52S1LF6ySJOH8+fOYmppCU1MT+vv7c35Ble975aiyZVueJm+0oQ6ZExMT\nCIfDaXdzrK2thc1m0+VFdrmwdj8ult7OB9BvkGSFyWRCXV1d2iWbuYwxSe7LjMfjuq5Ishok1ddS\npPLYvJcQUsUqXX1MJ9elraIoYnp6GhzHwWAwwOFw4KKLLlq2Fzcmk4mZizt5U6NgMIhVq1ZlHanC\nOvVGG83NzQmfS97N0ev1Ynx8PCFkJi+X1ctcOpI7URR1d5uz8lyjtWq4nXIZY6JeLsvzPLxeL3ie\nh91ur+oxJunEYjFmX18oSLKFgiQhGmGl+pjOUkGS53m4XC5MT09j5cqV2LBhQ9k3EWCxwmA0GiEI\nQsXemRVFUdk8x2q1oru7G6FQCF1dXcy+yBdrqd0cI5GIEjLlCzp5Ll3yBZ1cyWTtflUJLD6+iiFJ\nUlVfqKej1yBZ7X3G6mWvaqdOncLmzZshCEJOY0zUS/hZr2Sy3P/J8zwzGwERCpKEFEWuPi4sLIDn\neTQ2Nla8+phOumMRRREzMzPgOA6iKMLhcGDt2rUVuZCRgy5rS2mMRiNEUSz77w2FQuA4DtPT01i1\nalXCsuKxsbGKHBMLDAYD7HZ72o2E1FUDeUYmx3GIRCIAALvdnhAwl+p/ImzTWzAGoIy20BM93k4y\nSZJgMplgNptzGmMSCAQSdrxWj1Wq5BiTTFi93ebm5lL+1qRy2Li3ElJlkquPfr8fc3NzKcv0WBQO\nh8FxHKamptDW1oZ169ahvr6+osdUqcC2lHIelyRJyuY5sVgsY7BXb7ZDPqauGrS2tiZ8ThTFhEpm\ncv9TcsisqalR5sPp5W+ttwt6WtpaHViubGkh232wWsaYVBuPx5Oy/JhUDgVJQnKUrffRarVqOqdR\na/I7o3/84x8Ri8XQ1dWFXbt2MfMCr9V4Eq2VI0jGYjG43W6Mj4+jsbERa9euTbutvcxgMDAZulmm\n3vY/WfImG9PT0+B5HtFoVJl/J4piQtAsdFxApVXjMWdCS1urg96DZDFYGWOSjPU3zzweT8qbhaRy\nKEgSsoRceh8L2RW1HCKRCFwuFyYnJxGPx5cMKZWyHINkIBDA2NgY5ufn0dHRkfPmOcVWJMu1a2u1\nyLbJxtTUFHw+H5qamhAKhZQZmbFYDEajMe1yWVYrBnq7zfVWYQX0GST1eE5A6R9P+Y4xCYVCiEaj\nBY0xScbyjq0AVSRZw+49hZAKynfn1WLmNGpNkiR4PB5wHIdwOIzOzk4MDQ3h1KlTzDaoy7ujskbr\nICmKIqampuB0OmGxWNDd3Y0NGzbkdUFMFcnyMRqNsFqtaQdfi6KoVDFDoZCywYYcMtUXceqKQSXp\nKXhRkKwOeq1IVvK2ynWMSbpl/OnGmCTves16kPR6vRQkGcLuPYWQCih051Wz2VzximQ0GoXb7cbE\nxAQaGxvR19eX0JchV/1YfFGXd0dljVYBV92Xmrx5Tr5Y7SddboxGY8aLOUEQlAs5nufh8/nA87yy\nLC25H7O2trbkF256q0jqMXTp8ZxYfc0pFoubwwGJKyySZRpjIu96Lc/vNRgMiMfjymgT1u6TXq8X\nDoej0odB/oa9RwEhZabF3MdKLc2UJAk+nw9OpxM8z6OzszPjEkk57MqbiLCE5aWthR6XXBl2Op2I\nRqNwOBzYvXt30S/K1bI0VY8Vo1yZTCbU19en3cRKDpk8z4PneeViTr3BRnLQ1OKCVW+3h97OB9Bv\nkNTbOQGLVbtqC8iZxpgAifN7Z2dnIQgCzp07p4wxsVgsCZXMSo4xoaWtbKEgSZYtLec+lvuCJhaL\nYXx8HG63G/X19eju7kZzc3PW42A1rAH6Wtoaj8fhdrvhdrvR0NCACy64IO2OfeU8pnKTw64eLvS1\nDu3ZQqZ6gw15hIl6F8d0lcxqu5jVil7uX2p6DJKiKOryPsr68s98qef3xmIxWCwW9Pb2AmBvjAkF\nSbbo51FASA7k6mM8HldCFYtzH9ORx4xwHIdAIICOjg5s37495wojS32cyVgNufmEtkAgAKfTCZ/P\nl/dtk+8xsV6RrJaq6VLK/ZyQbYMNeamZelQAz/MpF3Lqizn1BbzegheN/6gOel7aqsfzAlJDMmtj\nTDweT9q+dVIZFCTJsqBl9XGp36P1z4zH40r1saamBg6HA62trXn/HlbDGsBuj+RSQVLePIfjOJhM\nJnR3d2P9+vUlvcCths129BIkWWI2m9HY2Jh212V1tSAYDCZUCywWi1IdiEQiWFhYQE1NTdUHFr0F\nY4CCZDXRW0VSLRaLwWaz5fz1+Ywx8Xq9Cf3ihYwx8fl8VJFkiD4fBYSg/NVHOXRo9aI5Pz8PjuPg\n8/mwZs0abN26Na8n92SsjigB2A25mYKkevOclStXYuPGjWk3NyjnMeWqXBffFCTLJ9uFXCwWA8/z\n8Hq9iMfjOH/+PMLhsBIyk5fLVkvIpDmS1UGvQVKv5wUshr90S+8LUcwYE3m80ujoKKLRKAYHB+Fw\nOBCNRmG32zU5PlI8CpJEd8pVfUwmb2ZTzIuLIAiYmJiAy+WCzWaDw+HQrMLFalgDFo8tFotV+jBS\nmEwmRKNRAImb50QiETgcDuzatavsFxPVUO3TW6WomlksFjQ1NcFsNmNhYQEbNmwAkNr35Pf7lQs5\nSZJgtVrTbq7BStChimR1EASByQ3eiqXnimS5zi3XMSYejwdHjx7FI488gpmZGXg8HnzmM5/B2rVr\nsXbtWjQ0NODxxx+H3++HwWDAF77wBdx77704dOgQnn76aaxcuRIA8N3vfhfXXHMNAOB73/seDh8+\nDJPJhEcffRR79+4FAPzmN7/BvffeC0EQ8PnPfx4PPPAAAOD8+fPYv38/5ubmsG3bNjz33HOwWq2I\nRCK47bbb8Pbbb6OtrQ2/+MUvlN7S5UKfjwKy7LDQ+ygHyUKqhsFgEBzHwePxoL29HZs3b9b8HTcW\nRpRkwvLS1lgsBqfTCZfLVZLNcwo5JlraSvKVHLyy9T3JOziqQ+bExATC4XDCmAB1NTN5Fl2pUY9k\nddDrZjuCIFR8LmypxGKxiodk9RiTm266CTfddBOAxZB7xRVX4JFHHsFHH32Ejz76CK+//jpqamoQ\ni8UQjUbxyCOP4KqrrgIA3Hffffja176W8LPPnDmDF154AX/5y18wPj6OK6+8Eh9++CEA4Etf+hJe\nffVVdHV1YceOHbj++uuxfv16fP3rX8d9992H/fv346677sLhw4dx99134/Dhw2hpacFHH32EF154\nAV//+tfxi1/8orx/rAqjIEmqWqWqj+nkG9REUcTk5CRcLhdMJhMcDgfWrVtXsmM3mUyIRCIl+dnF\nYrFaGgwG4Xa74ff70dfXV7LNc/KlRUgrdTVHT0FSL+cB5F4pVu/g2NzcnPA59ZgAuedpfHw8IWQm\nL5ctRcjU49JWQH/VfL0uAdV7RZLVkOz3+9Hc3Iyenh709PTgU5/6VMLnJUnCP/zDP8Dtdmf8GS+/\n/DL2798Pm82Gvr4+rF27Fm+99RYAYO3atbjgggsAAPv378fLL7+MwcFB/O53v8PPf/5zAMDtt9+O\nQ4cO4e6778bLL7+MQ4cOAQA++9nP4p577tHlaols9PkoILrGQvUxnVyD5MLCAlwuF2ZmZtDe3o6L\nL7644OH0+R4fz/Ml/z2FYCVIiqKI6elpOJ1OmEwmNDU1oa6uDn19fZU+NAWr1Vs1vQRJPV0MaHV7\nqENmS0tLyu+IRCJKyJTHl8gDz+12e0ol02azFfR3Xm4Xa9VKr0FSr+cFsB2SPR4PWltbM35+bGwM\n77zzDoaGhvD666/j8ccfx7PPPovt27fjRz/6EVpaWuB2u7Fz507le7q6upTg6XA4Ej7+5ptvYm5u\nDs3NzcrfRP31brdb+R6z2YympibMzc0tq11l2bynEJIGS9XHdLIFSTmgcBwHYPHJqr+/v6zvqLMS\n1tKp9HLNcDgMl8uFyclJrFixQtk8x+PxYGpqqmLHlY683JZlegmSelPq50p5g4x0y/IlSVJ6nuQZ\nmRzHIRKJKN+n7sesra2F1WrNeMwUJKuDIAi6rByzHLaKxXK1P1uQDAaD2LdvH37yk5+gsbERd999\nNx588EEYDAY8+OCD+OpXv4pnnnmmzEesf/p8FBDdkKuP8/PzSu+hwWBg8kkuXZAMhULgOA7T09NY\nuXIl1q9fn7axvBxo19ZEkiTB6/XC6XQiHA6jq6srZfOcSgfcdKohpFXDMS43lb49DAaDEhSTLwRF\nUUyoZM7MzCiVTPXujepqpiAIur2Q1xM990jq8bxYNzc3l3b0RywWw759+3DLLbfgxhtvBAC0t7cr\nn/+nf/onXHvttQCAzs5O5U19AHC5XOjs7ASAtB9va2uDz+dT3jxQf738s7q6uhCPx+H3+5fdaBJ6\nFiZMSq4+/vGPf8SuXbuYDJAyOUhKkoSZmRlwHAdBENDV1YW1a9dW/NhZrkiW89jUcznr6urQ29ub\n0gcmYzFIVsP4DwqSbGK1gqeeJ5dMvXsjz/OYnp5W5mUajUZ4PJ6U5bJLzaEj5aPXwKXXiiTrz9te\nrzclqEmShIMHD2JwcBD333+/8vGJiQmsWbMGAPDSSy9h48aNAIDrr78eN998M+6//36Mj4/j7Nmz\nuPTSSyFJEs6ePYvz58+js7MTL7zwAn7+85/DYDDg7/7u7/Diiy9i//79OHLkCG644QblZx05cgS7\ndu3Ciy++iCuuuGLZPffo71FAqlam3kej0Qiz2cz8jnbycHqXy4XW1lYMDAxoNotJC2azeVkHyWAw\nCKfTCa/XizVr1mDbtm1Lbp7DYpCshpBWDce43FTr7aHevVF9ATk2Ngar1YrGxkZl2PnU1BR4nkcs\nFoPRaEypZMohk5SPXoOkXs+L9essj8eD1atXJ3zs9ddfx3PPPYeLL74YmzdvBrA46uP555/H6dOn\nYTAY0Nvbi6eeegoAsGHDBnzuc5/D+vXrYTab8cQTTyi35eOPP469e/dCEATceeedyrikH/zgB9i/\nfz++/e1vY8uWLTh48CAA4ODBg7j11luxdu1atLa24oUXXijXn4IZFCRJxeXS+yhX+1h7B1CSJMzO\nzsLlcmFhYQF2ux07d+5k8gWG5aWtpQps6t5Ug8GA7u5uDA4O5vyOoclkYi5Ishhu06nW4JJMT+eh\np3fK5SWT2ebQyVXMUCiEiYkJhEIhJWQm92PW1NRUNGTq5X6WjPVgUiiW+wiLwfKOrcBikJTDnezy\nyy9P+/iRZ0am861vfQvf+ta30n5Puu+74IILlJ1d1ex2O/7rv/4rl0PXLbauysmyka36mI7FYkEs\nFtN8tmKhIpEI3G43JiYm0NzcjAsvvBCCIGBiYoLJEAksr4pkJBJRNs9pa2sruDeVxR1SDQYD80FS\nL4FFL+ehR0tdyBuNxowhUxAEpYrJ8zx8Ph94nkc8HlcqoMnLZUv9JqaeAxc9jqoHCzMks0m3tJVU\nFrv3FqJLhe68arFYKl5NkyQJHo8HHMchFAqhq6sLQ0NDypNuIBCo+DFmw3IA0eJCQ5Ik+Hw+OJ1O\n8DwPh8NRdHWYxeqf0WhkvnpBS1vZo7cL+mLOx2Qyob6+Pm3rgRwyeZ4Hz/PweDzgeV5ZypgcMGtq\najS58NZrkNTTfW45YHHllxoFSfawe28hupFv9TEds9lcsZEH0WgU4+PjGB8fR0NDA/r6+tDY2Jjy\nApnrHMlK0esLejwex8TEBFwuF+rq6tDT04OmpiZNzpfVIMnaMSWjIMkmPT0HlCoYZwuZ8Xg8oZIp\nz8mUQ2ZyP2ZNTU3Ob2TpNUjq8XlAj+ckq4YguZxmNFYDdu8tpOppOfex3BVJubrFcRyCwSA6Ozux\nY8eOrL0DrAdJvVlYWIDT6VSa77du3aqMiNEKi6Gt2JBGu7YuT3q7PURRLHswNpvNaGhoQENDQ8rn\n4vG40o+5sLCA2dlZ8DwPURRhNptTAmZyyNRrkNQjvW60AywubWW5R9Lv92fcZZ1UBgVJoiktqo/p\nlKsiGYvFlOpjXV0dHA4Hmpubc7pgoSBZeqIoYmZmBk6nU9k8Z926dSW7oGSxgsNiuE1GQZJNLN6f\nC8XaZidmsxmNjY1obGxM+VwsFlOqmMFgENPT0wiFQhBFERaLRVkeG41GsbCwgJqaGqbOrVB6W04t\n03OQZLkiKUmS8sYMYQfdGkQTWlYf07FYLAiHw5r8rHT8fj84jsP8/HzOoyGSVcsLJssv7pmOTb15\nTmtra8Gb5+hBNYS0ajjG5UZvtwfLz2PJLBYLLBZLxpAp92IKgoDz588jHA4rITO5H7OaQqZeAxfL\nYatY8XicmU0NM6mWx/1yoc9HAimLUlUf0ylFtU/dW1dTUwOHw4ENGzbo+klK3h2VxRdBOXzIf//k\nzXOSNzdarqgiWT56OQ+guoJXLiqxtLUULBYLmpqaACz24w8MDABYvL3UlUy/34/JyUmEQiFIkgSr\n1ZoSMu12O1MhU69BktXXUC2wvGtrJBLJ+w1+Unps3lsI00pdfUxHHv+hhUAgAI7j4PV6S9Zbxyp5\nBAiLLxRyyJUkCePj43C5XKitrUV3d3fOy4uXg2oJN9VwjKR66TEYq0OgwWCA1WqF1WpVgqZMkiRE\no9GE8SXj4+MIh8OQJAk2my1ld1m73V72v5cgCEwFW63E43FdBmSA7TmSHo8HLS0tlT4MkoS9q0nC\npHJWH9MptiIpCAImJyfhcrlgsVjgcDjyGkyfK3nEBqsvniaTCfF4nMngLEkSPvjgA/j9/mUX8PNR\nLRVJwha9BS/WeiSLlc/rhsFggM1mg81mS9l4RA6Z8sY/Xq83JWSmq2SW4r4hiqIuA5deK60A28t2\nPR4Pjf5gEJv3FsIMdXgsV/UxnUIrksFgEBzHYW5uDqtXr8Yll1xS0vX/cuBldfmFXPVjhSRJyuY5\nCwsLWLNmDdavX6+rC0StaREkS/34rZaqKaleegvGWr0BqQ6ZydUbSZIQiUSUkCmPL5H3H7Db7SmV\nTJvNVvDfWa+Bi+WwVSyWz83j8aC1tbXSh0GSsHlvIRVV6epjOvlUJEVRxNTUFDiOg9FoRHd3NwYG\nBspy/KwHSXlpa6VFo1G4XC5MTEygtbUV69atw7lz59DS0sJkiGTporUaQlo1HONyw9J9WAt6O59y\nrGQxGAyw2+1p30yVJAnhcDhhRibHcYhEIsr3JYdMq9Wa9TbQa5DU63kBbJ8bVSTZREGSKFipPqaT\nyzHwPA+O4zAzM4NVq1Zh48aNqK2tLcPRfYz1ESDy0tZKkCQJfr9fqT52dnYmbJ7DWrVUJlcAWXlx\nLbYiGQwG4fV6lZl2peiHoSBJSo3lFoJCVPp8DAaDsitsctVHFMWESubMzAxCoVBCyExeLmu1WnXd\nI1nua4tyYuGaLx2v10tBkkEUJJc5FquP+RBFEdPT03C5XJAkCQ6HA/39/RU7/moIkuUOa4IgKLvj\n2u12dHd3o6WlJeXFitUgaTKZmAqShbzIy0uIx8bGYDAY0NTUhPn5efA8j1gsBpPJlDAwXb4YLPSc\n9RQk9XQerF4gFkJv51PpIJmN0WhUQmYyURQTKpnT09PgeR7RaFTZlEaSpISgabFYqvq2Y3n5p555\nPB709/dX+jBIEnokLFNyePR4PIjFYmhra2Om+piNfPEQCoXgcrkwNTWFFStWYHBwkIm5ghQkP8bz\nPJxOJ+bm5tDe3o4tW7Zk3TxHDmysMRqNEASB2Z3ssonFYnC73XC73cr8zdraWkSj0YTHuiAISrWB\n53nMzs4iFAop550cMJcaM6CXIMn682G+9HQ+egyS1RhOjEaj8tyQXC1yu92IRCJobGwEz/MJb14Z\njcaUSmapVkhojeXln8VgfaQOLW1lU/U9a5GCpas+RiIRzM/PY+XKlRU+uqWZTCZMTk5ifHwcgiCg\nq6sLu3btYuoJnfUgWerjkytfHMdBFEU4HA5cdNFFOb3TLgc21lTDLqnJgsEgnE4nfD5fyhLidAHP\nZDKhoaEBDQ0NKZ+TB6YnjxkAkLIDpLpvSg9BUk/0dnuwftGbL0EQmO2tL5QoiqipqcGKFSvSfk5+\n4yoUCmFiYgKhUEgJmXIFVP0GFishU68VSdbPi5a2sondewzRTLbeR6vVqtl8xlIJh8Nwu90IBAKY\nnZ3FRRddlPaClwWV7EHMhclkQjQa1fznRqNRuN1ujI+Po6WlBQMDA6ivr8/72ChIFk69Ay4A9PT0\naDLiRh6Ynm6Wndw3JVcxeZ5HJBJRZpGFw+GEaibLFyl6p7cKnt7Gf+jtfIDFcJxpFYrRaERdXV3a\nlUSCICAUCiXMyeR5HvF4XKmAJm/8U87nFr1WJFkPkh6PJ+2bEqSy2L3HkKLk2vtY6FiNUpMkKWHX\nuK6uLqxcuRI9PT3MhkhgseIXiUQqfRgZab1rq9/vx9jYGILBILq6uhIqX/miIFkYefnq+Pg4mpub\nsW7durxDfCHUO0Amb87hcrkQi8XQ0NCQciFoMplSlsoW049Jli89BWOWeyQLVehmOyaTCfX19Wmf\nx+SQKb+B5fF4wPO8Eu6SA2ZNTY3m4Yj1wFUo1s+LKpJsYvceQwqS786rFoulJBWqQqnHQjQ3N+PC\nCy9EY2MjgMXleiyGXjWz2YyFhYVKH0ZGWlRMBUHA5OQkOI7LunlOvoxGI5O3L6tBUr18taOjAzt2\n7GBm6ZfRaITFYkn77nE8HlcuBIPBIKanpxEKhSCKIqxWa8pS2VINS8+FnoKK3iqSeqPHIFmKTcqy\nhUz1c4t6TqYcMpOfWwp9A0uvFclYLMbMa0g6PM+X5U1Skh8KkjpQzM6rFoul4ksxJUmC1+sFx3Hg\neT6lp0vGev8hwP4xFlP1U49XWb16NTZv3px2Hlkxxyb33rGEpSApSZKyhPT9999Hd3e3JstXtZat\nR9JsNqftx5QkKad+TPV/5dj9UW+9hYRNegyS5Q5cmZ5bgMWQKQfMhYUF5XlU3uQoOWAuFTJZe87V\nAssVSXVhhLCFzXsMyYkWcx+NRmPFLpTUS/IaGhrQ09ODpqamrNVTFitWanoLknJwcTqdEAQB3d3d\nJRuvQktbM4vH48ruq83NzbDZbNi+fXtFjymbQjbbkXu2rVYrmpubEz6XPCxdPWJA3pgjudrA6gVR\npVBFkm16nLnI0jmZzWY0NjYqK5zUYrFYxlUSFosl5flFr28uUZAkhWDzHkOWFI/HlVBVTXMfJUmC\nz+cDx3EIBoN5Lckzm80UJIuU6/GpN89pbm4uywZHrAbJSo4lWVhYgNPphMfjQWdnp/JYOXHiREWO\nJ1da79q61LB0dc+U1+tFKBRSLorSzcesludLsnzocbMdlubvZmOxWGCxWDKGTPm5JRAIYGpqCjzP\n46233lJGI6mDZjU/v8RiMdTW1lb6MNIKBoNM74+xnFGQrGJazn0s9bKaeDyO8fFxuN1u1NbWwuFw\n5CsNtXEAACAASURBVN1XZ7FYwPN8yY5RC6wHyaXCmt/vh9PpRCAQyLjEuFRYqPylU+6xJOoqsCiK\n6Onpwbp16xIeK3JQY/Xd2XKO/8i2+6O8nC1bP2byfExW/6bF0mNQ0RNa2sqm5F2rJUnCqVOnsH37\ndiVkhkIh+P1+TE5OIhQKQZKklH7vXObvVhrLFcm5uTm0tLRU+jBIGmzeY8iStAyR8pLRbMPiC+X3\n+8FxHPx+Pzo6OrBt27aCZ2Wx0M+5lGoMkurNc2w2G7q7u9Ha2lr2C2pWK5LlCrjq5atNTU1ZR6gY\nDAam3+1nZY5kpuVsyf2Y8s6P8o7L8qB0YHHWbjQaLUs/JskdC/cvLbH8eC6UHoJkMjlsLbUUPxqN\nJowvkfu9JUmCzWZLWS7LwptYLAdJ2rGVXWzeY8iStHzCkWdJahUk4/E4Jicn4XK5lGCyYcOGoo+5\nGpa2VrLnNBfq4wuFQnA6nZiZmUF7e7vmm+fka7kGSfXy1VyXesvHxPJFGsuPg1z6MeWAGQqFcObM\nmZR+THUlk9WLLzWWK9hkMXTp7fZZrlVWg8EAm80Gm82WMWTKlUyv15sSMtNVMstx32A5SM7NzaW0\nNRA2sHmPIWWl1SY2gUAAHMfB6/Vi9erV2LJli6ZVzmrYbId18gZNb7/9NgRBgMPhKNnmOflaTktb\n5TmpY2NjEEUR3d3dKctXs2Gl4pcJ68eXjbof02KxQBAErFu3DkDqoHT1DDuz2Zx2PiYLjy3CPj2G\nLkB/m6MUG7bUITN5qaYkSYhEIinjS+Sdq+12e0ol02azafY3Znn8h8fjoYokoyhIViktn5yLCWjy\nskiXywWLxQKHw1GycQSsLxtlmXqH3FgsVpbNc/LFckVSqzcw5F5hl8uFxsbGgm8HVkO3TG8Xj7Js\nM+zUOz/Oz89jcnIS4XAYoiimVBm0vgDMhd4qkno6F0CfPazV+mZSNqVcrmswGGC329OuDEreuXpu\nbg4cxyESiSjflxwyrVZrXo+TeDzO7CoXr9dLFUlGUZAksFgsiEajeX1PMBiEy+XC7Ows2tvbsWnT\nJtTU1JToCBexGjTSYeWibX5+Hk6nE/Pz88qyyZMnTzIXIgF2b18tQhvP83A6nZibm0NHRwe2b99e\ncK+wfEzFXKSV+r5ZzRXJQmXa+VG9lE2uYrpcrpR+zOT5mKXAwnOSFvR639LL7aNnlVr+udTO1epK\n5szMDEKhUELITF4umylksvpmhtfrRW9vb6UPg6RBQbJKad0jKV/UZCOKIqampuByuWAwGOBwOHDR\nRReV7YmnWl5k5cpppZaIiKKobJ5jtVpTelTljVpYe8Fgtb+00PEf8vJVp9OJeDyOnp4ezR4v8m3I\nquUYJDPJtpRNFMWEKsPk5CR4nkcsFoPRaExZKltbW1twxUBPtwcrb9SR5YfFDYTk3u10b+YnP8eo\nZ/Cqw2ltbS3i8TizG4t5PB6sWLGi0odB0qAgWcW0ulizWCwIBoMZP8/zPDiOw8zMDFauXIkNGzYw\nO2uIBZUKkqFQCBzHYXp6GqtWrcpYJZYrf6wFSVbl2yOZvHy1v79f8wpwsVXSUl+I6ylIlvI81GEx\nuf9H7seUK5mzs7MIhUIQBCFlfp2862O2x7SewpeezkWml8eLTBRF3d1GANsb0qST7TlGnsErP8/E\n43H85S9/Ud7ISq5klnK1xFKoR5Jd1fNoICWTrkdSFEXMzMyA4zhIkoSuri4mNmVhtZqmVs5eTnXV\nKxaLweFwYO3atVn/PmazWbkYJUvLNbSpl6+uWbOm6OWr2bAe1Fg/vlxV8kJ4qX5MOWDK/Zjy/Dq5\nH1P9X6nuh5Wi15CiJ6zvKl0oeWMtPVDP4I3H45idncWWLVsAfBwy5eWyExMTCIVCSshM7seUNycr\nFa/XSxVJRunj0bBMaVmRlINkKBSCy+XC9PQ02trasG7duoyz7CpBDmksXxiVI0iqN89pbGzE2rVr\nU3qzMjGZTLRpUR6yBUlJkuDxeDA2NoZ4PI7u7u6yLPfWom+zlFUdvQRJViUPSZcl92POzs4qy9gi\nkQhqamoQDAaZqDAUQ48b0+gtGLO4BFQL8Xi8omOySiUWiyUEZHXITJa8e7XX60UoFEI8HlcqoMlB\ns9jw7fP5aLMdRlGQJDCbzQgGg/jjH/+IWCyGrq4u7Ny5k8kXAYvFwnyQLGVQCwQCGBsbS9g8J98L\nQVY3tWFVutAmCIKyfLW+vj6vIK+FYoKawWAoedCjIFkZ2foxz507B6vVCrvdntKPaTKZ0s7HZPE1\nANDn0la90WuQ1Ot55dOOk221RPKSfPWIpOTnGbk/M5eQqeWsc6ItCpJVrNgX0kgkApfLhcnJSUQi\nEVxyySVM7uapZjabmZ8lKS8d1Yp68xyLxZKyeU6+WA+SrF0kqoNkKBSC0+nE7OwsVq9ejW3btlXk\nTQ3Wx38A+uv50gO73Z52eZggCMoSNnUlUxRFpR9TffG3VD9mqeltaavezgeAbvvwq61HMldanVe2\nkBmPxzP2fZtMpoQKJs/zaGtrQ0NDA72WME5/jwaSlbwUz+l0IhKJoKurC0NDQ3jrrbeYD5FAcTMv\ny0Wrpa3hcBgcx2Fqairr5jmVOr5SkEMuSy/URqMR4XAY77zzDqLRKHp6eireL1wNu7YS9mS6XUwm\nExoaGtK+Bqj7MX0+H8bHx5UB6enmY+Y7u64QelvaqscgqeceST2eVzkCstlszvg8E4/HlTezFhYW\n8Nxzz+HXv/41IpEIGhoa4Pf78fDDD6O/vx/9/f2wWq34whe+gKmpKRgMBnzhC1/AvffeC4/Hg3/8\nx3/E6Ogoent78ctf/hItLS2QJAn33nsvfv3rX6O2thY/+9nPsHXrVgDAkSNH8O///u8AgG9/+9u4\n/fbbAQBvv/027rjjDoRCIVxzzTV45JFHYDAYMv6O5YqdqzWSt3xeeKLRKNxuNyYmJtDY2IgLLrgg\npb+mGrAcgmTFVE3VQT8ajcLhcGD37t2aXjSxXJEsdNRGKcjLV+XbYnBwkJnHDKujUmS0tJU9hd4e\n2fox5dl16ipmJBJJ2PFRXcnUqh+TtVULxWJ9A7lCUOCqLsk9kuVmNpvR2NiotIg89NBDeOihhwAA\nH3zwAe655x50dHTg3XffxYsvvoj33nsPwWAQDocDfX19eOKJJ3DVVVfhZz/7GT71qU/hgQcewPe/\n/318//vfxw9+8AP87//+L86ePYuzZ8/izTffxN13340333wTHo8H//qv/4pTp07BYDBg27ZtuP76\n69HS0oK7774bTz/9NIaGhnDNNdfgN7/5Da6++mp8//vfT/s7liv9PRqIQpIkeL1ecBwHnufR2dmJ\nSy+9NO2ThcFgqIon/mqpSIZCoby+Jx6Pw+12w+12o6GhoaRBX+ult1piIeTKy1dnZmawZs0abNmy\nBX/605+YCZEA+0tb9RIk9XIeMi3Dlzzo3G63px2Qrt6Mw+fzKeMF5CVsyX1S+bz26C1ISpLE/Gtv\nvqrheqIQej0v1veecDgcuOWWW1I+Pjc3h9HRUUxPT8PtduPll1/GsWPHAAC33347PvnJT+IHP/gB\nXn75Zdx2220wGAzYuXMnfD4fJiYmcOzYMVx11VXKc9hVV12F3/zmN/jkJz+J+fl57Ny5EwBw2223\n4b//+79x9dVXZ/wdyxUFySqW6YVUvaNnfX09uru70dzcnPWF12q1KpsusMxisSjLqliVT9U0EAjA\n6XTC5/Oho6OjpCMjZCaTidkwnu/MRq3Ib7qMjY0hGo2iu7tbWb4qiiJzoY31gMP68S1H5bw9su34\nqO6TCgaDmJ6eRigUgiiKsFqtaedjJr926W0pqB77CfV4ToC+gySr88E9Hk/GHVvb2toQCATwzjvv\nYGhoCFNTU1izZg0AYPXq1ZiamgIAuN1uOBwO5fu6urqUN+8zfbyrqyvl4wAy/o7lioKkTkiSBL/f\nD47jEAgE8g4lcqWP9W2tq2WznWxBUhRFTE1NgeM4mEwmdHd3Y/369WW7MDKZTMyG8XJXJAVBwMTE\nBDiOQ11dXdpKMIuhqNiKJO3aujyxEL4y9UlJkpRTP2ZtbS1EUYQkSbqpTOpxaateeyQBNh5HWmN5\nye7c3Bza2trSfi4YDGLfvn34yU9+krJzurxDeSmV43ewjs17DcmJwWBAPB7H+Pg43G43ampq0N3d\njZaWlrzv2NWwZBT4ePwHyzIFSfXmOStXrsTGjRsr8g4gC8tHMylXj2QoFALHcZiensbq1auxdevW\njFuLs/giwXpQY/34liPWbw+DwQCr1Qqr1Yrm5uaEz0mShHA4nDC3bn5+HidPnkw7HF2LuXXlpMcg\nydqmaSS7WCzG7ExZn8+XNkjGYjHs27cPt9xyC2688UYAQHt7OyYmJrBmzRpMTExg1apVAIDOzk5w\nHKd8r8vlQmdnJzo7O5VlqvLHP/nJT6KzsxMulyvl67P9juWKHuVVTBAEnDx5Eu3t7VkvhHNhsVgQ\njUY1PLrSqLaKZPIuuQ6HA7t27aroO7Usb1hUyqWtkiTB5/NhbGxMuS3Wrl1blRdw1CNJ8lXN1TuD\nwaD0Ura2tipLXvv7+5V+TLmSqR6Objab087HZO0xr9cgSXP/qgfLFUmPx6OEOJkkSTh48CAGBwdx\n//33Kx+//vrrceTIETzwwAM4cuQIbrjhBuXjjz/+OPbv348333wTTU1NWLNmDfbu3YtvfvOb8Hq9\nAIDf/va3+N73vofW1lY0NjbiD3/4A4aGhvDss8/iy1/+ctbfsVyxea8hOTGbzdi5c6cmFwdyjyTr\nqqFyKoddp9MJl8tV8s1z8sV6RVLrY0tevtrb25tS8ag2RqOR+ccBBUlSKupQvFQ/phwwM/VjJs/H\nrETY1muQ1Ns56a03V431ILlp06aEj73++ut47rnncPHFF2Pz5s0AgO9+97t44IEH8LnPfQ6HDx9G\nT08PfvnLXwIArrnmGvz617/G2rVrUVtbi5/+9KcAgNbWVjz44IPYsWMHgMXdYuV+zP/4j/9Qxn9c\nffXVuPrqqwEg4+9Yrti815CcaTUGwGKx5L3TaCWwXE0DFtfrj42NIRAIQBCEsmyek6/lsmtrOByG\n0+nMaflqtWG94qeniy2W/875qOaKZLJc50gmjxRQf7+6H9Pj8SijSwAoo0vU1UyLxVKyv58eg6Qe\neyT1utEOwPbt5fF4Upa2Xn755Rmfm//v//4v5WMGgwFPPPFE2q+/8847ceedd6Z8fPv27fjzn/+c\n8vG2tra0v2O5oiBJACwGyfn5+UofxpJYmjMoE0UR09PTcDqdyuY5Pp8PfX19lT60tFivSBZz+6qX\nr4bDYXR3d1ft8tVsaGlreegleMn0cj7FhuJc+jHlkDk9PQ2e5xGNRhP6MdWVzP/P3pkHyXGW9//b\nc8/O3rvaQ9rdGUkrrVbCh6S1ZLmoin8xxrGgTEIlIEJh+2eHgCuhKBISXMGm7BQFdlUCIZhUpRwT\nDBTYhhR2cIwhBJRUwMgX5meDbcn2zn3s7pw73XP18ftD9TY9587RM/12qz9VKsPs9Xb3293v932e\n5/v0GskxopA0ouiiOWpnZNLpdFOzHRPtMe8InaPWgk0PKaO0USwWEQ6HEY/HMT09XWWec+HCBY1H\n1xyr1UptVLfbGklRFOX0Vbfb3Zf0VZoiOrQLNdrHdylipOvRz3tRWY9Zu3gVBKGqPyaJZBJjmUb9\nMdsRiKaQ1AekD6rJYDGFJN2YQtIEgH7MdrSG9BsMBoMoFotYWFhoap5Dk/BQQntEspN5qHTCnZ2d\nxZVXXtmXFjZEGNFyPdVo/9FPTCFJJ7TM317RSnhZrVYMDw9jeHi47muVSkUWmLlcDvF4HMViEaIo\nyq1LlNFMp9MpXw+jCkkjHpMRI5KCIFD9bMjlcrr3NTAyxrsjLjHUuvn1YrYD/DZqNcidQWWblXYM\nW4hYo/GlQ/MLox2RS3qmBgIBFAoFLC4u4pprrunrooUIN1oWRmrVRvcLU0jSh5GuB02bOgS73Q67\n3d6wHrNcLlfVY4bD4ap6TOJwms1m5XpMvWPUiCSN7/Re4Xme2jlH+sUabS4ZCePdESZdQXOUqhZi\nuDOIB0s+n0cwGEQ6ncb8/DyOHz/elnkOGaMRXzr9pFWkTRRFxONxBINBuFwueL1ejI+PD2RBSVtN\nIsMwVI3HhH5oFF/doqdjYRgGTqcTTqcTExMTVV8TRRHFYhGBQEB+vnEch0qlAovFUpcqOzQ0pJsF\nNc3mLd1iRHEM6EMg6+V+vxShe+aY7IhaN5eeblJSz9kvB05inhMKhcAwDJaWlrC6utrROaK5DpFm\nGm1olEol2X11Zmamb+mrraBNSKoRkex3nZlRMFIkzygYpQ0DEYtEJCobm5N6TBLJ3NraQqFQgCAI\nsNvtdamyLpeLmowJwJjpunoQXN1A83EVCoWBv+9NOoPOmWOiGXrY6bXb7X0RaaVSSTbPmZqawuHD\nhxv2JmsHmltsEGi81kohSdxXOY7D0tISrr76as12g2lzCzYjkoOBtvujF2i837vFaKlujUTXTvWY\nRGCSesxCoQBJkuR6TOU/h8Mx8GtvpPlGEASBunZealCpVKgVkqlUqi6Sb0IXdM4ck7ZR80FNc12f\nEpvNplo9J2kXEQwGwXEcFhcXVREstPe7JBE2Ghdj+Xwev/jFLwaevtqKbt1k+wVtEVITk0FiNJHS\nafTObrdjbGwMY2NjVZ/X1mNubW3JrUsAyBHM2v6YJu3B87zszG4kaK6RTKVSmJyc1HoYJi2gWzGY\nDBSSMkq7kFQjIsnzPGKxGMLhMDweD7xeL8bGxlRbnNAuJMmmAS1CslQqIRQKIRaLQZIknDhxgqp0\nFtqEm2lmY9IpRhJfRkltJaiVBtpOPSYRmcp6TKvV2rA/Ji3vB1qg6Z2pJjSntqZSKbP1B+XQOXNM\n2kbNlykRkm63W7Xf2Q96iUiyLItgMIhUKoW5uTkcO3asL7WWtAtJMj6t03SI+yrLslhcXMTa2hpe\neeUVqkQkQJ+Q7HY8kiRhc3MTgUAAlUqlLgXOXDya6AFJkgxVfzeIekKleU8tgiCA4zi5JpNEMkVR\nlOsxlc8I2uoxBwXNgqsXKpVK12U8/SaVSmF6elrrYZi0wHh3hEnXECFJO3a7HSzLtv39oihic3MT\nwWBQNs85dOhQX3e0aReSWrr0iqKIRCKBYDAIp9OJpaUlTExMgGEYCIJAVQopgUYh2UlEUhAERCIR\nhMNhjI2NYWVlBVarVY5QsCyLzc1NFAqFqr53WtdZmaiHkSKSRjoWQHtjGqvVipGREYyMjNR9TVmP\nmclkEI1GUSwWAaBhf0yHw2G460MwckSS5tRWs0aSbkwhqXPUjkh20gxeK9oVaUrznMnJyZ7MczrF\nZrPJfcJoRAshSa5HLBbDrl27cPnll9dFv2kTbATaxtWu2U6xWJQdb+fn57G2tgaHwwFBEFCpVBou\nHpvVWZVKJVgslroUOD21JOgGM4WYPowmVLQWkq1oVY9ZKpUaPicYhkGxWMRbb71VFcmkVay0i1Ej\nkjQfVzqdxurqqtbDMGkBnTPHpCPUqpdyOBy6iUg2G2etec7CwgJOnjw58Ick7RHJQbrK1qavnjp1\nqqnwoHVxSJtr607CNpvNwu/3o1AoYGlpCcvLy20vVFvVWdW2JEgmkw1T4DweD0RR1P2CX89jr0Xv\n10KJWSOpPQzDwOVyweVy1ZmhFAoFvPrqqxgdHZUjmRzHyf2fa1Nl9ZJSb+SIJM1C0qyRpBs6Z46J\nJnSaMqoVjUSaIAiIRqMIh8MYGhrC0tKSpm6ftAvJfve5VKavOhwOeL1eOX1Vj9Dm2tpo80iSJGxs\nbCAQCMBut/flnDdrSSBJUlUKXCqVQrFYxHPPPQeGYRpGMWlduBgZvd5/tZg1knQjSRIcDkfD2jae\n5+XNqHw+j42NDTml3uFwNOyPScu8Ndp1ItBssmia7dAPnTPHpCPUikjqJbVVGZEclHlOp+hBSPZD\nGJXLZYRCIcTjcUxPTzdMX9UjtKW2KsfD8zzC4TAikQgmJyfxtre9beAW9QzDwOFwwOFwYHx8HMDF\nneSrrroKoihWRTHT6TQ4jpNbDTUy/KFl4WgkjJSia6ToKmA8gSIIQtPjsdlsTVPq26nHVP6z2+0D\nnwdGmncEmtu+pdNp02yHcuicOSaaoJfUVqvVikKhgOeffx6SJGFpaQkrKytUvYhpF5Jqjy+XyyEQ\nCCCfz2NhYUGVXpw0QZuQJMZEr732GpLJJHbv3o0TJ060XYM0yMWQxWKBx+NpWJ+sXDhms1nEYjEU\ni0VIktQwiqn3GiutMcoi2ExtpZtuehQ32owiSJKEYrEob0htbGzI/TGVddvKZwatwohWaL2fzIgk\n/Zh3mgFQ6wFAu2truVyWzVp4nsehQ4fqUuxogXYhabVaezYDEkURGxsbCAaDsNls8Hq9mJycVGU+\n0hZxsFgs1Nwb6XQagUAAhUIB4+PjOHjwoG4Xoa2MPJRRzFgs1rTGiiwg9XoOBoUZkaQXox2P2rWE\nJD3e7XbX1WM2yngoFApy3V+j/pjdPCuMdP/oiWKxSG1rEpOLmELSRIZGISlJErLZLILBIFiWxZ49\ne3Dy5Ek8++yz1IpIQNv2Gu3Qy/iUgn5qakr1VEoS/aMpoql1RJLUnAYCAbhcLvh8PnAch7m5Oc3G\n1E8Yhmna847neXnRuL29jUQigUKhAEmS4HK5VE9/M8oC0khixWg1kgC9EaFuGKQpTauMB+Wzolk9\nZm1/zGbXwWhRYwLNzzeax2byW0whaQDUegHR5EwpCAJisRjC4TBcLldVr0ECzQsjWsdF6Ma1NZfL\nIRgMIpfL9dUNl8xDU0heTP0Mh8OIRqOYnp7GFVdcYYia016w2WwYHR3F6Oho1eekHQHLsuA4DolE\nAhzHoVKpVDVjV/7baWFI+318qULzs9+EHnfTVs+KWnMw0roEgLwhpYxmSpJExTGpDc2OrURImvc6\n3dA5e0wuWTiOQzAYRDKZxOzsLI4ePdrQPIdE1Gh9ANJOu66tjdJXjxw50tcHO3FIpakebtBCkmVZ\nBAIBpNNpzVrYqMEgF/zKdgS1NTWCIMiLRpZlsbm5KUcmGpl4OBwOwy1ejCS+jHQsRqSV2Q4NtFOP\nSZ4XpB6zWCyiXC7j17/+dV0kU4/PZgLNQjKXy9VtApjQB52zx6Qj1H6hDvolLUkSNjc3EQqFIIoi\nFhcXd6z7IjWItD4AaWen1NZ+p6/2MjYtGMSYJElCKpVCIBAAz/Pwer1YXV3V7YKZuEnTMH6r1drU\nKbJcLjdsqm6xWOBwOOToJlk4GjEqoTeMmmZoFERR1O27WVmPqdyQ2t7eRigUwtLSklyTSSKZjRyo\nye+gfZ7SvI5KpVJ1NbEm9EHn7DHRDCLQBhENKpfLiEQiiEajmJiYwMrKStt1j6Se0+Vy9XmU3cMw\nDLULnmaprdvb2wgEAn1PX20FTSnWhH5GJEVRRCwWQzAYhMfjwfLy8kB2YQch8GivcWEYBk6nE06n\nExMTE1VfEwQB2WwWb775JgqFApLJJDiOgyiKsNvt8Hg8VQtHp9NJhWhuBi2iXg2MdCxGRBAEKtpw\nqQlZFzXqowtcLEMgAjOXyyEej6NYLFZlPShTZWl5XlQqFaqyf5SYQlIfmELSAKj5MCICrZ8Plmw2\nW9UqohuxYrfbqXZFBX4ryh0Oh9ZDqUOZ2koa2QeDQVgsloGkr+40Ntoikv0QkqTnZiwWw8zMDI4e\nPUr1xkin0LBI6gWr1QqPxwOn0wmfzyd/3qi+KhwOo1gsytGM2lRZWnf89YqRhKQkSdRvuHQKLTWS\narLTMdntdtjt9ob1mMqsB/K8qK3H1KrNEc0RyWQyabb+0AF0zh4TzeiXc6sgCIjH4wiFQk3NczrB\nZrNR5zBbC+1CslKpYH19HdFoFJOTkzh8+DAVNtukRpIm1BSS+Xwefr8fuVwOi4uLOHXqlOEWXcBv\nU1v1Tu0xtKqvatSKoFnqG4lQDEoQGUl8GamPpBEdaGmvkeyGbgVXq6wHURSr+mPG4/GmBmFkg0rt\ndwXNQjKdTptCUgfQOXtMOkLtiGS5XFbt93Ech1AohM3NTczNzeHKK69UJeqip4gkbZD01Xw+D6vV\nSp2RixEjkpIkIZlMwu/3A4BqUV+axYFRhGQntGpFoIxiZrNZxGIxFItFSJLUMIrZj6gErXOlU4wk\nvmgtf+iFSzEi2Q1KsdjIIEy5KbW1tYVCoSAb0dWmyrpcrq7mUaVSoTYN2Uxt1Qf0rB5NekKtRZvD\n4eg50idJEra2thAMBiEIApaWlnDgwAFVX5Z6ikjSADE0CgQCcvpqNpvF0tKS1kOrw0g1koIgIBqN\nIhQKYXR0FCsrK3WGL93Si5nNIATFpSgkW2G32zE2NoaxsbGqzyVJqlowxmIxcBwHnudhtVobRjEv\n9YbqNG+gdIoRhSRt7ZvUgOf5gZYeWK3WlvWY5HlB6jFJL91OXah5nqe2J3c6ncby8rLWwzDZAVNI\nmlTRS2qr0jxnfHwcBw8eVG3RXIvdbkexWOzL71YLGoSksg9hbfrq+fPnNR1bM4yQ2loqlRAMBpFI\nJDA3N4e1tTXVU5zJmGhdhJpCsj0YhpEXfLUoG6pvb28jkUjIC8ZmtVWtBJZRxBdgnGOh+R7uFiNG\nJMnGDg202pRq5kKtrN9WRjJpTm1NpVKYnp7WehgmO0Dn7DHpGLUWbd0ItGw2i2AwiO3tbezZs2cg\nqZI0iLSd0HKM+XwegUAA2Wx2YNdELWhMbW03Srq9vQ2/3498Po/FxUVcc801fVsk0i7UaB+fHmjV\nUF3Z6y6RSDStrWomUk3owKhC0ojHRPs7tJ16TPLMIPWY29vbyGazGB4erst80Fo4p1Ips0ZSB9B9\nV5gMnHZrJJXmOU6nE0tLS5icnBzYLnG/TIHUZNBCUpm+yjAMvF4vDh8+3PKa0JgiZrVaZUc7Pm7+\nWAAAIABJREFUWmgVJa1NG/b5fAO5F/rZkkQNjCAkabs3CM163QEXn81ksciyLDY3N1EoFMCyLH71\nq191lPZm0n+MKCSNmtqq52NSbjApeemll7CysgKe5+UUexLJJK2OagVmt/WYnZLJZEwhqQNMIWkQ\n1FoI7FQjqTTPmZ2dVc08p1P0EpEsFAp9/zuVSgWRSASRSAQTExNYXV1tq+aBRP5o22WlsUay0f3F\n8zyi0SjC4TDGx8cH7nqrB6FG+/jaQW/HYLVaMTIyUldW8Oyzz+LQoUMN094sFktDwx89L5z1ghGF\npBmR1A88z8PpdMLtdjcsRVLWY2YyGUSjUTlrrVF/TDU3pvTm2sqyLAqFApxOJ1wuF7X9OdXGeHeF\nSU80ivTVmucsLi6qbp7TKWZE8mL6ajAYRCaTwe7duztOX7XZbFS+HGmskVRSLBYRCASwtbWF+fn5\nvtQ/toMZkTTphFZpb7UOkclksioi4fF4qgQmLc3UjYARhSRAbzS/W2iuJeyFnRyQW9VjlkqlphtT\ntTXcbre7I2ElSZLsUKsHfv7zn+PHP/4x8vm83CJKEATcfffdcLvdWg+vrxjvrrhEUeuhrRRoJNIV\njUYxNjbWV/OcTtFLRFLtMRJRHwgEAFxsI7G6utrV9bdarfJuJE3QWCMJXFxs/+pXv0KhUOiLE3Gn\n6EFImuiDZg6RkiRVRSRIM/VisVhl3qH8N4jFtpE2KIwqJI2GEQ2EeoFhGLhcLrhcrroWHaSfLtmc\nymQyTZ2oSYp+s3Orl/fIbbfdhve+9704fPgweJ5HqVQCy7LUra/6gSkkTaqwWCzgeR6vvPIKcrkc\ndu/ejauuuoq6XSE9PFzUFJI8z8vuq+Pj4zh06FDPlt20CjaaxiVJEhKJBAKBAEqlEpaWljA+Pk7F\n/KM94kf7+Ex2huysOxwOjI+PV32NLBaJyEyn0+A4Ts5yaNS2hIb7hjZMIakPjNS7lNCv53OrfrrK\nWsx8Po+NjQ0UCgWIooh///d/Rzwex/LyMpaXl+W1ABGZt912G5588knMzMzglVdeAQDcc889ePDB\nB7Fr1y4AwOc+9zmcPn0aAPD5z38eDz30EKxWK/7xH/8RN9xwAwDg6aefxsc//nEIgoA/+ZM/wZ13\n3gkAWF9fx5kzZ5BMJnH8+HF84xvfgMPhQKlUws0334wXXngBU1NTePTRR+Hz+eRjKpVK2LdvHz73\nuc/15XzSjikkDUKvL2hRFGXznFKphPn5eVUapl/KqCEkWZZFIBBAOp3Gnj17VBX1NAk2JTRE2ohw\nj0QimJycxGWXXYaXXnqpLiVQS2g4T60whaSxabVYVEYxs9ksYrGYXFfVrG3JpYopJE20Qou5Z7PZ\nGtZwS5KEpaUlvPzyy3jttdfwk5/8BBsbGzh58qT8NbfbjY9+9KP45je/iUQigdnZWQDAJz7xCXzy\nk5+s+n2/+c1v8Mgjj+DXv/41otEo3vGOd8gtz/7sz/4M//mf/4mFhQVcddVVuOmmm3D48GF86lOf\nwic+8QmcOXMGH/3oR/HQQw/hjjvuwEMPPYSJiQm88cYbeOSRR/CpT30Kjz76qPy3SErvl7/8ZVx7\n7bWYmJjAxMTEQD0TtMQUkpc4hUIBoVAIGxsbmJmZweWXX45f/vKXA3Vg7QUaXUcJ3QpJZfqqJEk9\npa/2Y3z9RkuBy3EcAoEAUqkU9W1TLBYL1ULNKELSCMcwaFrVVSmjmLFYrGnKG4liGl1kGU1IGu14\njAxNdZ8Mw2Bubg5zc3O4/vrr8eqrr6JcLuPRRx+FIAgIh8M4f/48nnnmGWSzWdx111148MEHm/6+\nJ554AmfOnIHT6cTevXuxvLyMZ599FgCwvLyMffv2AQDOnDmDJ554Aqurq/jJT36Cb33rWwCAW265\nBffccw/uuOMOPPHEE7jnnnsAAH/4h3+IP//zP69ae1YqFdhsNjzwwAP4xje+AUEQkMvlsLKygief\nfLKPZ40O6JhBJj3TiciQJAnJZBLBYBCVSgWLi4tYXl6WH/6kTlILA5FOIEKI1t1sUoPYLjzPy+6r\nY2NjqqSv7jQ+GiOSgx6XJEnIZDLw+/0ol8vwer1YWVlpuBiiaeOCYRgzItlnaLnWRoFhmKZ9LXme\nlwXm9vY2EokECoUCJEmqi2JKkkTVvdgLRhNeRnRs1ftzrBmVSoXa9VMymZRrL61WK7xeL7xeLw4c\nOIDHHnusSkQ+8MAD+PrXv461tTX8/d//PSYmJhCJRHD11VfL37OwsIBIJAIAWFxcrPr83LlzSCaT\nGB8fl4W18vsjkYj8MzabDWNjY0gmk5iengYAzMzM4Ic//CGA326W5fN5KtdX/cAUkpcQSvOc0dFR\nLC8v1zW6BvQjJO12O9VCst2XKcuyCAaDSKVSA61JpVlIDkIgiaIo1z+63W7s3bu3rg5MCUklpcVw\nwYxImhgJm82G0dHRuneSJElVjdQTiQSKxSKee+65qt54yn96EjJGE5I0PSPVwqhGOzRFJGtpt/XH\nHXfcgbvvvhsMw+Duu+/GX/7lX+KrX/3qAEZYzfnz53H+/Hl502t0dBTz8/MDH4cW0DmDTDqm1c7s\n9vY2AoFA2+Y5DocD5XKZ+vxum82GSqWiS2tlEhUOBAIQRRFerxeHDh0a6A47af9BG/1u/1GpVBAK\nhRCLxTA9PY0rrriirTlEm5DsNSLZ77lmCkkTNSDusG63G1NTUxBFEdvb21hbW4MgCLLAZFkWm5ub\nsnEH6XGn/Kdmjzu1EEWR2sV8NxhRdBnxmAD6hWStG2wjSJ0kAHz4wx/Gu9/9bgDAnj17EAqF5K+F\nw2Hs2bMHABp+PjU1hUwmI58T5feT37WwsACe55HNZjE1NSVnRZw7dw7/8i//gieffBI8z2NkZAR+\nvx/33nsv7r77blXOB83QOYNMukK5cFOa59jtdiwtLbVtnqOHHo2AfsapRNnEXuuWKlarFeVyWZO/\n3Yp+RdqIcVEmk+mq/pE2cxvaI5KAcVPCTLRDFEX5PWa1Wpsad5TLZbAsC47jsLm5CY7jUC6XYbFY\nGrYt0UooGC0iaUTRRbPg6gWaU1tTqRS8Xu+O3xeLxeTI3/e+9z287W1vAwDcdNNN+OM//mP8xV/8\nBaLRKC5cuIATJ05AkiRcuHAB6+vr2LNnDx555BF861vfAsMw+D//5//gu9/9Ls6cOYOHH34Y73nP\ne+Tf9fDDD+PUqVP47ne/i9/93d8FwzDyXP/+97+Pq666Cu94xzsQjUbxiU98Avfcc49ch2l0jHdn\nXOIUi0WEQiEkEgnZPKfTiJ1eBBqtZjG1iKIoN7En6ataNbFXQmtqq5pIkoRUKgW/3y9Hfrs1LqJN\nSOqhRtLERG3aacPAMAycTiecTmddVEMQhCrDn2QyCY7jIIoi7HY7PB5PlcB0Op19ncumkKQfIx4T\nQLdATqVSOHbsWNVnH/jAB3D27FlsbW1hYWEB9957L86ePYuXXnoJDMPA5/Phn//5nwEAR44cwfve\n9z4cPnwYNpsNX/nKV+Rr+MADD+CGG26AIAi47bbbcOTIEQDA/fffjzNnzuCuu+7C0aNHcfvttwMA\nbr/9dnzoQx/C8vIyJicn8cgjj1SNa3t7G6Ojo4jH44jFYgAuRlS3trb6eo5ogc4ZZNIVr732GjKZ\nDBYXF3HNNdd0/XLSi5CkfZzEEOLFF1+U7asHnb7aCr0I8W4QRRGxWAzBYBAejwcHDhxoWA/cCbQJ\nyV7H02+zEqOkthrhGIxEr/PWarVieHi4zshMkqSqtiWpVArhcBjFYlFOr62NYqqxCDeikDTS8QB0\nC65e4HkeLpdL62E0pFGN5Le//e267yNirxGf/vSn8elPf7ru89OnT8u9JpXs27dPdnZV4nK58J3v\nfKfucyJMT5w4AZ/Ph/379+OLX/wiPvzhD+O1117D9ddf33RsRsJ4d8YlDGng2it2ux0cx6kwov5i\nt9upTM1Upq9WKhUcPHhQbpZLE0aMSJbLZQSDQcTjcczOzuLYsWNwOp2q/O5BmQC1C+1CjfbxtQMt\nmz4mv6VfGyAMw8DhcMDhcNSZbomiWBXFTKfT4DgOgiDAZrNhaGioKpLpcrnaHqPRhCRNdeRqYdSI\nJGlbQSPpdFp2RaUZSZLwwQ9+UP7/n/rUp/Czn/0Mn/zkJ7GysqLhyAYHnTPIpCscDocqwoBWgVaL\nzWYDy7JaD0OG4zgEg0Ekk0nMz89jbW0Nr732GrU7fkYSkvl8Hn6/H7lcDouLizh16pTqL36jRSSJ\n0OuXWDKCkDShDy2El8VigcfjaWhAp4xiZjIZRKNRFItFAKhrWzI0NFRXk2Y0IWlE0WXkiCTNNZLt\nmO1oDcMwSKVS+OlPf4rXX38dH/vYx3DFFVdga2vLMC2KdsJ4d4ZJzzgcDqpTRgmk/YeWkBq8QCAA\nnuextLSEgwcPygsDmtNHaXVtBX5b/9dqgSVJEra2thAIBAAAXq+3bUOpbui3m2yn9CIkB/FyM4Wk\nST+gbXFmt9sxNjaGsbGxqs9JbTwRmbFYDBzHged5WK1WWVhyHIdSqWQYQWnE1FYjimOAboG8vb1d\nd0/RBnkW3XfffUgmk/jOd76DD33oQ7BarfijP/ojfPOb35SdX40MnTPIpCvUernSXntIIO0/tIDn\necRiMYRCoZY9OWkWklarldqxEZHUaEEiCAKi0ah87g8dOlRX79TPMdEC7WY7gFlfaKI+tAnJZih7\nXNbC87wsMMvlMiKRCPx+PyRJahrF1MMxA8ZrZwJcvF6NrqPeoVVIkvcG7RsS5J783ve+hwsXLuCN\nN97A2NgYhoaGkE6nB7IuoQH6ZpCJ5uhFSGoxTo7jEAqFsLW1JaevtnJfpV1I0hRhU0LGpnzJlUol\nBINBJBKJts692tAmJGkbTy16aE9ioj+U7T/0is1mw+joKEZHR7GxsYGDBw/C5XJBkqSqKGYikQDH\ncahUKlXCVPmPtsW2IAiq1aXTglEjkrQeFzEq1Mt9vm/fPrz++uvIZDKyiATQs8GfXjCFpIFQ66bT\ny807KJFG0leDwSAqlQqWlpZw4MCBtl7gNAtJmhf6SpGby+Xg9/vBsiyWlpZ6ciTuBdqEmx5SR2kf\nXzsY4RiMRDvtP/SEMvOCuMO63e46x0pBEGSBybKs3BtTkiQ4nc46gelwODR5l9MqTnqB1shdr9Aq\n1gqFgm4iwKIo4rbbbsNXvvIVlMtlfOMb38Cjjz6KM2fOUHlu+4Hx7gyTS4Z+R9RICmU4HMbw8DD2\n79/f8Q6TzWZDqVTq0wiNi8ViwebmJhKJBKxWK3w+HyYnJzV9MNMmJGkbTy1GeIka4RiMBq2L325p\ntzbSarViZGQEIyMjVZ9LkoRyuQyWZcFxnCwwy+UyLBZLw7Yl/RR6Zo2kSa8kk0ldGO0AF9/D73//\n+7GwsIDdu3fj1VdfxV/91V/huuuu03poA8MUkgZCzZdrO2YnWtOvxUShUEAwGMTW1hbm5uZw/Pjx\nrlMoaXOWpR2e5xGJRLC1tQVRFHHkyJGGTolaYJT2H8ViUU4RJo3bSesC8l81nPz0EDE10R9GSG1V\n0ut7ltzDTqezbvEtCEJV25JkMgmO4yCKIux2e1XLkqGhITidzp7PrRFFlxEjkjSv71KpVF1EnmZI\nttq73vUuTE1Nwel0GnLONOPSOEqTjiH1h0ardWiGJElIp9MIBAIol8sdpa+2gubUVppQivf5+XnM\nzs5i9+7d1IhIQP+urfl8Huvr68jn8/B6vfB6vXXRjHg8DpZlZWdJ5ULT4/F01B/PFJIm/cBoEcl+\nHo/VasXw8HCd6YckSXLbEpZlkUwmEQqFUCqV5PTa2ihmu4tis4+kPqBZ6Oih9Qe5b8+fP4/Pfvaz\neOutt7C5uYl8Po94PI7f+73fw3/8x39oPcyBQOcsMukKNV9GehGSvUZOBUGQ3Vc9Hg/27dunquU0\n7UJS68hzJpOB3+9HsViE1+uVxfv58+epEm3AReFGkwlVO0KS1PcSR0ifz4epqSkwDINKpQJRFOFy\nueByuep2gHmelwVmNpuV++PVLjSJ2KxdaOnBVfZSwUiC3mg1ksDgU6gZhoHD4YDD4cD4+HjV10RR\nrIpiptNpcBwnm5/VRjFrN5dM0aUPaD6mdDpNfUSSCMn/+Z//QSqVwv/+7/9qPSTNoHMWmXSNWlEA\nh8OBcrmswoj6CxFqnaae1qavHjt2rC+imXYhSepMB7kwE0URGxsbCAQCcDgc8Pl8GB8fr1qM0JZG\nCtBXk9jqXhdFEYlEAn6/Hx6PBwcPHqyrrdoJm83WtD+ecqGZSqXkdDmHwyEvMIvFIqxWq+EiSCba\nYs6n/mKxWODxeBpmg5AoJsdxyGQy8uYSALltCYlyWq1Wapvdd4PR5hzNQlIPEUmyZjp+/DhyuRzW\n19fhcDjg8XjgdDrhdrs1HuHgoHMWmWiOnlqAtCsk+5W+2grahaTNZoMgCAN54VcqFYTDYUSjUUxN\nTeGyyy5r6sxGWxopQJ+QbDQenucRDocRiUQwPT2No0ePwuVyqf53Gy00SZosWWjm83kUi0Vsbm5W\ntS4gEQ23262LyJIRonlGEl9GOha9Ybfbm24ukbYl8Xhc3igkKfK1abJ6ufeNTKVSoVbop1IpXHbZ\nZVoPoyXkOTQ6OornnnsO3//+9/E7v/M7YBgGxWIRN910E06dOqX1MAeCKSQNhloRSb0ISZvNtuM4\n+52+utP4aBaSVqu17+PjOA6BQACpVAp79uzByZMnd9wJpbHHJW1CUnmvF4tFBAIBbG1tYffu3W2d\n436Mh5h+TExMwGq1olQqwev1VrUu2N7eRiKRQKFQkBuw16bL0bLAMQULfRjNbMcIKDeK3nrrLRw6\ndEi+RjzPt7z3a0Wm3W6n7voaYTPpwgUGqRSDyUkJBw5IVEck9ZDaSmqBv/jFL4Lnedx+++3gOA7F\nYhEbGxsD7XGtNXTOIhPNsdvtumhb0UrwEnfKzc1NzM7O9i19tRU092oE+ifYJEmS6x/L5TK8Xm/V\n4qKdcdG2kUFbuq3FYkGpVMLLL78sG+j0O8LeCUqh26p1AYlksCyLWCwGjuPkRc5O9Vgm7WGkKJ4R\naySNhnKu2Ww2jI6O1rXOUt77HMchkUiA4zhUKpUqYar8p8V1N8K988MfWvHDH9pgsUgQRQbXX8/j\n8svpFZJ6cG0lc2JiYgJnzpzB29/+do1HpB10ziKTrlHrgWe327G9va3K7+ontRE/ImACgQCKxSKW\nlpawvLxsLjyaoLaQFEUR8XgcwWAQbre76+gvbdE/gJ4xEQOdN954AyzLYt++fZr32GxEO9kRrRqw\nK10l0+k0IpGIbPajXFx6PB643W7DGXyYNMYIC3sCzZuM3dKJq3Oze1+ZwcCyrNwbU5IkOJ3OOoHp\ncDj6Nif0bh6UzQL/+Z82LC6KsNkAQZDwk5/YsGePgNlZOs0U0+k0pqentR5GS8i9u7W1hXvvvRcf\n/OAHcejQIUxNTWFycpJ6IawmppA0aYjD4aAuItQIEpEUBEEWMENDQ7KBi0lr1Eq9LZfLCIfDiMVi\nmJ6expVXXtlTbR6tqa1ajomI9EAggOHhYezfvx+BQKDrF1a/hXGvC7tW9ViFQkF2lFX2xlMuMpU9\nMY0iPLrFSOLLSKmtRrouBDXEcasMBmW7IiIwy+UyLBZLw7YlvYpAmlNA26FcZmCxAOQQrFaAYYBC\nQaSmhKAWPUQkybzavXs3Lly4gC9/+cvI5XIoFouIRCL4zW9+g0OHDmk8ysGg37vDpCFqRiT1ICQB\nyIvr2dnZvpiLqAGtC4ZeBRvLsvD7/chms1hYWFCtNo9WIalFRJLneYRCIUSj0SoDnXK53NN4+h0N\n6VcfyZ3Mfsgic2NjAyzLolKpVBl+EIHpcrkuqUwFGp8/3WCk1Faam8J3wyCeKaQOu9bVUxCEKjdp\n5QaT3W6vS5N3Op1t3RPEMEivTExImJ0VEY0ymJ6WkEwy2LVLhMdTolYgl8tl3bie3n333bj77ru1\nHoam0DmLTDSHZiGpTF/d3t7G0NAQrrnmGmpfyEQU0fjQ7kawKXsTiqIIr9eLw4cPq7pQpSWNVMmg\nx1QsFuH3+5FMJhuaFPVLqKnFoMfXapGpNPzI5XKIxWIoFouQJEmOYigXmsrzTPM5bhcjHAOB1k25\nbjCikNTqeKxWK4aHhzE8PFw3pkqlUpXBEAqFUCqV6nriNrr/aX13t4vNBtx2WwWPP25HIMBg/34J\nf/AHFUSjFSqPS2/PKhINJ88ki8WC7e3tuppgI0PfLDLpCbVesDS6jdbW3/l8PkiShFgsRvXLmJxL\nGh/a7bjeEkRRRDQaRSgUwvDwMA4cONC3h+WlHJHM5XLw+/3gOA5erxcHDx5sOL/VGE8/F+U0Cd1m\nhh/KtgW1zdftdjuGhoZQLpeRSqU6imLQiF7HXYspJOmFxnpChmHgcDjgcDgwMTFR9bXanrjK+5+Y\nfREhWigUdGv2NTEB/N//W/2eDwTobP9BUtf1cp5r3VlFUcQ73vEOPPvssxqNaPDQt7I1oQKabuJi\nsYhQKIREIoHZ2dmq+rt8Pk9t5JRAoygnWK1WuaF0M8rlMoLBIOLx+MDcby81ISlJEpLJJNbX12Gx\nWLB3715MTEy0vA9pEmqNoH18QHXbglpImuzW1lZVFIPUYtWmytEsCGi/Dp1gJPFlpGMBLgpJPR1P\nszR54LdmX/F4HJVKBRcuXJDNvpq1LdETtKbsZrNZ3UTzCoUCXn31VRw7dkze4LJYLJeUiARMIWk4\naBKAvULSVzmOw9LSEk6dOlX34KM5BZdAu5BsJti2t7cRCASQy+Wann8txqUV/Wj/IYoiYrEYgsEg\nRkZGsLq6Wpea1Qw9CDXax9cKh8MBu90Oh8OBAwcOyJ8ra7EaOUoSgak0+9EaI0XxjHQsRhOSpLee\nESBmXyzLwuPxYGFhAUB9FoOyZZGyFpv8c7vd1F5jGselB6MdgiRJ+MIXvoBvfvOb8jMplUrhc5/7\nHP7u7/5O49ENDlNImjSFuFQO8sWgTF91uVzwer0YHx9vunCgWaQRaB5jo/YpW1tb8Pv9sFgs8Hq9\nOHLkyMAXbjTWSDIMo9qYKpUKwuEwotEodu3a1VWUl/bFNI2LFDVoVYtVKpXkWqx4PA6WZeUFpjKC\n6fF4dJsmpzVGE5JGEV4AnamtvVJbI9kqi0FZi729vY1EIoFCoQBJkppGMbWay7Ru8qVSqboad9rY\n3t7G008/jaeffhovvvgizp49C1EUsXfvXvz617/GSy+9pPUQB4opJA2Gmg8lEu0bxIuhVCohFAoh\nHo9jZmam7fYRtDWJbwTNQpJE/gRBQCQSQTgcxtjYWEeRsX6OiybUuLcKhQICgQCSyaSqLrfdMIgF\nDK2LlX5AUt5cLlfdjjpZYLIsi2w2i1gshkKhUGf2QcSm2s9co4kvoxyLIAiGORbAmEKS5/m2neCb\n1WJLklQVxUwkEuA4DpVKpUqYDipVnubnQTKZ1EVE0mq1Ih6Pg+d5PPDAA0ilUshkMhBFER/5yEe0\nHt5AMYWkAVEr5Y0IyX6208hmswgEAmBZFouLiwNNnxwUNAtJQRCQyWTwzDPPYH5+Hmtra3XF41pA\nY0SyF3K5HNbX11EoFODz+bCyskLti1wt9JB6uxNqmpc1M/tRmn2kUim5ZYHD4agTmP1svK4XjNT+\nw0jHAuivRrId1BDHZMPI7XbXiSRBEOT7v1GqfK3AVOMZQLPgT6fT1AvJkZERvPe978Xx48extbWF\n48ePaz0kTTGFpElTHA4HyuWy6r+XpK+GQiE4nc4d01f1TifOqIOCOIPm83lYLBacOnWKqgWAEeaC\nMk3YarVi7969hp7ntRhBSPabVj0xlS0Ltra2wLKsbDVfKzB3qsOiOQLRKUY6FrNGkn767bhutVox\nMjKCkZGRqs9r++ISgUmeAY3alrR77ml1kQcuprbOzMxoPYy28Hq9SCaTeOihhzAyMgK32y1ndO3a\ntUvr4Q0MOmeSSU+oHZFUi9r01csvv1yVprNa1HJ2gs1mQ6FQ0HoYkCQJGxsbCAQCsNls8Pl8GBkZ\nwYsvvmioxYzWkDYpwWAQo6OjmqcJa4UpJLunVcsCZQSjWR2Wsh6TmP0YRXyZQpJeaH4Pd4tWx9Sq\nL67S8Iv0xiSZDHa7vc5RurZtUaVCZw9J4GJEcnV1VethtITct48++ih+9KMf4cknn8TIyAgYhsGb\nb76Jr371q7j11lu1HubAoHMmmVCBWkKy3+mrJHWU1heY1qmtPM/L9Y8TExM4cuSIHAGRJIm6WkS9\nUqlUEAqFEI1GMTs7i+PHj/e9TQrNmEKyP7SKYDRzk7RYLPL8JItLvZr9GK1Gktb3VjcY7XgAOqN3\nrQy/lJkMyrZFynpsSZIgSRKVx6YH11byXnv88cfxsY99DF6vFydPnsQNN9yAv/7rv8bS0pLGIxws\ndM0gE1VQ6yXrcDjAsmxXPyuKIhKJBILBIBwOB7xe74598bqFCF5aF+1aCclCoYBgMIitrS3s3r0b\nJ06cqGtFYJQFmZZwHIdAIIBUKmXYOt9uMIXkYGlVh5XNZvHWW2/BarUinU4jEonIPfGUPTE9Hg/c\nbjfV89dIdYVGEsXARSFJQ7sbNdGTOG6VyaCsx97c3ATLsvjVr34lu9LWRjG12mjSg5AkFAoFWCwW\npNNpvPzyy7jhhhvw6quv4u1vf7vWQxsoppA0aUo3EclyuYxQKIRYLIZdu3aplr7aCrvdTq2ZDXBx\n93CQ48tkMvD7/SgWi/B6vThw4IBuF160pbGRFiAWiwXZbBbr6+solUrwer04dOgQVWPdCdO19dLB\nZrPB4XBg9+7dVZ+TxaUygkFS5GqNPjwej6btCgi0PRN6wUiiGLgouvppzqcFehKSrVDWY1cqFYyM\njGBxcRHAxWwaYvZTu9HUrG1Jv8hkMtQLSfJe+/3f/31MTU3hXe96Fx588EHceuutyOXmuRLtAAAg\nAElEQVRy2Ldvn8YjHCymkDQgar1kOxGSuVwOgUAA+XweCwsLA43K0Ghmo8Rms/U9fVQURbn+kRgY\n1e5I6g3i3ErTS5xhGGxsbCAYDMJut8Pn82l+nmldWNM4pkuVZnOkldlPrdGH3++X20HVmv24XK6B\nCSJa53s3iKJIXWphL9D2vFYDI803As/zVe7sdrsdY2NjGBsbq/o+URSbpsuT54AykqnGcyCTyVDd\nR1KSJPmeJXWQBw4cwL59+/Diiy/ine98Z507t9ExzhPMRHV2EpJK8eJwOLC0tITJycmBP3Rpj0j2\nM7VV2dh+amqq6wgwjS9L0kuShoWJIAiIxWLY3t7G5uZmVZ2pllgsFiqvHWCmtuqZVkYfyqbruVwO\nsVgMxWIRkiQ17ImptlAyUjooLc83tTDa8RgVnucxNDS04/cpHaIb/Q7lcyAej9eZftVGMXe6byVJ\non5zhWEYvO9974PL5cLs7Cx2796NXbt2wefz4ejRo2BZ1hSSJvqn3xFJkr4aj8cxPT2Nyy67rK2H\nUr+gPSJJBJGaKOvy9uzZ01Njexojf8DF86Z1L0llqvbc3BzGx8dx4MABatK3lKm2tGEKSXpQc7Oh\nVdN1pZNkJBIBx3Fy3Vxt9KLWSbKTY6FxvncDrfdutxhRSBpl00KJGiY7rZ4DyihmIpEAx3GoVCpV\nwpT8a1STTfs5/9u//Vskk0lsbm4iGo3i9ddfx49//GPZ1PDll1+mWgyrzaVzpCYdUyuASPrq9vY2\nFhcXexIvamK327s2BRoEaj0UJUlCOp2G3+8Hz/Oq1eXRFPlTQtq6aAHHcfD7/chkMlWp2r/85S81\nF7dKyCZAv+AqHM6nzqPAF7A4soiF0YW2f9YUkpcWDMM0jV6Uy+WqVgXESZL0w6s1+rhUemIaKboK\nXBSSRhLGRrs+hEql0rc6x1amX8rWRSzLYnNzEw899BB++tOfYteuXdi7dy94nsfZs2exsrKCubk5\n3H777XjyyScxMzODV155BcBFQ573v//98Pv98Pl8eOyxxzAxMQFJkvDxj38cTz31FIaGhvC1r30N\nx44dAwA8/PDD+OxnPwsAuOuuu3DLLbcAAF544QXceuutKBQKOH36NL70pS+BYZimfwMADh061Jdz\np1e0VwEmqqPWg48sBOPxOILBIGw2G7xerybpq63Qur1GvxFFUb4GQ0ND2L9/f10tQy+Q86esmaCB\nfkRyd4IYFZVKJfh8PqyurlbN9X4Lt04hqa39oMgX8R9v/Ae2y9twWB14eeNlXOe7Dvsn9rf186aQ\npAetxRdxkhwfH6/6XNkPjywsOY6DJElwOp1VApOY/RhpcS9JEnUbeL1AY2ZLL9C4waoGWrX9aNS6\n6Atf+AJEUUQwGMTPf/5z/OY3v8Hjjz+O119/HfF4HKVSCWtra3jhhRfw1FNP4fTp07jvvvtw3XXX\n4c4778R9992H++67D/fffz9+8IMf4MKFC7hw4QLOnTuHO+64A+fOnUMqlcK9996L559/HgzD4Pjx\n47jpppswMTGBO+64Aw8++CBOnjyJ06dP4+mnn8aNN97Y9G+Y1GMKSZOGlMtlhMNhsCyLTCaDt73t\nbZqmr7ZCrX6X/abTxZwyrXJmZgZXXnllX1IqtRBs7TCocUmSJJuJ2O127N27t27BqxwTTUKSpLb2\n8vPNiOVjyJQyWBi5GIX02D14If6CKSR1Co3iq1U/vFKpJAtMZXpcoVDAG2+8UdWyRK89MY0WwTOa\n8KKxz6Ia0HZcFosFPp8PLMtidXUV//AP/yB/rVgs4r//+7/x4Q9/GMlkEgDwxBNP4OzZswCAW265\nBddeey3uv/9+PPHEE7j55pvBMAyuvvpqZDIZxGIxnD17Ftdff71c73399dfj6aefxrXXXotcLoer\nr74aAHDzzTfj8ccfx4033tj0b5jUQ89MMlGNXl6o29vbCAQCyOVyWFhYwOjoKJaXl6l66NSih4hk\nJ3WI+XwegUAA2Wx2IA64NAvJfoo2QRAQjUYRCoUwPj7e1mYJjRHJfo1HQrUIZMBAkNqfJ6aQpAe9\nXQfSdsDlctWZ/Tz33HOYn59HoVBANptFLBZDoVCoariurMekWdgYsUbSaMdD8/zpFlqvUzKZrLvf\nXS4XVlZWMDo6ig996EMAgEQigfn5eQDA3NwcEokEACASicgtTQBgYWEBkUik5ecLCwt1n7f6Gyb1\n0KsOTHqik0WcJEmy+6rVaoXX68WRI0fAMAySySTK5TLVQlIPEUkidpu9lCRJQjKZRCAQgCiK8Pl8\nOHz48EB22QfRnqQb+lUjWS6XEQwGEY/HMT8/j7W1tbbTerWs22xEr2KtVZR8zjMHj92DDW4DLqsL\nmVIGb19sv9GyKSTpQo8Ru2aMjY3VZQ2QVgWkZUk6nZbNfhwOR53AdDgcmp8TowlJox0PbZE7tWAY\nRvO534h0Ot1xD8lBHAut54sWjHeHmLRNuVxGJBJBNBrF5ORkw4iMnkQazZAxOp3Oqs9JW4lQKITh\n4WEcPHiwqn5gEFitVirPn9qRUpZlEQgEkMlksLi42FWk10gRyZ1ejkP2Ibx7+d34fxv/DwW+gGNz\nx7A8sdzR3zCFJB0Y7To064nZyOxHkiRUKhVZYG5tbYFlWZTL5aqfIQLT7XYPTAwZTXgBxtqwMGpE\nktbnQTqdbquH5OzsLGKxGObn5+XSHwDYs2cPQqGQ/H3hcBh79uzBnj175DRV8vm1116LPXv2IBwO\n131/q79hUo8pJA1Kq2hAbfpqK/dVPQjJfhqOqEWt2C2VSnILldnZWRw7dqxOZA4KmlNb1RgXcbqt\nVCoNDXQ6gTYh2e+o36hztKMopBIjLSj1jtZmO1rCMIxs9kNcFwlKF8l8Po9EIlHXC09p+KO206UR\nhaSRMGJEkta0VuCiG+v+/TvX4N900014+OGHceedd+Lhhx/Ge97zHvnzBx54AGfOnMG5c+cwNjaG\n+fl53HDDDfibv/kbpNNpAMCPfvQjfP7zn8fk5CRGR0fxi1/8AidPnsTXv/51fOxjH2v5N0zqMdYd\nYtIUkr4aDAZhsViq0ldboQchqQeIkNze3obf70c+n+86KqY2NAvJbkUbme9+vx9Op7OlgU4n0CYk\naRuPkktVuJjoh0YukkB9L7xYLAaO42RhUduupFuzH1NI0o0RI5I8z/et9UevpFIpnDhxouqzD3zg\nAzh79iy2trawsLCAe++9F3feeSfe97734aGHHoLX68Vjjz0GADh9+jSeeuopLC8vY2hoCP/6r/8K\nAJicnMTdd9+Nq666CgDwmc98Ro58/tM//ZPc/uPGG2/EjTfeCABN/4ZJPaaQNCjkpVapVBAOh+X0\n1cOHD8Pj8bT9e/QkJGnddScOhK+99hpcLhe8Xi+mpqaoGavNZkOpVNJ6GHVYLJaO554gCHJT4ImJ\nCVx22WWqug3TJtx6dW01uTSg9dlIK6164VUqFdlNNp1OIxKJoFgsyj+jdJNt1GxdidFamRgNGtti\n9QrNUdZGNZLf/va3G37vf/3Xf9V9xjAMvvKVrzT8/ttuuw233XZb3edra2tyf0olU1NTDf+GST10\nziaTnmFZFm+++Say2Sz27NnTMn21FQ6HA9vb230YobqQqBpND0ilqLFYLJibm2srbWPQ0ByRbHdc\n5XIZgUBAdlrrxECnE2gTkrSnddM8NhOTbrDb7RgbG6vr5SuKYlVPzGQyCY7jIIoinE5nVQST9MQE\nYJiIpCRJhjkWAs/zcLvdWg9DVWgXktPT01oPw6RD6JxNJj1TKpUwMzPTs/OnXiKSJHWUhgdksVhE\nMBjExsaGLGo2NjaoFGsAva6t7QhJlmXh9/uRzWaxtLSEa665pq+LGavVStX9QJuwNaETI0Ukad2c\nsFgs8Hg88Hg82LVrl/y5JEkol8uy2Q/pWUsim6+++mpVLabL5dKlIDNiGihtm9NqUKlUqD2mVCrV\nsWurifbQOZtMemZqakoVJ069CEkyTpfLpdkYstks/H4/OI6D1+vF8vKyvCCgNX0UoNe1tZlIkiQJ\nmUwG6+vrEARhoK1SaIsA0t5iwyjixcSkWxiGgdPphNPprHOkPHfuHBYWFsCyLHK5HOLxOAqFAgDI\nZj9KkUmrAACMKSRbtezSKzTXSLIsO3DXepPeofepZNITai3g9CQktRBDyh6cNpsNPp8PExMTdeef\nVrEG6Ce1VZIkJBIJBAIBuFwu7N+/vy69rN/Q1kfSjEiatIORIpJGwmKxNDX7IWmyHMchEonIPTHt\ndnudm6zT6dT8+tLsBtotRoxI0pK5VQvZENV6Hpt0Dn2zyYQqHA4HyuWy1sPYEZvNNlDBy/M8wuEw\nIpFI0x6cteOjSYAooV1I8jwv15pOTk7i8ssv16xuhTbh1m1EUhAEhMNhbGxs1BmE2O1282VuYqIh\nDMM07IkJXKwHJwIzmUwiFAqhVCrBYrHA7XbXicxB9sQ0WvTOiFHWSqXSkeHioJAkydzw0immkDQo\nat2MtKXyNWNQEclCoYBAIIBkMondu3fjxIkTbaWJ1PaRpAlax8bzPHK5HH7xi190dK77CW1CstPx\nVCoVBINBudHygQMHUCqV6mq3rFarvCBV1m51+lzRw7PjUsBICzSjHEe3kJ6Yte2MBEGoMvvZ3NxE\noVCQzX6U4lJp9qMWRhRdtEbveoHWY2JZFsPDw1oPw6QL6JtNJiZd0O+IZDqdRiAQQKlUgtfrxcGD\nBzva6aVVrAH0RSTz+bxsoMMwTN8NdDqBNiHZbvuPYrEIv9+PZDIp9y+1WCwol8sYGhqqa9TO83zD\nFgck6lHb4oCW62NibIy0MaH2sVitVgwPD9ctxkn7KXI/JxIJcBxXt2FE/tttT0wjCkkj9vmktUYy\nmUzW1RCb6ANTSBoUtXdtad/RttvtKBaLqv5OURSravJ8Pl/XTe1pFpI0iCNJkpBOp7G+vg5RFOHz\n+bCysoIXX3yRqhc5DedKyU41m/l8Huvr68jn8/I5Jfdxq4WszWbD6OgoRkdHqz4XRVFOq2NZFhsb\nG3XmIMooJs3PjEsJ2p/f7WKkvouDEikMw8DlcsHlctUt1JUbRtlsFrFYTH6PkjRZpdBsJRSNWCNp\nlPtGCa0RSdOxVb/QN5tMVEMtR0cS7aO5Ma+aQq1SqSAcDiMajWJqagpXXHFFzzV5NAtJLV+USrE+\nNDSEAwcOyOJFkiSqRBtwcdefpjFZLJaGkXgiygVBwN69ezE1NaXKdbZYLE2jHsq0unQ6DZZlwbIs\nXnrppSpx2Y+0OpOdMcKC2Ei9CmmIdrXaMCoWi3LLknQ6LZv9OByOOoHpcDgMGZE0IrS2/0ilUmZE\nUqfQN5tMqMPhcFAvJNVwl+U4Dn6/H+l0GgsLCzh58qRqD1wjLOLURGlW1Eys09jagjbXVuU5kiRJ\nrnN0OBxtudqqNS+V5iDKhtLPPvssVldX5QVpIpEAy7LyrrhSXHo8HjgcDvNe6QO03UfdYqQIEQ1C\nshkWi6Wh2Y8kSahUKvL9vLW1BY7jUCqVwPM8HA4HRFGU72s9p70baa4podWJNp1OmxFJnULfbDJR\nDbUW4npoAdKt2Q5JqfT7/eB5Hl6vF6urq4Z8gdBAsVhEMBjE5uYmNQY6nUBramskEkEwGMTo6CiO\nHDlClStfsx56pCE7y7J17pO1dVtut9u8J3vAKItioxwHQLeQbAbDMLLZT21dtd/vB3AxJTafzyOR\nSKBQKECSpKq0dyJQaX/uGymNWgmt95AZkdQvppA02RE9CMlOzXZEUUQsFkMwGITH49GkJyFt9PMF\no6zV83q9WF5e1t0iCqBLSPI8j83NTWxsbGBhYQHHjh2D0+nUelhtY7fbMTY2VnffCYIgC8zt7W3E\n4/G6ui0SwXS73WY63SWEHsVXM4x0LMDF94fH48HMzEzd58ViUa6tjsVi4DhOzkqoFZjdmv2oDa2R\nu16h4dw2Ip1Ow+v1aj0Mky4w3l1iIqPWA0MvQrKdiGS5XEYoFEIsFsPMzAyOHj0Kl8s1gBH+1mGT\nxsUDcW5V88UpSRJSqRT8fj8kSYLP51OtVk8raBCS5XIZgUAAiUQC4+PjmJ+fx8GDB7v6XW1tHiQT\nEDMJMJ4JMHOLHf1+khXRyTW3Wq0Nm7SLolhVh5lMJsFxXF17AyIyjbgI7BZaoxCdYpTjAIwnJJv1\nkWQYBm63G263uy51kWQlkDpM4g5NfkYpMHcy+1EbWk1peoHmFHfTbEe/GOsuMekLdrsd5XJZ62G0\nZKfFBWkpkcvl5PYHg45kELFLY62pmkKy1kDn4MGDdaJAr2gpJAuFAtbX15HJZLC0tIRrrrkGmUwG\niUSib39TePVZ8E//CySGB0QG1lN/APupd/ft77XCYrHIInHXrl3y56S9AanbUkY87HZ7lcAkxiBG\nESOXGqaQpJduzHaaZSXstGmkFJfEvEvteWFE8yCaxbEpJPULnTPKRBXUerA6HA7Z4l9PSJKEZDKJ\nQCAgt5Q4cuSIZgsRmoWkzWbr2URGaaAzPT2NK6+8sudoL21RXIvFMvBd3e3tbbz11lsoFArYu3dv\nVQ1vL3XQDMO0jBhK5RL4//oahF0TsDhHIAklCL/4Hiwrx2GdnG/7b/R78a9sb1C7ECmXy1UN2jmO\nQ7lcVrV/nh4wigAzUt0aTc81NVBTeLXaNKq9pwOBQNU9rRSYLper63NMs+jqFpqPyTTb0S90zigT\nqtBDaiuBtIwg9Y+jo6PURMRobgFitVq7HluxWEQgEMDW1hb27NmjqtstabdhpAVXOyj7akqShH37\n9mFiYqJuEd3PCKlU3obEF2Fx7gYAMFYnYAGkUhZAZ0JSK4gxSG3/19r+edFoVE6pUy5EPR4P1elg\nnWAEAWa2/6CXQfSRZBhGNu+qNfvheR6FQkGurSZmP8Bve9wqN492ekeZEcnBkk6nqxy/TfQDnTPK\nRBUupRpJ4OKi+vz589jc3MTc3ByOHz9OlfkI7UKy04jk9vY21tfXwbIsvF4vDhw4oPpCoh+1mzQj\nSRI2Njbg9/vhcrmq+mo2op8RUmZoHOL0FCwbCWB6BshlIbkdYMZmdv5h8jsobOECtO6fR2q2lFHM\nZ599Fi6Xqy5NVi/zksZr0A1GiawCxhOSzWokB4XNZmtYW03MfkjqezQaBcuyEAQBdru9zuzH6XSC\nYRiqRVe3VCoVat1yK5UKVes1k/Yx1l1i0hccDgfVNZLb29vw+/3I5/OYnZ3FNddcQ+ULmmYh2e7Y\niIHO+vo6GIaBz+fD5ORk3xZ3tPVt7BeiKCIajSIYDGJ8fByXXXZZXQ+3RpDU324g0XuyOK+9ZxiL\nDfZ3/znKP/onWOJ+SBPDsL7jo7AOtW/RTquQbIbFYsHw8DCGh4flz5577jmsra1VLUYjkUhVg/ZG\ndZi0YQQBZgpJeqE1gqc0+6mFpMlyHIdUKlXVgkiSJDidzqpopt6vF63iWE/vCJN66JtRJqqh1guX\nRgFEmq8HAgFYLBb4fD5IkoSpqSlqH/Y0nkfCThFJURQRj8cRCAQwPDyMlZWVgaQLdxMp1RM8zyMU\nCiEajWJmZgZra2sdiZBuIpKSJFWJSCJEBUGoEpUMw8A6uoihP/osBIGFxeKCxdJZzavehGQzmi1G\na2u2NjY2wLIsKpUKrFarnB5LRCaJdgwaowgwI4kvIx0LQK+QbEWz1HdRFPHmm29CkiQ5M6FQKNQ5\nRCvNfvQArUKSpEUb4Rl1KULfjDKhDi0MRprB8zyi0SjC4TDGxsawuroqRw82NzepTsHtpQ6x3zQT\nbEqhs2vXroG2SyHj0rrdRj8olUoIBALY3Nzsqa60k4ikUjwSYUHcDpWiUik0f4sHPC/BYuFlk552\nFsFGEZLN2Klmi2VZsCyLdDqNcDgsRztq6zB7MQVpB6MISaMcB2A8IWkkIySLxQKr1YrR0dGquj3i\nEE2imIlEAhzHyRtHtWmybrebqnNCa/poJpO55Pt46xlTSBoYmh5gvUIMXTY3N7F79+6GkRuaI37A\nxfGVSiWth9GQWtfWYrEIv9+PZDKpuoFOJ9Ca2trtgpbjOKyvryObzcLr9WJ5ebmnxWQ7mzyNBGTt\n3yT/vzai0EpgkutCDFA6EZiXAjabrWFrA0EQWpqC1KbJ6i3K00+MJiRpjA71glGuDdA4eqd0iJ6c\nnKz7fqWBVywWQ7FYBAC43e6qzSO3263Jted5viptnxbM1h/6xlhPMZM61IoIaNWGIZvNwu/3o1Ao\nYGlpqaWhC+2mQDabDSzLaj2MhlitVpTLZeRyOfj9fnAcB6/Xi4MHD2oqDGhMbe2mpUU2m8X6+jpK\npRL27t2Lw4cPq7LoahWRJKKPfL0bkdeOwFT+LQBV10uSJLmfoykwL2K1WuvqMIGL51RZh5lKpap6\n59UKzE7S6YwiwIwU9TJaRNJodJqq28rAq1gsyiIznU7L9dWD7nNLa2prKpWqE+Ym+oG+GWVCJUSk\nDSItQpIkuaG9w+GAz+fD+Pj4jg9Xu91OtSkQrRFTUgcSiUSQTqexd+/ehq0mtIBGIdluSxJiTPTW\nW2/BarXK51VNGrX/aCQg1b6WrQQmcHFhEAgE5O8RBKHqOpIxkXGZC2pUpbwqUabTsSyLeDwOlmXl\nRWFtHWY/F6JaYxRBDJhCknbUEl3K+7o2TbZSqcgbR1tbW+A4rmH6O0mT7XW+VCoVKoVkMpk0I5I6\nhr4ZZaIqakUkByEklQ3tJycn23auJNAc8QPoE5LKfpt2ux0TExO4/PLLtR5WFTTWSO7Uu1GSJNmY\nyOPxVNXx9mMs5P4ehIBsBRHOfr8fDoejqn9rbeSytgaTiExTYNbTKp2OLERZlkUymUQwGKxrzu7x\neFAul6l0ku0Us48knRixDrrf5kEMw8hmP7UbjMr093w+L6e/S5Iku8gqazHbzU4g2SG0kclkzIik\njjGFpElb9DNtlOM4BINBJJNJ7N69GydOnOjqYWe326kSarXQIiQrlQrC4bDsFHrs2DEUi0WEQiGt\nh1YHjTWSzcYkCAIikQhCoRCmpqZw5ZVX9t2YiKS2CoKgqYBMJBIIBoMYHh7G4cOH6zaAlAvmbuow\nye8wBWY1drsd4+Pjda6TgiBU1Wslk0lsbGwgFArB7XZXRTH11NbAjEjSiZGOhaBlGmiz9HfSE5OY\n/dRmJ9QKTJfLVXW/0JraStZ+JvqEvhlloipqvXTVFpKSJCGTycDv96NcLqtSj2ez2aivkdRSSBYK\nBQQCASSTSSwsLFQZ6FQqFeoEG3DxhUrbNa2NSFYqFQSDQcRiMczPz+Oqq67qe/SHRABInc0zzzwD\np9OJ4eFhWST025aeRLRDoZAcze5GOJtGP+pjtVqrmrOTCOX09LQc6eA4rqqtgTLSQRajtC06zRpJ\nOhFF0XCmUDReH2UbotpU0EqlIgvMdDqNSCSCYrEo/4zH40GpVALLstSZeKXTaVx22WVaD8OkS+h6\nS5hQi1r1h6IoyvWPLpcLe/furdtN7xY9mO1oISRzuRzW19dRKBTg8/mwsrJStxirdW2lBavVKjvf\n0QIRkkpn28XFRZw6darvL+faHpAAcPToUQCQFwksyyIajco71Q6HAx6Pp0pk9iJ0BUGoi2j3Qzib\nAlM9lG69ZA7Ufl1pCBKJROoMQWrrMLU6DqNcSxqFSrfosYek0bDb7Q1dokVRRKFQAMdxkCQJoVBI\nNvEi74banpiD3qwxXVv1jSkkDY5aDwSHw9FT64pKpYJQKIRYLIbp6WlcccUVdc29e0XriN9ODLIf\npyRJ2Nragt/vl41eWhkW0drjcqd6RC0QBAEXLlxAqVSCz+cbiLNtoxYetSmspI5O+UImhg75fB4s\nyyKRSIBlWZTL5SqBQIRmK6MWEnnd2NiQI69atYQBmgtM5b9GKbLKc2eUhXyvNIt01BqCbG5uwu/3\ny33zah0na1Pp1MYUknRCGsqb0AfZPBoaGsL6+joOHz4M4OK9VC6X5c2jzc1NBAKBuhprcn/3s9dt\nJpMxhaSOMYWkSVvY7Xbk8/mOf45lWQQCAWQymb73I6TR4XPQiKKIaDSKYDCIsbGxto1eaD13NI0r\nk8lU9YD0+Xx937ltpwdkK4ihw+TkZFOjlnw+j62tLQQCAZRKJVkgkAim3W5HPB5HOp2WU6JpXDQ2\nGxMRkzvVYBrZ6Kfb2sJWhiDKvnm1qXS1KbJqOE72chw0YjQhaaSIpJHmGaE2/ZhhGDidTjidzoZm\nP+TeVva6lSSpriemGinwZkRS35hC0uBoUSOpdG8URRFerxerq6t9fzAb7cHfCSTiG41GMTs7i+PH\nj3fksDvIaGknaC0kSWR3fX0ddrsd+/btQzwex+joaN8jL732gNyJZkYtPM/L4uDChQsoFouw2Wxw\nOBzIZDKoVCpVIoH2+46ct9rz18hJtlZkEhMjQRAMKTB7oVnfvGaOkwAa1mF2IkDMGkk6MVqNpJGu\nDaETo53aGmsCSYEnGQqkhIKkwNcKTKfT2db9ms1mVW+NZTI4TCFp0hbtCEllOwmPx4MDBw7ULTJM\n1N3t5DgOgUAAqVRqYHV6g0Sr9h+iKMotPEZGRnDkyBG5rmxjY6Nv4lbrFh7ARVOmYDCIYrGI5eVl\nTE9Pg2GYql3qXC6HWCwmCwSyeCBRTD04gbZykuV5HtFoFOFwGDMzM7p3kh1khKWV4ySp1WJZFqlU\nSq7VcjqdVQvQZkZRZmornRgtIkmru2kvVCqVns3XlCnwjX6/8t4OhUJyT0wSxWzkFE028Iw0fy41\njHWnmNShZo1kM7Odcrks1z/Ozs7i6NGjfW970AzSDoHWFzSp4+z1gZ7NZrG+vi7X6R06dMgwO/VK\nBt3+gxjJhMNhTE9PN5zL/ajbpEFAktRdSZKwd+/euh3iZrvUoijKCwiWZbGxsSEbOyhbTQwPD1Pn\nFliL0khodnYWV111VdW9ahr9dA9JeW3UmL1cLstRDlLHSxbzSnFJs5lap9D8njxUgdEAACAASURB\nVOoUo9VIGk0YA/0Xx63MfoibLKmz/rd/+zd873vfw8zMDPbv3w+e5/Gzn/0Mq6urdSmuPp8PIyMj\nsFqtsNlseP7555FKpfD+978ffr8fPp8Pjz32GCYmJiBJEj7+8Y/jqaeewtDQEL72ta/h2LFjAICH\nH34Yn/3sZwEAd911F2655RYAwAsvvIBbb70VhUIBp0+fxpe+9CVDrqX6iSkkTdqikZFNPp+H3+9H\nLpejJhpGxklr8+1ehKQkSbLZhd1uh8/nM3w6yKBSW8vlMoLBIBKJBObn51v2MlVLSJJUYi0FpCRJ\nSCaT8Pv9cDgc2L9/f8dZBBaLpWUEiqQ4JpNJ2QnU5XLVtSrRMgLA8zxCoRDi8XhLIyG9OsnSXPOl\nrNVqVMdLNimSySS2trawubmJYDDYsA6T1mNshNGEpNbvfjUxYkRSq2Nq9H44cuQI7rrrLgSDQbzw\nwgt4/vnn8cgjj+C1115DMpnE8PAwDh06hEOHDqFYLOL555+v2ny67777cN111+HOO+/Efffdh/vu\nuw/3338/fvCDH+DChQu4cOECzp07hzvuuAPnzp1DKpXCvffei+effx4Mw+D48eO46aabMDExgTvu\nuAMPPvggTp48idOnT+Ppp5/GjTfeOPDzpGeMdaeY1KHWi5X8HlIzFggEAABerxdHjhyh5gVOUnBp\nF5KdIAiCnDI8Pj5elWapJjRGc/ud2looFOD3+5FOp+XNkJ2Ov1chqewBSf63FgJyY2MDgUAAHo8H\nq6urqs8pZQRq165dVX+b1NmQVhMkAuV0OqsimP3uhal0ol1YWMCJEye6WhC3Epjkv6aTbOfURjkY\nhsHk5CTGxsbq0qxJmyBlGp3H44Hb7aZW5NDy3uwVo9VI8jxvqOMB1EltVROLxQKfzwe73Q6v14sH\nHnhA/loul8P58+fx6quvNlwvPfHEEzh79iwA4JZbbsG1116L+++/H0888QRuvvlmMAyDq6++GplM\nBrFYDGfPnsX1118vb1Rdf/31ePrpp3Httdcil8vh6quvBgDcfPPNePzxx00h2SGmkLwEYBimZyMV\nQRBQLpfxzDPPYHR0FCsrK3UpbjRAewuQTsanTBmem5vD2tpaXwUyif7RtJDtV0Rye3sb6+vr4Diu\n49TgboVkox6QgxaQpI45FAphYmICl19++cDT0JV1Ns1SHPP5PGKxGFiWlRdAtRHMVq1KdqJUKiEY\nDMo9QPvlRLuT0Y8yktlPJ1maI5KdQI6jVZq1sg6TRMFFUawy+iH/NVrUSSsEQaB287YbBEEw3Nyg\nNcqaSqXqMhFGR0extraGtbU1fOYzn8E73/lOMAyDj3zkI/jTP/1TOXMIAObm5pBIJAAAkUgEi4uL\n8u9ZWFhAJBJp+fnCwkLd5yadQd+sMqEKsuBKJBKQJAlHjx5Vvf+jmnTiLqsF7fRr5DgOfr8fmUxm\noCnDRLTRtGtJoqRqkU6n8dZbb8l1gJOTkx0vsK1W6/9n782DXLvKc+9Hc0s9qif1rKn79Ok+k+0z\n+fgSihQ3lwSqnOuUvxRFxaQuIXUrCSS5VKVCDNhQEDAmkA8M3IRABRJI2VSSL6YI4cI1oYLjAXww\nxmDH7taslnrSLG0Ne/r+OFnbS2NL6i1pS9q/qq5T7uPTvVu9tPd61vu+z1N3XrgWzWRAdhqe56UH\n59zcHO644w7FbfwatTgSgUnyznw+H0qlkjRDR1cwGzkFFgoF+P1+pFIprK2twe129+TgpB0nWbJ2\nKltka32dQeUkQUwy80ZHR6uq4MViUZrDjEajYBhGGjOgxWWvQtn7mUFsbR2knwe49TP1yruiESdF\nfzz55JNYXl7G4eEhfumXfglnz54t+/te+AmolKMKySGgnYpkOp2G3+9HLpfD2toa7rrrLjz//POK\nf8P2Q0WyXoUtmUzC7/ejVCrB4XB0JTKl8tqU9trJ8fOT2VKfzweTyXRqN+FmK5LdiPA4CRILQ05w\n683+KZ1GWYZEYMZiMcltlmRhkg+dTidVOO12OzY3NxV5L2vkJNvMHCb5GpUCc1Aqku3Gf2g0GoyM\njGBkZKRq00ob/dQKZadF5sjIyEC8jnKjtE6W06JWJLtHIpFoKCSXl5cBAPPz87jnnnvwwx/+EDab\nDdFoFIuLi4hGo5ifn5f+31AoJP3bcDiM5eVlLC8vS62w5PNveMMbsLy8jHA4XPX/q7SG8laVSs8g\nG+5AICD1r9MVG1LtU+KpFkHpFclKsVZpoON0Oqty/bpFrzMb5UYQBEQiEWm29MKFC7BYLKf+uic5\nySrBgZV0EhwfH2N1dbXt2T+lo9frazoF8jwvicudnR2pemkwGHB4eIhcLidVMM1mc19sgk9j9MOy\nrJSL2c9zmJ2I/2h0SEFaZFOpFCKRCAqFQtnsLz2H2a+vqRwM4oykkjuv2kFpM5KEWCxW1YFCyOVy\nEAQB4+PjyOVy+M53voMHHngAd999N77yla/gve99L77yla/gV3/1VwEAd999Nz772c/irW99K559\n9llMTk5icXERb3rTm3D//fcjkUgAAL7zne/gYx/7GKanpzExMYFnnnkG169fx9/8zd/g3e9+d9d+\n9kFBFZJDwEmbWI7jpLa3qakpbG9v1zTeULpIA25dIzFdUCJ6vV7a1EUiEYRCIUxNTeH8+fOyiJzT\nMChCkjhwRiIRzM/P4/LlyzCZTLJ9/XoVSSUISJIrmk6ne9q62WtIezjLsjh79iysVqvUJk3EQSaT\nwf7+PhiGAXDLpKVyDrMfXrt6ApPneSQSCfh8PmnGVElOsu3QzcqqXq/HxMREVfcCHWdAWq3puJvK\nKuYgCax6DFprq1qR7B6JRAKbm5s1/+7g4AD33HMPgFvX/7a3vQ2//Mu/jKtXr+LXf/3X8aUvfQl2\nux1f//rXAQBvfvOb8a1vfQvr6+uwWCz467/+awDA9PQ0PvCBD+Dq1asAgAceeEASr5///Oel+I9f\n+ZVfUY122kB5q0qlaxQKBQQCARwdHWFpaakqM60So9GoeCFJhJqSOTw8RDgcxuLiYscNdFpBia2t\nrVAsFqX1vLy8jOvXr3fkwVkpJJUgILPZLHw+HwqFwkDnip5EKpWC1+sFgJrVfdqK3mazSZ8nJi2k\nTfb4+Fg6Da/MwlS6OBBFEfF4XGrl3traKrPe72cnWSW06DaKuyFuxAzDIJFISHE3RqOxTFz2+tBQ\nbgZNSCpVdJ0Gpf5MjWYkXS4XXnjhharPz8zM4Iknnqj6vEajwec+97maX+sd73gH3vGOd1R9/sqV\nK/jZz37W4lWr0ChvVanITuWDl8ziFQoFrK2tYWNjo6mNgsFgaMlkpBcYDAZFiqFcLodAIIDj42OY\nzWZFZG5WouSKZKMNJG1OZLfbsb6+3tGNLxGSShCQ5L0sCIKUK9rrjXa3EUVRqrzp9fq2szCJWKz8\n2oVCAdlsFrlcDqFQCLlcDjzPw2QyVVUwe9k6RjJBfT4fzGZz3UgXpTjJtkO7M5LdgHYjpiFuxKSC\neXBwIB1Y/PjHP66qYDYyi1IqgyYkB+3nAZT7M500I6mifFQhOSSIooiDgwMEAgEYjUY4HA5MTU21\n9MAyGAzI5/MdvMrTo7SKZCKRkFrsHA4HlpaWEA6HFXlDV6qQJFmSla9ZOp2G1+tFsViE0+nsijkR\nEbRkZopsALv5+yQVJ7/fD71eD5fLdSrzoH6FCCe/3w+TyYTNzc2qKtFpocVBPRfQXC6HSCQiZWGS\n6hNdwexk1wHJ9vX7/bBYLDh37lxbFa9+cJLtxIxkp6HdiMkcJsuy+NnPfobz589LAjORSCAcDqNY\nLEKr1VbNYY6MjCj2Zx80s51BdG1VQjW/FqqQ7H9UITkEpNNpPP/885ienj6V4YjBYEA6nZb56uRF\nCXOcJOydbHBdLpdkBkI2m0pEaSKcQMxtdDpdWdueRqOBy+WqMsnoBPTG2Ww2w+FwIJvN4vDwUJqx\nI5s+Ih4sFousmyuyrgKBAEZHR3H27NmaFadBhzaoGh0dxfb2dtdbBU9yASUVTFJ9ImY/lRXM01Sf\niID0+XwYGxtrW0CehFxOssDpnYuVuhluFUEQoNVqYTAY6ppFkTnMTCaDg4MD6RB3ZGREWj9EbPZa\n9Aya2c4gzkgqlXg8XpYnrNJ/qO+UIWB0dFSWeTEliLST6OWcH8nqC4fDsFqtNUW7kucQdTqdIo2K\nSPYmqcJZLBZsbm5WhZF3gloZkFqtFjabreaMHREQRGCKonhqgSkIAvb398vcZwfNUbAZ6K6KyclJ\nxb4ORqMR09PTVU6ELMuWzWAGAgEUi8WyqBKyRhrFTNBCemxsrKevQytOsiSC6jRGP0pubW0FIiTr\nodPpMD4+XnWPEwRBmsMkrsQMw0AQBJhMpqo5zG61Wp/08/Qbg1aRVPL7Jp/PD+WB6CChCskhwGAw\ntJwjWYt+MNshbZDdpFQqIRAI4PDwUMrqq/cAV7qQVFprK8/zKBaLuHnzJmZnZ3Hp0qWubJpbzYCs\nN2NXaeJCC0xi4kJXqejvQQ4m9vb2MDc3hzvuuEMxxkzdRBAERKNRhEIhTE9P47bbbpPVhbdbGAwG\nTE1NVRkA0VmYpL2RxEzQ1cvR0VFkMhlJSF+8eFGxUUzNCkzyOeDW61CrTZZ+T/Rja2st2hVedMtr\nrVZr0iYbjUbBMAw4joPBYKiawzQajYoVFkpgUNYZQalGO+QeoK7F/kZ5K0tFsfSD2U43yeVy8Pv9\nSKVSWFtbw40bN058+DQbZt8LlCRyWZaVIjy0Wi22t7e7Mkcht4FOIxMXuoJJXEJFUYTJZJJa22w2\nG+64446+FE6nhUTkhMPhgRbSjbIwGYZBNptFNBpFPB6X5u1KpRL29vY61kbdKRoJTPJnvRZZURTB\n83zZ+7MffuZayF3Bo1utG1XCY7EYgsEgSqUSdDpdlcBsVAkfJgbtNSAHCkpDFZKDgSokhwC53qRK\nrFh1G1EUkUwm4fP5wPM8HA4Htre3m36NlXzDVMLvl0TSHB8fY2VlBTdu3MArr7zS8Q1jtx1Y6VBz\nAh1fQlojGYbBCy+8AEEQpNkouoI5SO1XBJ7nEQ6HEYlEsLCwgCtXrihyE9RptFotstksAoEArFYr\n7rrrLphMpoZt1HRUST+tkUZGP/RcNDmQIfcp8mcvnWTboZutoPUq4TzPS1ElqVQK0WhUGm2g1xG5\nTyn9NZUTOTq4egUv8PiO7zv4yeFPMGOewT1n7oGJMymyIpnJZLoyoqLSWZS3slQ6AmkZOu3X6Ado\ncxa5oOezRkZG4Ha7qyoI/U4vhWQul4PP50Mmk4Hdbi+LpOnkdSkhwiOfz8Pv9yOdTmNtba1mfEll\nDEU8HpdyDukYin7IOawHy7IIh8PY39+Xcm2VuPnpNPRM7PT0NG6//fayivRJVe7K+Tme52seQvTD\na5tMJuH1emEymXDu3DnpZ27kJAvcEkn0TLPSBKYSZgp1Oh0mJiaqHJ/pdnyGYXB0dCQdVJB1RFcy\n+/Fe04h+N3T6+1f+Ht/Y+QasI1bsxnfx86Of43+d/1+KfL/HYrGqCrpK/6G8laWieJR+oyUtmnI8\n4DiOkwx0pqencfHiRVlm9JT4Gur1+q4LSRIgz3EcHA4Hzp07V/W6yD33Spt+0K013f59ZLNZ+P1+\n5PN52O12nD17tu41nBRDUSvnsF/EQ6lUQjAYxNHREVZWVnDt2rWB25w2Az0LOjMz03IrL13lbrRG\n9vb2JPdoYtBCm/0oofpLKpBGo7FmHuZpnWTbMfqREyUIyXqclKlK5jD39vakOcxCoYBXX321ag6z\nH1Fq3mIziKKI7/i+g9XxVei1ekyZphDKhPBK/BWcHTvb68urIpFIqEJyAFDerkKlI8hRkQReqw4p\ncUNKIO6yp5krKxaLCAaDkoHOtWvXZNtgKfU1JO6onYbOvdPr9XA6nVVtV5XXJYfArcy/A3ojIFOp\nFHw+HwRBgMPhgNVqbfsa6Nko2kKdzjnMZrNV4qGygtmLtUhaeePxOFZXV3H9+nXFbq47iSAIiEQi\nCIVCHZkFbbRGSqWSVMHc399HLpcDy7IwGAxVhxDdMGhJJBLwer0wGAxt54K24iTbK4GpZCFZD/ow\ni55XL5VKePHFFzE3N4dcLic5CrMsKzkS03mYp4m86QZKNaZpFp1GB17kof/P7b0oioAARf5MsVhM\nzZAcAJS3slQUDRFpSrwpEQwGQ9uCiFSJMplM0wY6rUIqpkp7DTvd2kpa9gKBAMbHx7G1tdXURpG0\nKrdLrQiPbgtIMudFi+dOtkbXyzkk4uGk6hQREJ2oThUKhTKTqlqtvMMALSDn5+e7PgtKjHtMJlNV\nVYAWmEQYFItF6PX6qgqmHMKAtLDq9fq2BeRJNCMwAdQUmED5HOZp12s/Csl6CIIAg8EAq9ValenL\ncZxUwUwkEtjb20OhUIBWq62awzSbzYp4Tfq5IqnRaHDPmXvw1Z9/FRa9BSW+hOXxZdgtdsXtNwC1\nIjkoKG9lqXQEuTbNREgqMb+NoNfrW4opEUURiURCqhI5nc6aLZZy0a3KX6t06ucl5inhcBizs7O4\n/fbbW4otaFfg1suA7CYk8y8QCMBsNndsk9wstHioJTBJBTMajSKbzYLjOBiNxqoKZjuCh2EY+P1+\nZLNZOBwObG5uKroy0SloN9peCMhmMBqNMBqNNYUBEZjxeByhUAiFQkFyAKUrmGaz+cTfLxGQOp0O\nGxsbPTHeOI2TLNCe0c8gCclGwkuv19ecw+R5XprDzGazODg4QD6fB4Cez2Eq8ZC3FX7Z9cuYtczi\nZ0c/g3XEijc63oiD4IHi7jHArRZ2tSLZ//Tvu0WlJxAhqWSarUgKgiAZ6FgsFmxsbFQ98DpBL2YR\ne0GpVEIoFML+/v6p2oN1Ol3LBwOtZEB2AtowZWpqCufPn1f04ctJ1SlSwdzf30c2mwXLsjAajVUV\nzFotmfQsqNPpxNbW1tAKSJILurCw0JdmQs1ElaRSKUQiEeTzeWluk14nZrMZmUwGHo+npwLyJBo5\nyQKNjX6AxgJz0IRkqz+LTqfD2NhY1aEaMYwiVcx4PA6GYSRTMXotWSyWjoijfq5IArfW3dXFq7i6\neFX63B63p8h7TSKRgMvl6vVlqJwS5a0slY4g18bNaDQqPkvypIokx3EIh8PY29vDzMxM10Lu6etT\nYkVSLogLaSKRwOrqKu68885TPZibbW1VggMrXW2anZ0diOxDo9EoxZHQ0BXMg4MD5HI5lEolGAwG\njI2NQafTIZlMAgDcbvepZkH7mco4k34UkCeh0+kwPj5eJQgFQZBEQTabRTgcRjqdBgBMTExgdHQU\nuVwOAPrGAbSe0Q8RlCcJTOC1XL9BEJRyCi/aMKqZeV5SPaycwzzNPG+/VyRrodSfKR6Pl/2eVfoT\n5a0sFUXTLxVJsjmhKRQKkjvk0tKSrAY6raB0Idmuo2w2m4XX6wXDMHA4HA1dSFvhpNZWJQhIOrpi\nWLIP67U/Hh8fw+v1gud5jI6OgmVZvPLKK9Dr9VUtst0wcOkVPM8jFAohGo1icXFxIAXkSWi1WoyN\njUnzoDqdDpcvX8bY2FhZVMnx8bEUZ1MrC7MfXjf6vlNvDpNlWUQiEezv7+PMmTPgeV4xTrLtIghC\nxw8AGnVMsCwrHVbEYjGEQiEUi0VotdqqCmYz7db9XpGsBTHQUhqJREJtbR0AlH93VpEFOWcka4k0\nJVEp1LLZLHw+H7LZLOx2e8/NPZQsJLVabcsbA+K0KIoinE4npqenZRUHteI/iOtqrwVkqVRCIBDA\n8fHxUEdX0HPGer0eZ8+erWoTZ1lWqkzVMnChRWY/C0yO46SWbnJgNYxrAgDS6bR0b3C5XGUtsY0i\nJsg6SSQSUpwNMYOi5zCVuDmuB+lUWFxcxPXr16X7mlKcZNul18LLYDA0bLfO5XJIp9OIRqMoFAoA\nIB1W0HOY5HVVavXuNMgVhyY36ozkYDBY7xaVjtONiqQoAv/8z1p885tajIyIuO8+AZcvNx9dYjAY\nUCqVEIvF4Pf7OyZw2kXJQpJU/0566BATGZ/PB5PJhPX19Y65kNKtrUrJgMzn8wgEAkgmk1hbW4Pb\n7VbcBq8biKKIWCwGn893opmQwWDA1NRUVdQLx3HSDGYsFkMgEKhyCCXiQcnRAbSAXF5eHmoBSWYg\nBUGA2+1u+t5AR0zUi7PJ5XJVZlCVTrJKaScn2aDBYBDz8/NVVemTnGQr22WBzjnJtkuvhWQ9GrVb\n03OYx8fHyOfzEAQBIyMjYFlWut9YLJaBEJXkMEJpJJNJVUgOAP3/DlFpin6akfznf9biz/9cB6tV\nBMdp8L736fDnf85ja+tkMSkIAhKJBA4PDyGKIs6cOaM4Iwe9Xo9isdjry6jJSUZAZGMUCAQwOTmJ\nCxcuwGKxdPSaiLgl1cdeCkhiHEPad4fVeZQcJPj9foyNjeHcuXNtrwO9Xl9XYBLhEIvFEAwGJYfQ\nygpmLwUmy7JS5uwwV6WBWwKStDW7XK6G+bCtUC/OBiif1T08PITP50OpVKqqdHfzIEIURSnqaHZ2\ntuVW93qb/konWboj47ROsu3SjtlOL9FqtdJ6mJubkz5PDit2dnYgiiIikYhUDSe5qnSrrMFgGMp7\nv5yQgyCV/kYVkiot0Y2K5L/8ixZTUyKI/otEgB/8QNNQSNIGOlarFaOjo7h48WJHr7NdlF6RrHVt\n9Os7NzeHy5cvw2Qydfx6yLwmiQkgm8JmZl3kJJVKwe/3g+M4OBwOxVS3uw1xOg4Gg5icnMTFixdb\ninJphUYOoaSCmUgkymaiKitTIyMjHfs90QJydXUV169f76sNtZyQ+WiO42QVkM1Qb1aXtFJXVrrJ\nQUQn1gndqTE1NSW72dZpnGQrW2RrfZ12EARhIMQAOawwGo1YWFgou++QwwqGYaQ4p1KpJMXe0HOY\nnbzntEO7ngedhqxRlf5HFZJDgtw5kp3EbL5ViSQIAlDPVLVQKEgzasvLy9Jm7tlnn+3oNZ4GpQtJ\n+mSbzAAeHh5iaWkJ169f70qrD33abjQacenSJWSzWSSTSYTD4SrhQKzk5aw4kLk/v98PrVYLp9PZ\nsfZdpUMq0aFQCNPT07jtttu6cpBQC51OV1dgEuGQTCbLws/pjMPTCodSqSSZdqkC8paAZFkWLper\nSsz1knqt1GSdkPsJWScajabK5MdsNjf1uxVFEcfHx/D5fBgfH8elS5c6dsBSi3pOsgCamsMkX6Md\nganU1tZ2qTUj2ShXlbTIVq4l4j7b6lqSG6X+fsjcphJFrkprqEJyiNBoNKc+AaplfCI3b3+7gD/+\nYx329gBR1GBqSsR/+2/l3zOTycDn8yGXy8Fut2NjY6PsJq3kk65+EJIkPJ7MAN64caMrD8F6Dqy1\nZl3oDWGtyhQRl622tJGqQiAQgNlsxpkzZ+rO/Q06dJzJ/Py8ouNMdDpd3fDzehmHlZWpRpVucqgS\ni8WGXkDmcjl4vV6USiXFCciTOGmd5HI5ZDIZ7O/vg2EYAJAEAT07R3738XgcHo8HFosFFy5cUFxe\n7ElzmKc1+lGqUGmXVn4evV5fcy2R2Buyng4PD5HP5yGKIsxmc5nJz+joaEdfP6WaByUSib66b6jU\nR3mrS2XouXhRxGc+w+PJJzUwmYD/+l8FzM/feqjF43H4fD5oNJq+bTFUspDkeR67u7sAAIfD0bXw\n+HYiPBptCGnzFnq2rjJ+ghaYdNvmxMQEzp8/r7hNYbcgrczRaLTv40wamW6QCiZxdSQCk65gGo1G\nHBwcIJFIDLWxEvCagCwWi3C5XFVRDP3MSeYs9BwmwzDgOA4sy8JoNGJpaQnT09OKPWSphVwCk+O4\ngXo/yCG8SOxN5QEk7UrMMAwSiQQYhgHP85JpVOUc5mlhWVaRQlJ1bB0clLe6VDqGHBVJQqf77jc2\nRGxsvBbxEIncMi4YGxvD5uZmUwY6Sp0NUJqQpAV6Pp/HwsIC1tfXFSsgT6Je6yMxb8lms1UzUxqN\nBgzDwGq1Ynt7G2NjY4pcO52GZVmEQiEcHBwMfHSFVqutKxwYhkEymYTP5wPDMNDr9TAajYjFYigU\nCmUVzEHaRNcjl8vB5/OhUCgoygG7G9At9PPz80in0/B4PDCZTFhZWYEoisjlcgiFQpI5y8jISJXj\nsBI387VoJDDJn+S+HYvFkEwmsbS0JI28KMFJ9jR0ssJKuxLTiKJYNod5cHAAhmEkEVg5h9lKhw3H\ncYo8BIzFYgN1EDXM9MedTUVRECHU6ZsTsdOPRCKYm5vD7bff3vTcCWnRVOLDu3IOsVeIooiDgwP4\n/X5YLBZsbm4ikUh03A21VxmQleYtpOoWiURgtVphs9mQz+exs7MjGSnQFUwlxQrIDT33N+zOo6VS\nCeFwGKlUCna7HTabDRqNRhKY5DCCbPaAxq2P/QzDMPB6vcjn81IFclgEZCUk0kQURbjd7rJOiFru\nn2Sd7O3tIZfLSQ6VtIssqXj3A7TRTzKZlMT0bbfdBrPZrCgn2dPQiwNojUYDk8kEk8lUJa5YlpXu\nO/F4vGyEo3IOc2RkpOp1VXJrq1qRHAyUt7pUOobchjudEpKFQgF+vx+xWEwy0Gn1RkjErhJvoL3e\niAmCgL29PYRCIVitVly6dEk6Ic1kMh2LJqHbpHoZ4UGLJrK+aokm4vqYzWYlJ0YSK0DPX/azwCwW\niwgEAojH41hbWxvqub9CoQCfz4d0Ol0z2oVuV7PZbNLnSesjaaemBabZbC5bJ/0iMBmGkaqxTqcT\nMzMzPb9v9YpcLgePxwOWZeF2u090pK0XVUJXncg6yWaz0rO0soJpNBoV95oTMQ2gKjO2FSdZItY6\n5SQ7SBgMhrrmYmQOk8z0FgoFACibw8zlcoo8FEwkEmpFckBQ3i5bRfF0yrk1nU5LGX12ux1nzpxp\n+6FCrrGbznlKh1R49/b2pLm3SgHUiWpp5Uai8mS6W5ADCmIgdJJoquf6tBGhtwAAIABJREFUSAtM\nOrfOYDBUzWAqVWDm83kEAgGp6raxsaG4TWu3yOfz8Pl8yGazcDgcOHv2bEuvBd36SEPP1uVyORwd\nHYFhGMlwozLjUAkb6Hw+D6/Xi1wuB5fLNdQCklRjC4WCLPOgJ1Wd6EMrv98vtd1XVjB7ES/BMAw8\nHg9KpRLW19ebcq/upZPsMNBoppfMYRKfAI7jcHBwAJPJVDWH2avD9ng8jtXV1Z58bxV5UYXkECFn\nRbJUKsnytURRRCwWg8/nkyIWrFbrqa/VYDAoag6xlxSLRfj9fiki5c4776z78JBTSCpFQOZyOfj9\nfsnht7LS1CqNBCZdlcrlcmXVBlpk9mpmhVSacrlczarbMEELSKfTKbuxVD2BKYpiWQXz+PgYuVwO\noihiZGSkqoLZjWpC5WsxOzs7tOuiUCjA6/Uim812TUzXu6eQue5amamV7dSdyNYlVfpMJgO32y1b\nK2KnnWTbRRCEvl/3dMvr3NwcBEHAxMQEZmZmpJZrhmEQjUYl0yiDwVDlJNvping8Hsdtt93Wsa+v\n0j1UIanSMkaj8dQVSZJLFwwGMT4+jq2tLVkjFvR6fcfzLk8Dmbnq5CkrMcjIZDI1I1JqodfrTy0k\naxno9OI0OZ1Ow+fzgeO4rjj8GgwGWK3WKktz0s5G5upImxxx6aPbZDslMLPZLHw+H4rFIhwOx9BX\nmkjbZjediQl0xhwNcXSkHYcZhoEgCJJ5C12dkkNg0kKhE2K6nyAHbslkUjGvReVcN6FRpA1dbWp3\nXpdlWWm8xOl0tlylb5dmBSb5HCCvwFSqr8JpICM+9Vqugdcq4rTTOfEJqBSYclXEVdfWwWGw3jEq\nDZF7RrIdWJaVDE5ILl0ngs2VXpEkM5ydaH1MpVJSSLjT6cS5c+ea/t3rdLq2X7dOOLC2cw2JRAJ+\nvx9arRYOh+PEmaZOUy/MulQqSaIhGo0im81WGXKcVmASMc3zvFTtH1bIwUo+n1fk3B/t6Fhp3kIL\nzHg8XuYOSovLsbGxpgQmLSDbaecdJOh8UIfDgTNnzij+tWjU1ljPEIq0UzeqdnMch2AwiIODA9jt\n9q65d59Es06y9Vpkm3WS5ThOkfOEp6GZ+I9GFXEyh5lKpaoikmiR2eqBRTKZVGckBwRVSKq0jMFg\nkIa6m4XMZMViMaysrLRloNMKSq9Iyi0k6RZhnU4Hl8vVloBqp7VVKQLy+PgYfr8fIyMjOHPmjKwV\n7k5gNBoxPT1d9jClDTmy2WyZwCTzLXQFs957iERXAIDL5WpqpmlQoaux/Rhd0UhgFotFSWCGw+Gq\n+AlaZOr1emlOOJVKdbXSpERYlpVMtwYlH7SeIVRlOzVd7Sb3lWKxiFQqJT2f++G1oJ1kaWpFlTTj\nJDuoFcl2DyL1en3NrOZa89/5fL6se4IWmbVe03g8jtnZ2bauS0VZDNY7RqUhcm0YWmltJRWRQqEg\ny3xas7QjdruJXFmSgiBIER5jY2OnbhFu5bqUICDJzx8MBjExMYFz585VtQz2E/UMOYjAJBtBOlLA\nZDJJgoG8HkajEevr603lrQ4q2Wy2rDIvx+y1kqBb1egNWa34iUwmI230rFYrlpeXYTQaB3LjfBLE\ndGx/fx+rq6u4du1aX4im01CvnVoQBASDQYRCIYyOjmJqagqHh4eIRqOSwJSjM6LbnCQw6znJkvgr\njuMGxkm2E+71jea/C4WCVBXf29sDwzDgeR47Ozv4t3/7N2xubmJ7exu5XE7WbqFvf/vb+IM/+APw\nPI93vvOdeO973yvb11ZpzHA9QVRk4SSzHbo6pNPp4HQ6MTU11dVNnFxCrVOc9vp4npciPGZmZlrK\n2GzESRVJMp/C83xPIzx4nkc0GkU4HMbMzAxuu+22jrRIKwVaYFZGChSLRUQiEXi9Xmg0Gqkav7u7\nW2XyM2htW7XIZDLwer3gOA4ul2vo2nlpgTk2Nga/3w9RFLG5uQmr1SpVESKRSNlhRL+KhmbheV4a\nq1heXh7qrFRRFCXH6ZmZGdx5551lv+/Kg6toNCqZh5HZbnq9GAyGvjikqeckm0qlsLu7C4PBAKfT\nKUWT1HOSBXo3+9+I0svfA/9PnwcKRWh+8b/D9Pr/AZ7nu3addPdE5XPK7XbDarXipZdewj/8wz8g\nEongypUrGB8fx9mzZ7G1tYXt7W1sbW1hdXW1pfXE8zx+7/d+D9/97nexsrKCq1ev4u6778b29nYn\nfkyVClQhOUR0ekZSEAREIhEEg0FMTk7KbqDTCp2KKJGLdoUkaceKRqNYXFzEtWvXZN3wabVa6eFJ\no5QMSI7jEA6HEY1GYbPZcPny5YHb8DYL2QwGAgGMjY3h8uXLUsWhXtsjaWWrnMEchA01PQ/abmv3\noECMYxKJRNXcX6N8w8p2anpet9eOw+1CcnPD4bB0zxyE9d4OoigiHo/D4/FgfHwct99+e80DuHoH\nVwDKsjDp+CO9Xl/VTm0ymRQtMBmGwe7uLjiOw5kzZ2p2cNRykqUPVIHOOsk2C+t5BpoP/j70ei2g\n00Pz4sMoijwwelvPfwcajQYzMzN485vfjDe/+c0QRRGvf/3r8fzzzyOdTuM//uM/8PLLL+N73/se\nPve5z0Gj0eDxxx9v+uv/8Ic/xPr6OlwuFwDgrW99Kx5//HFVSHYJVUgOGeSk7TRUijSWZREKhRCN\nRjE/P4/Lly/3vDrUL2Y7zUJmm2KxGFZXV3Hjxo2ObIYqHzhKifAolUrSPNOwVxNI+2ogEMDU1BQu\nXrxYVY0+qe0xm80im80iFApJArNTzqCdJpVKwefzQRRFqfthWCmVSvD7/YjH41IW70nv1Ub5hnRV\nqpbjsJIzU2lncJvNhqtXrw5dGy9NMpmEx+OByWTC+fPn2x4BqGceVsv5s1AoQKfTVVUwe5GFSVMs\nFuH1epHJZLC+vt7Q9KUdJ1nSGttNgcn/+/8HvSBA+M85alGnAf7l74F7lRexkc/npWfWxMQErl27\nhmvXrrX99fb29soyKVdWVvDss8+e+jpVmmN476oqbaPVaiGKIhiGQSAQQCKRwMrKCu68807FbDz7\nxWznJIhRCAlL79aMaS0B2YtT1kKhIK2x1dXVvjGB6ARkY0y3M7d6YNNIYDaKnuhFtuFJEHdiQDUU\nop1HSdSPHPeJWoZQ5PvRzqC5XA6lUqlmZmq3BaYoitjf30cgEMDs7CyuXLnSd1VUOclkMvB4PACA\nzc3NjnUJ1XP+5HleEpjJZBJ7e3soFArS3CZ9cGU2mzt6f+c4DoFAAEdHR6c2m5LTSZb+em2j1QNU\nkUAjCIBWp8jnZSwWUx1bBwhVSA4ZclQkU6kUGIbBiy++qFjr+H6Ykczn83X/PpFIlMU2dCuqgDz0\nDg8PpdakXjyIcrkc/H4/crlc05WVQYXMw+7t7UkVf7k3xs1ET2SzWcRiMeRyOYiiKMUJ0BvBbqyV\nZDIJr9cLrVYLt9td5Sg4TNACspvOo42qUuQw4ujoqKztsbKdWu7Ac9Lq7ff7YbVacccddyiuStpN\nGIaBx+NBqVSC2+3uWaVep9PVdf4kAjOTyWB/f1+KKqGzMMnh1WnWtSAICIfD2Nvbw8rKSkcNllox\n+qHHSIjIbFdg6n/xNyD+n29BEzkAtFpoWB7C3f9DkYco8XhcViG5vLyMUCgk/Xc4HMby8rJsX1+l\nMaqQVGkKURRxdHQEv98Pg8EAo9GIa9euKXZzr9TrItQSusSkyOfzwWg0wu12d63KQjuwrq+vS61J\nxWJR2gR2o8qQTqfh9/tRKpXgcDgUl/XXTeh50IWFhZ605jUSmMT+PZvN4vj4uExgVlYw5di0JRIJ\neL1e6PV6bGxsDLUjLcuyCAQCOD4+VlR0hcFggNVqrdv2mM1mpecIubecdq6Ovm9OTEzg0qVLshiP\n9St026bb7VZs3I1Wq62bhVkZLcEwDERRbLn9nq5Oz8/P93Qkop7RTyMnWaDa6KeewNQvb4H76FfB\n/Z8vQVMsQPsL/x2i+79A7/d36kdqm3g8XjV7exquXr2KnZ0d+Hw+LC8v49FHH8Xf/d3fyfb1VRqj\nCskho9UHCnHHDAaDmJqawrlz5zA6Ooof/ehH0qyMSuvQQlIQBOlhRyIsKm21O0WtCI+5ubky0UBv\nAmlzBdqIgwjNdoUOqcBqNJqhn3MjM8cHBweKnQel4wRqCUy6KkU2gURgkjXTrMCMx+Pw+XwwGAwd\nbc3rB4iAJNmH/RJd0SjwnG6nDgQCZQKTFg2VApMYx3i9XlgsFly4cAFms7nbP5piYFlWmqPv54zQ\nk6IlyHqJx+NVuan0B2l9n5ycVHR1up7ABGob/VQKTHoOU7u8hZF3fkr690wqpci54EQiIauQ1Ov1\n+OxnP4s3velN4Hke73jHO3Du3DnZvr5KYzQttjmeridSpedwHNdU4HypVJKytmw2G9bW1spuxD/5\nyU+wsbHRNcHTDk899RRu3LihyIcpmVuZmprC3t4e5ubmYLfbu2JSRBsDnCYDkjbiIK2PdK7hSbET\npJIQCARgMpngcDiGuspEGwqtrq5iaWmpL0RCM9BVBrJWKtvYyJoxm83QaDSSgDSZTHA6nUMvIIPB\nIA4PDwdubdSC4zipIkXuMbRxi1arRTKZhMViwfr6uqKfQ52G4zgEg0EcHBzAbrdjcXFRkc+8TkHn\nphKBmUgkAABjY2MYHx8vq2AqVVC2QiMnWYIoikgmk0in03C5XIq6X3zxi1+EwWDAu971rl5fikpj\nmrqRKO+oQqWjnPSAYRgGfr8fyWQSq6urdQ10jEYjSqWSoh/gpOqntBmBUqmEcDiMo6MjTE5O4vr1\n6105NZQ7A7KWEUdlGDqJneB5vqzlsVAo4ODgABMTE9je3m7bQXAQoA2F1tbWBtJQiK4yzM/PS58n\nApN2Bs1kMigWizAYDJibm5Na8wRBGLjX5SQqBeQgro1a6PV6TE5OVrX2x+Nx7O7uQhAETExMoFQq\n4ac//akinUE7DT33t7y8PDRroxJiIEZmyUVRxJUrVzA2NlY2s1vLFIpeL3LP7HaSk5xkeZ7H4eEh\ngsEgnE4neJ6va/TTizUTj8fViuEAoQpJFQC3DCzo2bStra2GN1Wl5zQCr12jUoRkPp+Hz+dDMpnE\n8vIyJiYm4HQ6O/59u5kBSbuCVmbVMQyDYDCIV199VQqwTqfT2NnZaavlsd/J5/Pw+/1Ip9NDayhE\nBKbFYsHx8TFisRimpqZgt9sBoMqIg7TU0i2PFotl4F43usq0srIytCKBQDo4RFHE2bNnq4xbGjmD\nVs7UkYp3vyKKIqLRKAKBQM9mp5UEmQnNZrPSTCihnuswPa5BumKKxaJ0IEGvl346kNBqtdJhy+Tk\nJK5cuQKj0dg7J9k6yN3aqtJbhvfuM6RUzpgQ4wOj0QiHw9H0bFo/CEmlOLdmMhn4fD4wDAOn04mt\nrS2Iooi9vb2Ofl+lZEDSpjHz8/O46667JHFPBCYdJUBaHitjBPp9A0igHWmV6nrcLWijlLGxMZw7\nd66sOj02NgabzSb9tyAIYBgG2WwWmUwG0WgU+Xy+KkqgX9cLx3HSSIEqIG+9VzweDziOg8vlqvt8\nqucMyvO8tF5SqVSVwKQrUkpfL8SV1ufzYWZmZuhjTTiOg9/vx/HxccszoY1mdsmBRCKRQCgUQqFQ\nKOuoUOp6yWaz2NnZgU6nq8oJbcVJtpbIlFtgqkJysFCF5BDC8zwikQhCoRCmpqbaCifuByHZy2sU\nRVEykAEAp9MJq9Uq3Yg7+QCqZaDTi80ombM9PDzE0tJSzZNzekNX2fJYTzDQ83T9dGJMMkGLxSKc\nTqdi3RS7AX2INTY21rRRilarlX73NPR6SafTVeuFPpRQ2gYQKBeQSjVY6iYMw8Dr9aJQKMDlcrUd\nFaDT6eo6gxLBULleKrMNe13xJqZCHo8H4+PjbeXHDhJ0S+/q6qqshlP1WqrpAwl6vQCouV66+bwt\nFovweDxgGAYbGxstOb3XM/qh5y5P4yRbD7ldW1V6iyokh4xCoYBnnnkGCwsLUttDOxgMBqlypFR6\nUZGks8xGRkawsbHRtZy7WgKyFxsgeuav3bmueoKBfqDTJ8Y6na7KQVYpMy+pVAo+nw+CIEgHCsMK\n/f6YmJjAxYsXZYlqaCQwSbW7VkWKXjO9OJDgeR6hUAjRaFQVkLh176hsU+zE76RR9EStAywANSve\nnRYMyWQSHo8HJpOprQPfQYJEefj9fthstq6+VxodSJCOGjKHmc/ny3J26RgkOa+X4zjJwdnlcmFu\nbk629wq9dzitk2ytg+x4PI7Z2VlZrlWl96iurUOGIAgoFounfgCSORQlD0wHAgHodDqsrKx0/HsJ\ngoBIJCLFpDgcjhMf+k899RTuuuuuU39vpQhIYtSUzWaxtrYGm83WtesgLUm0i2xlBiYdhN4Nkskk\nvF4vtFotnE5n1zJBlYgoijg4OEAgEMDk5CQcDkdPs/7oAwnaFZRuYetkxZsWkEtLS1hZWRlqAVks\nFuHz+ZBKpeB0OmXdFMsBLRjIeqnlOixXRSqbzWJ3dxcA4Ha7h9rNWhRFxGIxKcrD6XQq3nm1MgaJ\nrBcSVUJXMEdHR1uacSV7jVAohJWVFSwvLyui/b1ZJ1mtVotf+IVfwIsvvqio97hKTVTXVpVqtFqt\nLDedfmltLZVKHf0epCVtb28PNput5SrvaZwolSIgyQxos0ZNnaBeSxJtqkC79smZgUlD2tD8fj8M\nBgM2NjaGfhNIMlKtVituu+02RbTl1asw0KYtpOJNDt4qK5iVuYbNwPM8wuEwIpEIFhcXh74CWSqV\n4Pf7EY/H4XA4sLm5qcjNJV3xrpzZrXQdJgKTdqkmFamT7vWkpbdYLMLtdg91ni5wq5tjd3cXJpOp\nr3JC6ZxdGpKFSe4xe3t7yOVyUmxW5SEWPQNL5sk9Hg9mZ2cVZ7J0kpMsOUz86Ec/ikwmI/k2qPQ/\nakVyCCmVSlUnRe18jRdeeAFXr16V6ark5/DwEKlUChsbG7J/7WKxKLWVLC8vY2VlpeWb+g9/+EPc\nfvvtLRkmyJUBKQeJRAJ+vx8A4HA4+qplk2Rg0hXMygxM8jBvZqNPHvJ+vx9msxlOp1PR0TidRhAE\n7O/vIxgMYnp6umsZqZ2CCEx6vdC5hvR6qSUwSTTB3t4eFhcXsbq6OtQCkmVZBAIBHB8fY21tbeCy\nD+ncVLJeGIYpa3mkK5gcx8Hr9SKTyXS0pbdfICZLPM9jfX194A/jRFFEqVQqu8fkcjnJdd5gMCCb\nzcJsNkuvRz+tD4Zh8Mgjj+Dxxx/H/fffj3vvvVcRVVSVE1Erkiqdo18qknLPSDIMI7Vg2e12rK+v\nt31DbCXnUu4MyHYhbUbE6bdfH/LNZGCGQiHkcjkIglDWjkT+1Gq10sxfIBDA2NgYzp8/3zen5p2A\nFpAzMzO44447FN+G1gz1XEFpl8dYLCbFCOj1ekkk5PN5xONxLC4uKq6K0G1oUyG5jVKUBN0iTVPZ\n8nh4eIhEIgGO4zA2Nobp6WnpkEvumbp+oFGUxyCj0WhgMplgMpnKfuZ8Po9XX30VhUIBNpsNPM9j\nZ2cHpVJJusfQz6R2uiQ6Cc/zeOyxx/CZz3wG9913H5599tm+PlBUqc3wPtGGGI1Gc+qKpJJuVvXQ\n6/WyiV1imEIcN7e3t0/9GjRjBqSUCA/SlhIMBjE2Nobt7e2BM35olIFZKBSkCmYsFpNaZDmOg8Vi\nwdLSEqxW69A+JOm5nbm5uYERkCdRr6WatGwGg0GYzWaMjIzg8PAQsVisqoKpFFOoTkK39C4vLw9t\nrAlpeTQajZKY3NjYwMLCAorFovS5WCwGhmGkQ6zKbMNBE5inifIYRFiWlTKn3W53TYdTlmWlOe9Y\nLIZgMFjWJUF/dNupWhRFPPnkk3jwwQdx5coVPPHEE5ibm+va91fpLmpr6xDCsqzUFnka5DKL6RSF\nQgE///nPcfny5bb+PZl383q90Ol0sjtuvvTSS1hcXKz5NWsJSKD7Al4QBESjUYRCIVitVtjt9p6a\npPQaIpjC4TCmp6cxPz9f1iY76BmYlVQKSLvdPtTZdoIgYG9vD+FwGDabDWtra2UVSI7jytpjc7lc\nmSlUpetwv0O/HmpLb3l0BRmJaCSo6UMsUvnO5XKymLYogcooj6WlpaE8YCAIgoBQKIRIJAK73d5W\nyzc950234ZNDjMooJLlf752dHTzwwAMAgIceeghbW1uyfn2VrtLU4lOF5BDCcVxZDlC7PP3004o+\nWeY4Djdv3sT169db+nek+ub3+2GxWOByuapiBeTg1VdfhdVqLTupU4qBDl1BmJ+fx+rq6kBsbNuF\nnnGbn5/H2tpaXcFERwiQDWC/Z2BWQrJow+Hwia/HMEAL6nZeD9oUivxZKpVgMBiqDiX64X1IDqCC\nwWBNQT1siKKIaDSKQCAgy+tB2vArDyWIwKysYCrttaejPBYWFrC2tjbUBwz0noOsD7lfD/q5RDvJ\nAq85D9Mfre7rYrEYPv7xj+PmzZv40z/9U/ziL/5iXz7bVMpQhaRKbeQSks899xwuXLig2HY+URTx\n9NNPN101JWIhFAphenoaDoejo/NuXq8XZrMZi4uLihGQLMsiGAzi8PAQi4uLbZkIDRIcxyEcDiMa\njZ769aiMnCARJbQjJC0WlPgQpgW1zWbD6uqqKiBPISBPgmXZKrHAsmzNCqYSfg+0S+/s7OzQV6jJ\nDLXP58PMzAwcDkdHX4/KOW8iGGhXUFpgdvt3Q2bsPR4Ppqam+iLKo9MkEgns7u5ifHwcLper669H\npTEU+RBFUTqUoNdNpcAtFov4whe+gK997Wt4z3veg/vuu2+oDwUGDFVIqtSG53lZTGh++tOfdqxa\nJxfNtN8S8UTEQreqb8FgEACwvLzccwFJXGjj8ThWVlaGvsWIFtTLy8tYXl7u2MOxXgYmXY3qdgZm\nJXSFemFhAaurq0N9wEBX3HrR0lvp8JjNZsGyLIxGY1UFsxvXRQsmcgg3zAKBjEV4PB6Mj4/D6XT2\ndCSAuIJWHko0EzshF3SUh9vtHmpTMuCWM+3Ozg40Gg3W19cV5/Jdq636pZdewoc//GHMzc1hY2MD\nFosFTzzxBO699168//3vV9zPoHJqVCGpUhu5hOTLL78Mm82maGe1RkKyUCjA7/cjFothdXW1o2Kh\nEtLKsrOzg+npaYyNjWF8fLzrbUgMw8Dv9yOTycBut2N+fn6oBWSpVJJiCXo9s0O3O5IPIhY6kYFZ\nC57nEQqFZKnIDgK0K60SK261xEKtNSOXWCCxNz6fDxMTE3A6nYrtUOkWyWQSHo8HJpMJLpdL0aZk\ntWInSBSSXIcSwxblcRK0M+3GxkbfZYXyPI9vf/vb+Mu//EuIooilpSUEAgGkUinMz89ja2sL29vb\n2N7exute97qh3k8MAKqQVKmNIAiyuJmSdgw6oFlp1JrjzGazknhyOByw2WxdudnVivCoFAu1jBTo\nuAm5yGQy8Pv9KBQKcDgcmJ2dVWQrZbcoFAoIBAJIJBJYW1vDwsKCYh+AtLlPZWWhnQzMWtAxDUtL\nS1hZWRnqdqXKWBO73d5XFbfK3FQiMCvbHZs9lKCNyEZHR+F0Ooe+wpTNZrG7uwsAcLvdfS+Y6EOJ\nWlVvet3Uei8Ma5RHPXieRyAQwOHhIZxOJ+bn5/vumRsKhfDggw8iFovhE5/4BG677bayvz86OsJL\nL72El156Ca+88go+9alPKfY5qtIUqpBUqY1cQjIQCECn02FlZUWGq+oMP/rRj3Dp0iUYjUYkk0n4\nfD5wHNdV8UScV4kLK9C4hbWypYT8KYoiLBZLmVho1Q2UvAaiKMruQtuP5PN5+P1+pNNpOByOvny4\nA9WzUWTNNMrArAUtIDvd0tsP0DN//SggG1FZjarV7kgfShCBmUgk4PF4MDIyoviKWzdgGAZerxfF\nYhFut7vvKkytUlnBJFFIpBXfbDYjk8kgk8nA7Xb37T1VLkRRRCQSQTAYbMqpV4mk02l88pOfxL/+\n67/igx/8IN7ylrcM9e90iFCFpEptyAbitEQiESlXUak8//zzmJ2dRTQahcFggMvlqsp86xRyR3iQ\noXi6GpXP56Xwa3rTRwcTE4MDv98Po9EIh8NRFaw+bORyOfj9fjAMM9AV2coMTNpIwWw2S2vGZDIh\nFovh8PBQmpFVBeQtATlsM3/15ulKpRJYloXBYMDi4iJmZmYU6QjaLUjFjQim6enpgbyHNEuxWITP\n58Ph4SEsFgs0Gg1KpVKVMdSwZKfSxkLkHqKkNvhmYFkWX/nKV/BXf/VX+J3f+R389m//dt/9DCqn\nQhWSKrWRS0geHR0hHo9jc3NThquSF9KK9vLLL8NqtWJzc7Nrg+C1BGQnH5okN6rSrEWn00Gn0yGX\ny2F0dBRut7trIlqpZDIZ+Hw+lEolOJ3Ood38iaIIhmGQSqUQiUSQyWSg1+trxk0MagZmLWgbfqvV\nCofDMfQzf5lMBh6PB4IgwG63A0DZoQTP81JbdSN3x0GBZVlptr5fWxTl5KQoj8poGzo7tdJFlj4A\n7WfS6TR2dnb61lhIFEV897vfxUc+8hG88Y1vxJ/8yZ8MfKVdpSaqkFSpjVxCMpVKIRQK4fz58zJc\nlTwQd8lwOIzZ2VlwHAebzYbZ2dmOf2+lRHjQjpKjo6MYHx+XMsfIXJRcs3T9QiqVgs/ngyAIaksv\nbrWnBYNBHB0dlZkKNZuBSaqYg7DpA14TkIFAAFNTU6qAxC2x6PV6wXFcw0OoepmGgiAMlMCk277t\ndrui56i7wWmjPDiOq5rBpAUmvWb65V6Tz+fh8XhQKpWwvr7el50/P//5z/G+970PMzMz+NjHPgaH\nw9HrS1LpHaqQVKlPqVRCi7/7KhiGwSuvvILbb79dpqtqH7IxJuYgJN/O4/FgdHQUCwsLHfveShGQ\ndMbf3Nwc1tbWqh7sdNtavVk68mGxWPp+o5RIJODz+aDVauF0OoeV/4a9AAAgAElEQVS+IktcaYlT\n8eLiYlO/41oZmIVCATqdrm8yMGtBYiv8fj8mJydV11G8NvNXKBTgdrvbPnQhbdWV1Shyr6EPJiwW\ni2IFpiAICIfD2Nvb69sZN7npZJQHiUOi1w2511QKzJGREUXca0iVOh6Pw+12Y2ZmRhHX1Qr7+/v4\nyEc+Ao/Hg4ceegh33nln3/0MKrKjCkmV+sghJFmWxfPPP49r167JdFW1ieVjeOHgBZh0Jlxdugqj\n7jVxRMxSEomEVFmhNyTBYBAajQarq6uyX5dSBCTLsgiFQjg4OGg7oqFyli6bzYJhGACoMvhRysO7\nHsRR0ufzwWg0wul09r2D4mkplUrSRkdOV1o6A5Ns+khVobLqraQZw0oB6XA4eprzpwTy+Tx8Ph9y\nuRxcLlfH2r5rmYkxDNOyMVSnEUUR0WgUgUAANpsNa2trQzsPSsjlctjd3YUgCF2P8uB5vqqCWSkw\nybrp1jOKPmRYW1vD0tKSop+NtWAYBo888ggef/xx3H///bj33nuH/qBERUIVkir1YVlWEkDtIooi\nnn766bo5jXLgSXjwP7/1P5Er5SCIArZnt/H5X/k8uAIHn88nmaXYbLaaN/BoNIpCoSCbIRB5vyhB\nQBaLRQSDQSnzcHFxUfZT/cpWR/LwrjT4UUIlimTa+f1+WCwWOByOoQ9ILhaL0kGL3W7vWtSNEjIw\nayGKIo6OjuD3+xURFK8EiElKKpWCy+XqmfHUScZQlfN0nVrH5JDB5/NhZmamL01S5EbJUR7EI6Cy\ngkna8el1I9e8N71G5ufnYbfbFVtRrwfP83j00UfxyCOP4O1vfzve/e53D303hkoVqpBUqY8cQhIA\nnnrqqY4Kyd/9l9/FTw5+ghnzDERRxF56D29deiveuPDGpsxSjo6OkEgkcObMmVNdR60MyF4JSIZh\nEAgEkE6nsba21jVxQEMb/JAP2qGPrkR1ehNGV5cmJibgcDj6ztxAbgqFAvx+P5LJZMODlm7TjQzM\nWpBDBp/PpwrI/4SuUivZNEYURcmtmq5g0s7DRCycth2fzPypa+QWLMsiEAjg+PgYLpcLc3Nzilwj\ntaDb8ekKJi0w2zEUSyaT2NnZwdjYGFwuV9+JL1EU8eSTT+LBBx/E1atX8eCDD3bFQ0KlL2nqTTHc\nfRpDTL88DKLZKCx6C0qlEvL5PHiWh3ZSiytXrjT17w0GAziOa/v7t5oB2Umy2Sx8Ph8KhQIcDgfO\nnj3bs9+jTqfDxMRElZkAy7KSSIhGo8hms+A4rmbL2mmFAh0Sb7VacenSpaHf+BEBmUql4HA4sLm5\nqaj3utFoxPT0dFlFozIDMxQKtZWBWQtaQI6NjeHChQtDf8hAiwO73Y6NjQ1FrZFKNBoNLBZLVV4l\ncR4m6+bo6EgSmBaLpWzNnCQwycyf0WjE+fPnhz4bUxAEhEIhRCIRrK6u4tq1a33X7qjT6TA+Pl7V\nfisIglTBTKfTiEajkqFY5boxm83Sz03aekVRxPb2dl92u+zs7OCBBx4AAHz5y1/G2bNnO/49eZ7H\nlStXsLy8jG9+85tlf1csFvH2t78dN2/exMzMDB577DHV3KcPUYWkyqnQarXgeb4jbR2CIGBrbAv/\ntP9PmDfPw2Q2YUQ/ghuOG01/Db1eD5ZlW/7e9SI8erHhSiaT8Pv9EAQBDocDVqtVsRs/g8EAq9Va\nZtDRSCjQWYbkZPikDYsgCIhEIgiHw5iZmcEdd9yhqPm7XkBmhTOZjCIFZCM0Gg1GRkYwMjKCmZkZ\n6fOVrY6xWKxmBmatdUMcJX0+H0ZHR1UBiVvzrMFgEAcHB30rDmjoytL8/Lz0eZK3S+43BwcHyOfz\nVQJzbGwMgiDA4/EAAM6cOTP0s9T0XOjCwgKuXbvWdy2bJ6HVausKTFLBzGQyksCkvRCWl5dhs9n6\n7l4Si8Xw0EMP4ebNm/jYxz6GN7zhDV17Pnz605/G1tYW0ul01d996UtfgtVqxe7uLh599FH88R//\nMR577LGuXJeKfKitrUMKz/OnqtQRbt68iXPnzslaCSI265FIBBMzE/ib4N/g++Hvw6A14Pcu/x7e\ndv5tTd8Ei8UiXnzxxaYrmEox0CGGMX6/H3q9Hk6nsy+txBtBt6zRBj901ARtniAIguRKa7PZJGfe\nYYYYpGSzWTgcjr5qPWuXykoUvW5IEHo6ncbo6CjW19f7snIgJzzPIxQKIRqNDrXrKBGY2WwWiUQC\nR0dHUhzS+Ph4WVs1WUfDAh3lQfJTh/1wjud5yQl+cXERIyMjUiWTNqJrpfLdbYrFIr7whS/ga1/7\nGt7znvfgvvvu6+rBQDgcxm/+5m/ife97Hz71qU9VVSTf9KY34YMf/CBu3LgBjuOwsLCAo6OjoXrv\nKRy1tVWl8xiNRrAsK4uQJOYxh4eHWF5exvXr16HX6/GJs58Ay7PQaXXQalq7Sev1+qYEs5IE5OHh\nIQKBAEZHR3H27NmB3QjTLWuVFQUiEkhWaSaTAcdxGBsbw+LiIiYmJk7tOtzPMAwjOWw6nU5sbW0N\nzcO3ViWKtLB6PB7odDpYrVaUSiW8+OKL0Gq1Vc7D/ZJLdxpoR8nFxcWBrC61glarhV6vRzweRyaT\nwfb2Nqanp8sOJuhKFLk/0Qdacpm1KAk6yuPixYt9V22TG7oqu7S0hOvXr9cUh/TBRC6Xw8HBgSQw\n5Z7dbRVBEPCNb3wDDz/8MO655x48/fTTPdlH/OEf/iEefvhhZDKZmn+/t7cnOerr9XpMTk4iFoup\nM5t9hiokhxS5HoYGgwGlUulUX4NhGMkYxG6348aNG1U3XYOuvcqTTqdraCqkFAFJz/tNTU0NdSse\naT0aGRkBwzAoFotwOp2w2WxSq+PR0RF8Ph9YloXBYKgyahlUm/5cLgefz4d8Pg+n09mXeWVyQke9\njIyM4MKFC1UbJtp0I5FIIBQKDUQGZj1I63coFILNZsPVq1cH9v3QLCTnLxaLwel0ls2XazQaaR3Y\nbDbp39RrdRwUgUlHeahtvbeIxWLY3d2F1WrFlStXGna8EOfyyvsN3Vqdy+XKZneJ+zAtMOU2Fbt5\n8yY+8IEPYH19Hd/61rewtLQk29dvhW9+85uYn5/H5cuX8f3vf78n16DSHYb76aJyagwGQ1sziACQ\nTqfh9XolodDNqopSBCTP81K75tzcnDrvh1tukoFAALFYDCsrK2UnwiaTCZOTk1X/P2lx3NvbQy6X\nA8/zNZ1AldR21ArEaIm8VzqV8ddPxONxeL1emEwmbG1t1T1xr2e6QWdgHh8fIxAIoFgswmAwVEXb\n9EMLNamkBINBzM7OnrgRHgbo9sS1tTW43e6m7wFarVb6/dM0MmuhRYJSM3eLxSI8Hg9yuRzW19fL\n5tmHlUwmg52dHRgMhlNXZesJzEr3YXrmu9JUrB2BGQqF8OCDDyIej+Mzn/kMLl261PbPIAf//u//\njm984xv41re+hUKhgHQ6jd/4jd/AV7/6Ven/WV5eRigUwsrKCjiOQyqVKpuTV+kP1BnJIUUUxVNX\nEgEgGAxCo9FI7QnNfF9SQdBoNHC5XB1/kJGIEiVlQLIsi3A4LM1frKysDH3VoFAoIBAIyJJ5SAx+\nKqMmiOFGpVGL0jZ7hGw2C6/XC5Zl4XQ6FW201C0SiQS8Xi+MRiNcLpfsLVtKzcCsB51pNz09rc63\nobytt1tzofXiJujWanrmu9vv436O8ugUhUIBHo8HhUIB6+vrVYeU3YA2FaPjbXier6pg1nI7T6fT\n+OQnP4nvfe97+NCHPoS3vOUtivu9fv/738ef/dmfVc1Ifu5zn8OLL76Iv/iLv8Cjjz6Kf/zHf8TX\nv/71Hl2lSg3UGUmVzmM0GpHL5U78/0RRxMHBgRQWv7m52bVWGq1WK81J9jrCg8yBHh8fY2VlZejn\nloDXDGOI4+iZM2dO/buhnUDpeQsyD1WrXa2yCtXLObpMJiO17pIK5LBDBKTBYMDm5mZVpUguDAYD\npqamMDU1VfZ5uvIdiUSkDMyRkZGytSN3BmY9yFyo1+vF5OQkbr/99r7LtJMber6t22299SrftMBM\nJpPY29uTBGalSOiEwByEKA+54TgOfr8fx8fHcLvdmJ2d7dm9XqPRwGw2w2w2Y25uTvp8pcAMhUJ4\n4okn8MUvfhE2m02K7fnBD36A3/3d38UzzzzTFx0IDzzwAK5cuYK7774bv/Vbv4X77rsP6+vrmJ6e\nxqOPPtrry1NpA7UiOaTIVZGMxWI4Ojqqm0dEnDZDoZDkBtet2T/SvvrTn/4UgiBIznzj4+Ndr0KR\neIZ0Oo21tbVTVdsGBXrez+Fw9PRhTm/2yEexWCybo+tGm2Mmk4HX6wXP81IFcthJJpPwer3Q6/Vw\nuVwdE5DtUBltQzZ9pJpwmgzMRt+TtPWOjo7C6XQO7Tw1ga7KzszMwOFwKH5TzfO8tG7In8ViURKY\n9Npp51CrMspjbW1t6A8tyX4kHA5jdXUVS0tLffcc5nkejz32GP72b/8WZrMZ8/PzUqvy8vIytre3\nce7cOZw7dw5Xr17t9eWq9DdN3XRUITnElEqlUztfptNpBAIBXLhwoezzLMtKp6DkIdatdqvKDEgA\nVXEB+Xy+7IFNBKbc15jNZuH3+5HP52G329V2IpRX2xwOh6Ln/TiOKxOXpM3RZDJVVTBPs0kj88Ki\nKMLpdFZVw4YRIiB1Oh1cLldfmYFUZmCSmbpmMjAbkUgk4PF4MDIyApfLBYvF0uGfRPmQ2Irx8XE4\nnU5Zo6h6Ac/zZeIyl8uVmUPRIrOWwKQr1WqUxy1EUcTR0RG8Xi/m5uZgt9sV0ZbeKj/72c/w/ve/\nH7Ozs/joRz8Kh8Mh/Z0oiohEInjppZfw0ksvYW9vDw8//HDvLlZlEFCFpEpj5BCS+XweL7/8Mu64\n4w4Ar825kdbNlZWVrp2CtmqgQ58IZzIZSSRUuoC2IxJSqRR8Ph8EQYDD4VBn2/DaazIIYolucyQf\ngiBIpgnk4yTb91QqBa/XCwBwuVw9mdFRGqlUSorx6DcBeRInZWDWcwIlr4kSq7K9gsRWGI1GuN3u\ngRfVxByKXjulUgk6nU5aMwBwcHAAs9kMt9s99JVq4NaB1O7uLiwWC9xud1+2f+/v7+MjH/kIPB4P\nPv7xj+P69etDv59Q6QqqkFRpDMuyDaMxmoHjONy8eRPnz5+X5tzsdjsWFha61jIitwPrSSKBtMhW\nVhJIy5nf74der4fD4VCFAW5VUXw+H3Q6HZxOJyYmJnp9SR2hsgpFRAKAKpFQLBbh8/mg1WrhcrkG\n9jVpBSKqiQnXML0mdNQEqULl83mIogiWZaHX67G6uoq5ubmhyMBsRDabxe7uLgDA7XYP1EFDO3Ac\nh+PjY/j9fqlbgud56PX6qtndQYi3aRaGYbC7uwue57GxsdGXhy8Mw+CRRx7B448/jvvvvx/33ntv\n37XiqvQ1qpBUaYwcQjKZTOK5557D5ORk1+fcuhnhQUQCqVzSlQTiGplOpzE6OjpwVZR2oN15TSYT\nnE5nXz7I5YCIBJIpFovFpIOJiYmJsgrmMG30COl0Gh6PB8AtYTBMArIe2WwWHo8HHMdhcXERGo1G\nuu8McgZmI/L5PDweD4rFItxud193NMhFoVCA1+utGeVBuw+TP0ulEvR6fc21MyiUSiX4fD6kUinJ\nxKXf4Hkejz76KB555BG8/e1vx7vf/e6+rKSq9D2qkFRpDMdx4Hm+5X9HZjBI5S2TyeD1r399B66w\n/vdXQoQHCf4OBAIYGRmB2WxGoVCoelgrKSqg05BZFL/fj9HRUTgcDtnjGfoRIqoNBgOcTifGx8fL\nWqvpVrXKtTM6Oqp445B2oOdC1bbeWzAMA6/Xi0KhALfbXddsic7AJEKhnzMwG0Gq9+l0Gm63W9Ez\n1d3iNFEetQQmqXqT+00/Ckye5xEKhRCNRuFwOLCwsNB360QURfzgBz/Agw8+iGvXruHBBx8scx1X\nUekyqpBUaUyrQlIQBOzv7yMQCGB8fBwOhwNjY2N46qmncOPGjY7etPP/90sQvvYXt/7jN38fxv/y\n1p4JSJ7nEYlEEA6HMTs7C7vdXvXAZVm2qj2W53mYTKYyc5+TZuj6BRLvEggEMDEx0VV3XqXSblWW\nXjtko8dxnJRj2O2YCbmhnWndbrcqIPFaBE4ul4PL5WpbLJG1Q4tMJWdgNoJlWfj9fsRiMTidTszP\nz/edMJAbnucRDoelKA85XUcr104ul0OpVJI8A+i1o6TDCVEUsb+/D7/fj8XFRayurvblffHVV1/F\nAw88AI1Gg49//ON1nfBVVLqIKiRVGtOskCQPL1o40c54zz77LC5fvtyRjYkoisj/3y/C+J4/gqjX\nACKgEYHS5/43TDf+H9m/XyNYlkU4HMb+/j4WFhawsrLS0gOVRAVUtseKolhVRehFYHU7kMOFYDAI\nq9VatTaGETqewWw2w+l0nroqS+J66IOJXC4HQRBO5QLaTWgB6XK51NZElFfbnE5nx0YDaq2dXmZg\nNoLneQSDQezv72NtbQ2Li4uKXM/dpJdRHqVSqWYF02g0Vq2dbgvMeDyO3d1dTE5Owul09lUFlRCL\nxfDQQw/hxz/+MT760Y/iDW94Q188+1WGAlVIqjSG53lwHFf370ulktQqsrS0hNXV1ZoPiueffx6b\nm5uyuubRER6Fd16D6QUfhMlbFS5tgkHx9Rdh/n//Vbbv14hSqVTmRLu0tCTrQ7zSaIOegxodHZXM\nfZR0Ekzncc3NzXU13kWpiKKIWCwGn88Hi8XSlbZeURSRz+erDH5oF9BeH05ks1l4vV5wHKcKyP+k\nVCrB7/cjHo/3rNpGDrYqq1C0sZjcGZiNEAQB4XAYe3t7WF5exsrKiiogK6I8nE6nYp4B5HCCXju1\nqt+dEJjZbBY7OzvQ6XRYX1/vS8feYrGIL3zhC/ja176G97znPbjvvvt6foijolJBUw8lZfe2qHSU\nehuXfD4vbXJWV1dx48aNhjc4g8EAlmVluabKDEiNRgPotOVHGCIgdmHPlc/nEQgEkEwmsba2Brfb\n3ZGNjVarlTb7NHSG4cHBATwej+TK16sWR7q1ymaz4cqVK4rZ2PQKstnz+XwYHR3FuXPnuraxIYLR\nYrFgfn5e+jx9OJFKpbC3t4dCoVC21miDn05ABCTLsnC5XHXn/YYJerbNbrdjY2OjZ9UHjUaDkZER\njIyMlM1hVboPx2IxKQPTYrGUVaHkqH7T1TabzYarV68qvu22G5DYCrPZjIsXLypuVMBoNGJ6errK\nzIaufkejUak1n87eJX+2+nsuFovweDxgGAYbGxt92RYvCAIef/xxfOITn8Cv/dqv4ZlnnulLIayi\nQlArkkOMIAhlApBs/BiGgcPhgM1ma2qT88orr2BmZuZUQ+GNDHQKT/4tTL//hwButbaKOoD9y7+C\n6fI9bX+/RmSzWfj9ful1aMXIoNM0anGsrEDROXSnheM4hEIh7O/vY3FxESsrK0O/2aONhcbGxuB0\nOhW32auEhJ3THyQ7tbK9ut3fby6Xg9frRalUgtPp7EvXRLnhOA7BYBAHBwd9264pCIJU/SZVqGYy\nMOtB3j8+nw9WqxUOh2PouxqAW++f3d1dCILQt7EVldDPLbqCSQRmZQWz8t7DcRwCgQCOjo5aNhdS\nCqIo4rnnnsMHPvABbGxs4MMf/jCWlpY69v0KhQJe//rXo1gsguM43HvvvfjQhz5U9v98+ctfxh/9\n0R9heXkZAPCud70L73znOzt2TSp9h9raqtIYcnNPJBKSeyLZ+LVykyazYIuLi21dQzMOrIWn/g7C\n1/83oNVC+7Y/wMiVX2v5e51EKpWC3+8Hx3FwOBx95Q5Igs5pgZDP56HVassEwvj4eEubNZZlEQwG\ncXh42JG23n5EFEUcHh7C7/cPjLEQPQdFPsgMXWX1u54AIgKyWCxKhjHDDu0kubKyguXl5b4TkCdR\nLwOT3Hvo+w/JwIzFYvB6vdIBzLDPVQONozwGFdJeTYtLen7XYrGAZVkkk0msrq5idXW1L98/wWAQ\nDz74IJLJJB5++GFcunSp499TFEXkcjmMjY2BZVm87nWvw6c//Wnceeed0v/z5S9/Gc899xw++9nP\ndvx6VPoStbVVpTEsy+LZZ5+FyWTC+vp6220iRqOx5dbWViM8Ru56G3DX29q6vpOuI5FIwO/3Q6vV\nwul09mW7DMmzHB0dhc1mkz5PR0zQodXEiY/+oAVisVhEMBhELBbD6uoqrl+/3pcPcDmhnWknJydx\n6dKlgdkAG41GGI3Gss0rPUNHWhwZhpGq30Qg6HQ6RKNRFIvFtg6iBhF63m9paQnXrl0b2AOYeq35\n5N6Ty+WQSCQQCoXAMIzkBLqwsACr1QqNRvPaGMMQQrvTulwubG1tDc1rQbdXz8zMSJ8XBAHRaBT/\nP3tnHt5Umb7/O2m6pG2gbUr3JVstdBGhbPpFYYYRhOE3KKDiBjquIGNHZRzWFhEoRVAUXEcRR0Vg\nHBXFyjgzisM4WBaVlk3brN23NM3S7Of8/sBzPEkLpW3aJO37ua5e44S0PUnfJO/9Ps9z32q1GkKh\nEDExMWhqakJ9fX2387uB+toyGo3Yvn07vvrqKzz99NOYM2fOoP1teTwe+5p0Op1wOp3DZl0RBhdS\nkRzGUBQFo9HY72pKU1MTTCYTFArFZe/HrLVAyIBk2qq0Wi2EQiEbZTJc8G6PNZvNoCiKPRRwOp1I\nS0sjLaz4xV5eq9USZ1r8Uv3W6/Wora2F3W6HQCDotj2WqUANF5hs2ZqaGiQlJSE9PX3Yv36Ai+MC\n1dXVAACJRAIej9dtBmYgx0z4Gu68ebC2Ow8EHR0dqK6uRkREBORyucd7rffhFnNQ4Xa7PbonmENV\nfwlMp9OJt99+G3/5y1+wdOlSPPjgg35Zy263GwUFBaiursajjz6K0tJSj3/fs2cPVq1ahVGjRuGq\nq67C888/j/T09EG/TkLAQlpbCT1jt9v7/TP0ej2ampowZsyYbv+dWWNut5v9b38JSIqi0NTUBJ1O\nN2TaEn1BZ2cn1Go1TCYT4uLiIBAIPGaghqNAYNaKVqtFXFwcMjMzER4e7u/L8jvMWuns7IRUKoVY\nLAaPxwNFUV3aY+12O0JCQjw2eMEWdH4lcA1jRo0ahczMzCEtgq4Uq9UKpVIJu90OuVx+WcfenjIw\n+2PSEkj4M8ojkLFaraiurobT6URWVhZEItEVfy/XIIo7v9udA3FkZOSAPd80TeOLL77Apk2bMGPG\nDKxevTogOpwMBgNuueUW7Ny5E3l5eeztbW1t7Of5a6+9hv379+PLL7/045USAgwiJAk943A40Ms1\n0AWTyQS1Wo2rr77a43bGeZVxYQX8JyDdbjfq6+vZLMyMjAwiCvCLsZDVaoVEIuk2x+5SAkEgEHRp\njw3mDR4DNxtTLBYjMzNzyAmfvmC1WqFWq2E2myGTyVgB2RNc92FuDl1P7dXBANPurNFoyFrhwM3H\n7M1a6Y7LZWAGS4sjENhRHv7E6XRCrVbDYDBALpd7tLj2l94IzP5G3FRWVmLdunWIj4/H5s2bIZFI\nfPY4fMGGDRsQGRmJFStWdPvvbrcbcXFx6OjoGOQrIwQwREgSesbpdLJtpn3FZrPh7NmzKCgoAHCJ\nCA9cOm5kIHG5XKitrUVDQwOSkpKQlpZGPrzxi/h3Op2QSqXsrFJvYCoI3C+3291tPEkwtGwxczk6\nnQ7x8fFEFPwMV0BKpdJuDxv6wqXaq70NfiIjIwNu/XAdR5kwdHIw5TnvN5D5mFeSgcltcfT3+uFG\neXi3aw5XKIpCTU0N6uvrkZmZieTk5EHbIzD5u94mPzRNQygUenTg9PT+09jYiGeeeQYqlQqlpaWY\nPHlyQHTrtLS0IDQ0FDExMbBarZg5cyb+/Oc/Y+7cuex9GhoaWJPEjz76CKWlpfj222/9dcmEwIMI\nSULP+EJIUhSF8vJyTJkyJSDmH4GLm1SdToeWlhakpqYiNTU1oE+rB4uOjg6oVCoAgFQq9Xk4PLPB\nM5lMHh/SNE13aY+NiIgIiA9c7lwbaUv8BZvNxrY7+1JAXg7vDEPuBm8g4216c31cx1GZTEZEAS5W\nM3Q6HRobG/0679fT+vF1BmZPMFEeNE1DoVAMqzn8S8GdOU9MTAyo1l5GYHpXMGmahl6vx7///W/k\n5eUhPz8fcrkcr7/+Og4ePIjVq1dj4cKFfj+w4FJRUYElS5bA7XaDoijcdtttKCoqQlFRESZMmIDf\n/e53WLVqFT755BMIBALExcXhlVdewejRo/196YTAgQhJQs/4QkjSNI2jR48iJycHUVFRCA0N9ZtA\nsNls0Gg0MBgMyMjIQFJSUkC9ufsDxplWrVZDIBBAKpVixIgRg3oN3hEBZrMZNpsNISEhXeJJBkvE\nURSFuro61NbWIiEhARkZGURAwlNABkqOKjfD8HLxNsz85UBcr16vh0qlQkREBGQyGQkRh6c7bWpq\nKtLS0gLy/fZKMjCZCqYvDiiGY5THlaDX61FdXY0RI0ZAJpMFTccHM9f65ZdforKyEt999x2USiUE\nAgGmTJmC/Px85ObmIjc3FwqFgnyOEIYKREgSesblcsHtdvfpe7kRHk1NTWhvb/doTxOJRB7tIQO5\nGbVYLNBoNLBYLMjMzBywlqpggqmeaDQahIeHQyqVBtyJOHd+jmuw0V17rK9Ord1uN+rq6lBXV4fE\nxESkp6eTD378cgjT0dEBqVQaEAKyJ7jxNsyXw+HwMPjprwOowWCAUqlEaGgo5HI5oqKifPwogg9m\nY63T6dhDmGCcj+5LBubl8I7yCIbX0GBgsVhQVVUFHo8HhUIRlK8h5sB8/fr1mDhxIoqLixETEwOl\nUomzZ8/i7NmzOHfuHFuBPnToEJKSkvx92QRCfyBCktAzfRGSPWVActtDzGYzTCZTl+oBIzL7eyJp\nNBqhVqvhcrkgkUhIhh1+md/SaDSIioqCVCoNquoJTdPdGjhlmpwAACAASURBVGxQFAWhUOixfnpT\nPeDa7ZNohl9gjFE6OjogkUiGxCGM0+nsIjB7e0BhNBqhVCrB4/Egl8t75SI5VOHOhsbGxkIikQRN\nVak3cA8omP+12WwQCAQe5izMZxgz79fQ0ECiPDjY7XaoVCqYzWZkZWX5fJRisPjpp59QVFQEPp+P\n0tJSZGdnX/b+LpcLfD6frAFCsEOEJKFn3G43XC5Xj/fzRQak2+3uUn1yOBwemzuRSNSjOQLTqqnR\naMDn8yGRSIL2A8qXMA6SWq0WI0eORGZm5pCKNmHyC6+kvZFrfOJ2u9lNXnJyMsnG/Bm73Q6NRoP2\n9nZIJBIkJiYGvYC8HD0dUDBriM/no76+HhRFQS6XB4R9fyDAzIZGRUUN29lQl8vV5YCis7MTDocD\nIpEIiYmJGDFixJDPwOwJt9sNrVaL5ubmATVdGmja2tpQUlKC77//Hps3b8b06dOD8nEQCH2ECElC\nz1AUBafTecl/H+gMSO7mzmQyeZizREZGerTHhoeHs62aERERAdmq6Q+4cRXDMe+QWz1g1pDD4WDF\notVqRUJCQlDN5Awkw01A9gRj0NLa2ora2lp27QgEgi4GP4FiEDWYMAHxYWFhkMvlQdXdMFBwozzi\n4uKQmpraxUV2KGZg9gRN06irq0NNTU1Az8z2hN1ux2uvvYa9e/fiiSeewD333BMwhkAEwiBChCSh\nZy4lJL0jPIDBdWHlzq6YTCa0tbXBYrGw7mIxMTGsyBzKH8yXg5uNOWrUKGRkZBChhItVA6YCGRcX\nh4iICHYtceMBmOp3IMZLDAQOhwMajQZ6vR6ZmZlISkoadqKoO6xWK1QqFTo7OyGTydj2+EsZRPH5\n/C7iYCge3JjNZg/HUdLae5HeRHkMlQzMnvAW1hKJJCgrshRF4eDBg3j22Wcxf/58rFixghycEIYz\nREgSesZbSAZSBqTb7UZDQwNqa2shFouRkZEBPp8Pi8XCVp7MZjP7wext7jNUxQF31o+YxfyC0+lE\nTU0NmpqaLhn5wlSfuOuHcW/srj12KAgth8MBrVaLtrY2IiA5MOZCRqOxV/EmTIs+t8WRqWJ6G/wE\n4yGX1WqFUqmEzWaDQqEgYwM/46soD24GJjeiJFAzMHvCaDSiqqoK4eHhUCgUQdnyTNM0Tp48iXXr\n1iErKwsbN25k8xUJhGEMEZKEnmFaS3sy0BlMXC4Xamtr0dDQcEVCyTs7zGQydREHXHOfYN1EO51O\n1NbWorGxESkpKUhNTQ3KjaqvcTqd0Ol0aG5uRlpaGlJTU3u9+aIoqsvsk91uZ8VBVFQUW8EMFtHO\nFZAkCucXHA4H1Go1DAaDT82FnE5nlxlwbvWJe8gViNUnxnTJaDRCJpNBLBYH7XulL+FGeQykYYz3\n5xg3w9AfGZg9wRw4OBwOZGVlBW3FWqfTobi4GO3t7Xj22WcxduxYf18SgRAoECFJ6JmWlhY0NTUh\nPT0dISEhfhWQDocDOp0OLS0tl6wo9Qa3243Ozk6P6pPdbveYW2G+AnFjx8B9XtLS0pCSkhLQ1ztY\ncJ+X9PR0pKSk+HxzdaXiIJAqB06nE1qtFq2trURAcuA+L4NVmb1c9YlxIB6siKRLwY2sCGZjFF8T\nKFEe3hmqFotlQDMwe4J5XvR6PeRyedAeOHR0dGD79u04cuQInn76acyZMycoHweBMIAQIUnomfLy\ncmzatAlarRZCoRC5ubnIyclBXl4e8vLyEBMTM+BvrjabDVqtFu3t7UhPTx9w6/TuzH2YjR23PXYw\nPpQvh91uh1arhV6vH5TnJVjgVtr88bx4iwOuQZR3e+xgmrMwQqmlpYVEEHBwuVysg2SgPC/eEUn+\naLF2u93Q6XRobGwMmOeFy8mTfBw4EAKhELj/fhcyMgZn+8F1eQ7E54XhcjO8fcnAvJLfV1tbi7q6\nOmRkZCAlJSUohZfT6cSePXvwxhtvYOnSpXjwwQeDpsuEQBhkiJAkXDk0TcNoNKKyshIVFRWoqKhA\nZWUljEYj0tLSkJeXh9zcXOTl5SErK8snb7wWiwUajQYWiwWZmZl+PQn3jpYwmUxdjDUYkTnQHzrc\nYPiMjAwkJiYG5EZmsOGaxQRipe1SG7uQkBCPTZ1IJPLpGuK29g5UZTYY4QqCvrY8DzaXarH2XkP9\nyeClKAp1dXWora31SefHQPDvf/Nx++3hsFp5CAmhERUFHDtmg0QycFsQmqbR0NAArVaL5ORktksn\n2LiSDEymgnklox40TaO5uRlqtRoJCQnIzMwMyueFpml88cUX2LRpE37zm99g1apVJNqHQLg8REgS\n+g9FUdBqtaioqMDp06dRWVmJ6upqCAQCZGdns+IyLy/vioWg0WiERqOBw+GARCIJ6NYYJjeM2x7r\ndDo9WhtFIpFPzH06Ozuh0WhgNpshkUj81koVaHDjKjIzM4NOWF9qDXHzU/vi3EgEZPe43W7U1dWh\nrq4OKSkpSEtLC8qNL5fu8gudTidCQ0O7rKFLzU1zhVJiYiIyMjICdsb62msjUFHxy1rm82k89JAL\n27dfOqqqrwwVx9Ge6G4NORwOdg1xRSbz+A0GA6qqqhAdHQ2ZTBa07sSVlZVYt24d4uPjUVJSgszM\nzAH9fTabDTfccAPsdjtcLhcWLlyIp59+2uM+drsdixcvxqlTpyAWi7F//35IJJIBvS4CoZcQIUkY\nGJi2rHPnzuH06dNs9bK5uRmJiYnIzc1Fbm4u8vPzMXr0aLat5vDhw3jttdewevXqATUtGGi4rY3c\n9lgArClLb1qKzGYzNBoNrFYrpFJpQAvrwYTb8jzU8g65+anc9lju7ByzjrxbrF0uF3Q6HZqamoKm\n0jYYUBSF+vp61NTUICkpCenp6QErlHxFd2vI7XZ3OaSwWCzQarWIjY2FRCIJ+Jigq6+OgFLpuabv\nusuJ11/3rZDsTZTHUIU7B84ITbvdDqfTCYFAgJSUFIjF4sseUgQqjY2NeOaZZ6BSqbB161ZMmjRp\nUD5DaJqGxWJBdHQ0nE4npk6dihdeeAFTpkxh7/Pyyy+joqICr776Kvbt24ePPvoI+/fvH/BrIxB6\nARGShMGFpmk0Njbi9OnTOH36NM6cOYNz587BYDCAoigkJibi1ltvxdy5c4fk5te7Lc1kMsFut3tU\nDRhxEBISAqPRCLVaDZfLBalUitjY2CEjlPoDt7XXl66awYB3i7XZbIbVagWfz4dQKITL5YLZbEZa\nWhoyMzOH3GuoL1AUhcbGRmi1WiQkJCAjI2NIVpSuFOagy2Qyobm5GS0tLQCA8PDwLu2x/p4DvxRb\ntgiwfXsoOjsvXptQSGP/fjtmzKB88vOZjEwA/YryGGo4HA6oVCqYTCZkZmZCIBAEZQamxWLBzp07\n8cknn2DNmjVYsGCB394rOzs7MXXqVLzyyiuYPHkye/usWbOwfv16XHvttXC5XEhKSkJLS0tAvh4J\nwxYiJAn+w+12429/+xuef/555Ofn4+abb4bBYGCrl7W1tRg5cqTH7GVubi6ioqKG3Bup0+n0aGs0\nGAzs7Fx8fDzi4+P96toYKFitVjbXb7gJyMvBmMU0NDRg5MiRCA0NRWdnp0db2pW0Ng41aJpGU1MT\nNBoNxGIxMjMzA77SNlh0dHSguroaYWFhkMvliIyM7OL+yT2kGAhzlv5AUcDmzQK8844AYWFAUZET\nt97q7vfPtdlsUCqV6OzsDOquGF/DGC81NTVdtvvjSjMw/ZXl7Ha78f7772PXrl1YvHgx/vCHP/it\nHdftdqOgoADV1dV49NFHUVpa6vHveXl5OHz4MNLS0gAAcrkc5eXliI+P98flEgjdQYQkwT8cPXoU\nhYWF+PWvf40nnngCKSkpXe5D0zT0ej07e3nmzBmcPXsWnZ2dkEgkbHtsXl4eZDJZwJ149haaptHe\n3g61Wg2BQMDO4XDbY7mbOm577FDfHFutVqjVajIb6gXXLOZSpijerY1msxlut7vbaImhUr2kaRot\nLS1Qq9WIiYmBRCIJ2tktX8NU2miahkKhuKJsPyYmqTuDH++YpGCt9HIjK6RSKXmP+Rnu3GxKSgrS\n09P79D7h7wxMmqZx9OhRrF+/HpMmTUJRUVHACDKDwYBbbrkFO3fuRF5eHns7EZKEIIAISYJ/aGpq\nQmhoKOLi4nr9vW63G0ql0mP2Uq1WIyIiAjk5OR7mPsHQCkrTNNra2qBWqyEUCiGRSC7bRuV2u7sI\nA4fD4THzJBKJAiq3sK90dnZCrVbDYrFAKpUiPj4+4P+egwFXQPbFLIbZ1HGr4IMdLTEQMK8llUrF\nmn8Mx5m27mDC4W02GxQKhU8qbU6ns1uDH+57EbOeAvWgzzvKI1gjKwaCtrY2VFdXIzY2FlKpdEAO\nCa40A7M/UUk//fQT1q1bh5CQEJSWliI7O9vnj6O/bNiwAZGRkVixYgV7G2ltJQQBREgShgY0TcNk\nMuHMmTOsc2xlZSUMBgNSU1ORl5eHnJwc5OfnIysrKyAqeEzVRKPRIDo6GhKJBJGRkX3+Wd1lXzKn\nvdzq5WDmFvYVi8UCtVpNzIW8cLvdqK2tRX19/YDED3QXLcHEAngfUgRa5Umv10OlUiEiIgIymazP\nr6Whht1uh1qthtFohEwmG5TXEtPayF1LgdLayEDTNOrr66HT6YI6ymMgMJlMqKqqQmhoKBQKBYRC\n4aBfgy8yMNva2lBSUoLvv/8eJSUlmDZtWsB8jrS0tCA0NBQxMTGwWq2YOXMm/vznP2Pu3LnsfV56\n6SVUVlayZjsffvghDhw44MerJhC6QIQkYWhDURRqamrY9tiKigpUVVWBz+cjOzubrVzm5eUNmuMn\nRVFoamqCTqfDyJEjkZmZOWAf1N4fxkz2pbcwiI6ODoi5OUZA2mw2SKVSxMXFBcwHvz/hxlX4Y9PL\ndW1kvrimGtzq02ALA4PBAKVSidDQUMjlckRFRQ3q7w9UmFbNtrY2SKVSv88TX6610bsKPpCHXcMl\nyqMvMPOhTNU6EDMUL5WBuWXLFohEIuTk5GDMmDE4f/48Dh48iBUrVuDuu+8OuEOCiooKLFmyBG63\nGxRF4bbbbkNRURGKioowYcIE/O53v4PNZsM999yD77//HnFxcdi3bx9kMpm/L51A4EKEJGH4wWxo\nmGgSpnrZ3NyM+Ph4j9nLMWPG+GxTQ1EUGhoaUFNTg7i4OGRmZvptbutSwoA7NycSiQZkVqU7zGYz\nVCoVHA4HZDJZULQkDwZcARlocRXephqDXQU3Go1QKpXg8XiQy+VXNOs3HGBMURobG5GRkYHk5OSA\nbnH3PuyyWCwes+BcgRkWFtavdUSiPLrH5XKxhw4ymSwoRwj0ej2+++47fPbZZzh16hQMBgMiIyMh\nFou7GPbFxsb6+3IJhKECEZIEAgPj8MitXl64cAFOpxNyuZytXObn5yMtLe2KN2dutxv19fWora3F\nqFGjkJGRERCttd5wKwZMeyx3bs47+9IXmEwmqNVqOJ1OtgJJuLi5rqurQ21tbcAJyJ64VEtaSEhI\nt8Kgt5jNZiiVSlAUBZlMFpBVE3/AXTN9mZsNNLiVJ+4sOLebgqmC91RRJFEe3cNdM+np6UhJSQno\nQ4dLQdM0Tp48iXXr1iErKwsbN25EcnIygIsC8+zZs6xZ35kzZzBz5kysXr3az1dNIAwJiJAkEHrC\n6XTixx9/9Khe1tTUQCQSsbOXzEmnSCRiT3INBgN27NiBKVOmIDs7G2lpaUHZQuW9oTOZTHA4HAgL\nC/Noje1NVpjJZIJKpYLb7WbzMQmeG7vExERkZGQEjYDsCZfLBYvF4mHw423Mcrl1ZLFY2Kq1XC4n\nsQw/w3XVHGprpjsu1U3R3TpyOp1QKpWwWq0+MxgaCjDz+SqVCqNGjWLzIIMRnU6HoqIidHR0YOvW\nrRg7dqy/L4lAGE4QIUkg9AUmqqOiooJ1jj1z5gwsFgtSUlJA0zQuXLiAuXPnYvXq1UNSKDkcDg9R\nwGSFcZ32RCKRR1uj0WiESqViq0lkY3cRiqJQX1+PmpoaJCQkICMjIygPHXoL1yTKex0xbdZhYWHQ\n6/Ww2+1QKBSkav0z3IiT2NhYSCSSgOx0GAy815HRaER7ezucTidEIhHi4uLYA6/BatcPVJj23sjI\nSMjl8qCNxeno6MD27dtx5MgRPP3005gzZ07QteNeKTRNg9mHD+e1SwhIiJAkEHxFa2srnnvuOXz4\n4Ye44YYbkJCQgHPnzkGlUiEsLAw5OTmsc2xeXt6QNJKhaZpta+RmXwIXK1IhISHIyMhAYmLisBBK\nPTFcBWRP0DQNg8HAZodGRESAoqhu5+aCdSPcH5iIk6ioKBJxwoEb5ZGZmYmkpKRuDX6Ydn3uWgoG\nN+v+0NnZierqarjdbmRlZQVte6/T6cSePXvwxhtvYNmyZXjggQeG9HtmQ0MDwsPD2QM0p9M5pB8v\nIeggQpJA6C8GgwEbN27El19+icceewx33XWXxxs9TdMwm804e/asR/Zle3s7UlJSWHOf/Px8XHXV\nVQgNDR0yGxqDwQCVSgUASExMZJ8Lk8nUxfVTJBL5NQ5gMOEaL8XHxyMzM5NsDn7G4XBArVbDYDB0\nCYa/1NxcaGgoKwqYeJJgbdW7HB0dHaiurkZYWBjkcjmJOPmZ3kZ5XC5agntI0dc53kCCeT11dHQE\ndUWfpml88cUX2LhxI2688UasWrVqWMxHP/zww1AqlfjXv/6FjRs34p///CcKCwtx/fXXY9SoUf6+\nPAKBCEkCob+YTCZ89tlnuPXWW3tlbsHMw3HF5Y8//ggej4errrqKdZnLz89HYmJiUAms9vZ2qNVq\nhISEQCaTdeuoybh+erfHMtUC76rTUBDXFEWhsbEROp2OCEgvuHEVTDXpSv/m3u2xgZhb2B+4BkMK\nhYI41P4Mt73XF1EezBwvdx0xFSBm7pJZS4F+UMGtzkokkl69ngKNyspKrFu3DvHx8SgpKUFmZqa/\nL2lAqaurQ2pqKgCwTuY333wzYmJiIJfLcfz4cWRkZGDVqlV+vlICgQhJQj+oqanB4sWL0dTUBB6P\nh4ceegiFhYXQ6/W4/fbbodFoIJFIcODAAcTGxoKmaRQWFqKsrAyRkZHYs2cPxo8fDwB4++23sXHj\nRgDA2rVrsWTJEn8+NL/BzPow0SSMwGxsbIRYLGbFJRNNIhQKA2pzoNfroVarERoaCqlU2qcNL0VR\nXcx97HY7u5njGvwEiyslV0CKxWJkZmYGfaXDV7hcLmi1WjQ3N/s0rsI7t9BkMnm0NQbDQYXVavXI\n9SMzxb/AnfUb6PZe5qCC+77kdru7Nfjx90EFTdNobGyERqPxS+asL2lsbMSGDRugVquxdetWTJo0\nKSBfp77E5XLh8ccfx9KlS9HR0YGoqChUVlbi4YcfhkajQXx8PA4fPoy9e/di+fLlmDRpkr8vmTC8\nIUKS0HcaGhrQ0NCA8ePHw2QyoaCgAB9//DH27NmDuLg4rFy5Elu2bEF7eztKS0tRVlaGnTt3oqys\nDOXl5SgsLER5eTn0ej0mTJiAkydPgsfjoaCgAKdOnRqSBjV9haZpNDc3s+Y+FRUVOH/+POtgyc2+\nzMzMHNTNDGM8pFKpEB4eDqlUOiDzN06n06N6yWzmuOY+TNUpUDYbzKZOq9USAekFN+8wLS0Nqamp\ng7JuvQ8qmLZGbqwE0x7rr2qx3W6HWq2G0WiETCaDWCwOmDXtbwIlyqOnHFWuuBys9yS9Xo/q6mqM\nHDkSUqk0aN9rLBYLXnzxRXz66adYu3Yt5s+f73eBPtBQFAUejwcej4fi4mLs2LEDo0ePRnFxMebM\nmYOUlBRs374dd9xxB2pra/Hee++hsbERzz//vL8vnTC8IUKS4DvmzZuH5cuXY/ny5Thy5AiSk5PR\n0NCA6dOn48cff8TDDz+M6dOn44477gAAZGdn48iRI+zXa6+9BgBd7ke4NC6XCz/99JNH9VKn0yE6\nOtpDXObm5mLEiBE+3czQNM1WICMiIiCVShEVFeWzn3+l12C1WruY+zCmLNzsy8HcVHEFJNNyF6yb\nOl/jdrtRV1eHurq6gMo7dDqdXeJJvOd4B7rqxG3vlUqlSEhIIALyZ2w2W1BEeXANxxhx2dnZCT6f\n3+XQy1eVcLPZjKqqKoSEhEChUATt7Kzb7cb777+PnTt34t5778Xy5cuHvJmW2+1m3/+YNuo33ngD\nW7ZswdNPP4277roLAPC3v/0NTz75JHQ6HQDgX//6F9566y2sXLkS+fn5frt+wrCHCEmCb9BoNLjh\nhhtw5swZZGRkwGAwALj4oRobGwuDwYC5c+di5cqVmDp1KgBgxowZKC0txZEjR2Cz2bB27VoAwDPP\nPAOhUIgVK1b47fEEM4zjJSMsmS+z2YyMjAzWOTY3NxcKhaLXsz40TaOtrQ1qtRpCodAvArIn3G63\nR6XAZDJ5ZBZysy99KQpomkZTUxM0Gg0byTDUN0JXCjcjMykpCenp6QE/Z9ZT1Yl7UNEf109uddaX\n7b1DAUZc6/V6yGQyxMfHB6W4drvdXQx+7HY7QkJCuhj8XGklnCuus7KygtZ8hqZpHD16FMXFxZg8\neTKKiooQHx/v78saVHbu3In9+/dj0aJFuPnmm1FXV4eHHnoIR48eRXR0NPh8PqZMmYJf//rX2Lx5\nM4xGI9xuN+ncIvibK3ozDuxPeoLfMZvNWLBgAXbs2IERI0Z4/BvTqkEYPHg8HmJjYzFt2jRMmzaN\nvZ2iKKjValRUVOD06dP4+OOPoVQqERoaijFjxrDOsbm5ud1u1iiKwtdff83a5ufm5gbsyXdISAhG\njhzpsbFi5k+ZilNbWxsrCrgzcyKRqNeVAkZAarVaxMTEYNy4cURA/gwzH6rVapGQkIAJEyYEjcEQ\nj8dDREQEIiIiPDa2XNfPjo4O1NXV9cn1kyuuU1JSMGnSpICozgYC3lEeCoUiqD9LQkJCIBKJusyN\nu1wuVlg2NTVBpVJ5GPxwv5i14XK5oNFo0NraCplM5uFsHGz89NNPWLduHUJCQvDXv/4V2dnZA/47\nL+XvwOXIkSOYN28epFIpAGD+/PkoKirq9+9mYowYKioqsH79ekgkEhQVFeHzzz/Hk08+ib/+9a+Q\nyWR49dVX8dRTT8HhcOCNN97A/fffD5qm2b0WTdNB+7cnDB+IkCRcEqfTiQULFuCuu+7C/PnzAVyM\neWhoaGBbWxMSEgAAqampqKmpYb+3trYWqampSE1NxZEjRzxunz59+mA+jGEBn8+HXC6HXC7HLbfc\nAuDih5DFYsHZs2dRUVGBzz//HFu3bkVbWxuSk5PZ7MuWlha89957yMnJwauvvhqwAvJy8Hg8hIeH\nIzw8/JKiwGAwoLa2lp2Z41acunNqZGZXNRoNRo4ciWuuuYYIyJ/hVmfFYjEKCgqGTHsvVzByYVw/\nTSYTmpubWVHgbcoSGRmJ5uZmVlxPnDgx4KuzgwUTjcNEeQx1cS0QCBATE9OlVZfrRFxXVweLxQK3\n281WyUeNGoWcnBxER0cHpZBobW1FSUkJfvjhB5SUlGDatGmD9jgEAgG2b9/u4e9w4403Iicnx+N+\n119/PQ4dOuSz38sVkVarFUKhECaTCR9//DEOHz6MmTNnYuzYsdi2bRveffddlJSU4J577sHx48eh\nVCpx7NgxlJeXe/zMYPzbE4YfpLWV0C00TWPJkiWIi4vDjh072Nv/9Kc/QSwWs2Y7er0eW7duxWef\nfYZdu3axZjuPPfYYjh8/Dr1ej4KCAnz33XcAgPHjx+PUqVNBm3c1FGAqJa+++ir++te/Ii4uDpGR\nkbDb7cjKymKdY/Pz85GUlDQk2/CcTmeXSAmXywWhUIjo6GhQFIXW1lbExsZCKpWSUPif4UYyxMTE\nDPv2XqYSzrRYt7a2wmg0IiQkBCNGjMCIESMC0ihqsGHWjUqlglgs7neUx1CCpmm0traiuroaMTEx\niI2NZWfDOzs7uxj8REdHB5yjN4PNZsNrr72G999/H08++STuvvtuvx8UMP4ON954I3vbkSNHsG3b\ntn4LSbPZjOjoaHYWsr6+HmvXroVQKMTChQtxww03YNmyZbBYLHj33XfhdrvxyiuvoLm5GRs2bMA3\n33wDrVaLW2+9lX09uFwucvBECBTIjCSh7/z3v//F9ddfj/z8fFZIbN68GZMnT8Ztt90GnU6HzMxM\nHDhwAHFxcaBpGsuXL8fhw4cRGRmJt956CxMmTAAA7N69G5s3bwYArFmzBvfdd5/fHtdwh6Io/P3v\nf8ezzz6LyZMn46mnnkJ6ejq7IT5//jzrHFtZWYmGhgbExsYiJyeHFZg5OTlDclNMURTq6+uh1Woh\nEAgQFhYGu90OHo/nsYkTiURDpvp2pTCzsyqVCiKRiIhrL/R6PZRKJaKioiCTyRAeHt5lZo5rFOXd\nHjvUXktcDAYDqqqq2OeGrJtf6OjoQHV1NSIiIiCXy7t9biiKYoVloK4liqJw8OBBbN26FQsXLsST\nTz4ZEJ0tXH8H7mjOkSNHsGDBAqSlpSElJQXbtm1Dbm5ur352RUUFZsyYgZaWFgDA+fPnsWLFCixe\nvBihoaF4+umnsXnzZowZMwYzZ87Erl27cNNNN+Ghhx6CRCLB6tWrPX4e15iHQAgQiJAkEAie/Pvf\n/8ann36Kp556CikpKT3enzktZ2YvKyoqcO7cOdjtdshkMtY1lokmCcYPQuYxqtXqbkWS2+1mIyWY\nGUyHw4GwsLAu5j7B+Ph7ghFJTKafUCj09yUFDIwQCAsLg0wm69GYiruWuKYs3jmqUVFRQV+VYKI8\neDwe5HK536I8AhGr1Yqqqiq4XC5kZWX1KZO3u7XkcDjYqBuuyByo6i9N0zhx4gTWrVuH7OxsPPPM\nM0hOTh6Q39VbzGYzpk2bhjVr1rCjOQxGo5FtYS8rK0NhYSGqqqqu6Oe63W7weDzw+Xxcd911+O1v\nf4s1a9bg2LFj+PTTTzFv3jysW7cOiYmJ2LFjB9vBWoVx8gAAIABJREFU9eabb2LevHmora3FCy+8\nMCjzogRCPyFCkkDg4na7MWHCBKSmpuLQoUNQq9VYtGgR2traUFBQgHfeeYetQi1evBinTp2CWCzG\n/v37IZFIAAAlJSV48803ERISghdffBGzZs3y74PyEy6XC1VVVR7VS61Wi8jISOTm5npUMEeOHBmQ\nFReugIyOjoZUKu2VSOKa+zBf3m1oIpGoX46f/sRgMECpVF6xSBpOmM1mKJVKUBQFhULRJyHAhTsz\nx3xRFNUlniQyMjLgW82DJcrDHzidTqhUKnR0dEAul0MsFg/I7/AWmN3N8vb34Eun06GoqAgdHR3Y\nunUrxo4d68NH0T+cTifmzp2LWbNm4Yknnujx/hKJBCdPnuyVm+zZs2exb98+vPLKK9DpdKisrMQD\nDzyAmJgYbN68Gddffz0AoLGxEaGhobjzzjtx00034fHHH+/z4yIQBhkiJAkELs899xxOnjwJo9GI\nQ4cO4bbbbsP8+fOxaNEiPPLIIxg7diyWLl2Kl19+GRUVFXj11Vexb98+fPTRR9i/fz/OnTuHO+64\nA8ePH0d9fT1+85vf4KeffhqSVai+QNM0jEajh7isqKiAyWRCenq6h3OsQqHw24wUN+IkKiqq1wKy\np5/NtDRysy8FAkGX7MtAnREzGo1QKpXg8/mQyWT9FklDCavVCqVSCZvNNuAiiaZp2Gw2j5ibzs5O\n8Hi8Li2Nvsos7A9OpxNqtRrt7e1BHeUxEFAUBZ1Ox7rUJicnD+pzw53l5UbdUBTFzoUz4rKnw4qO\njg5s27YNX3/9NTZs2IDZs2cH1N/5Uv4OXBobG5GYmAgej4fjx49j4cKF0Gq1V/w4CgsL8fXXX6Ow\nsBCbN2/GTTfdhOeeew5LlizBzJkzce+998Jms+GBBx7Addddh2XLlmHPnj149tlncfbsWeLGSggW\niJAkEBhqa2uxZMkSrFmzBs899xw+/fRTjBo1Co2NjRAIBDh27BjWr1+Pf/zjH5g1axbWr1+Pa6+9\nFi6XC0lJSWhpacGWLVsAAKtWrQIAj/sRLg1FUdBoNKisrMTp06dRWVmJ6upqCAQCjB49ms2+zMvL\nG1Cre66AjIyMhFQqHbQ5Hm4MACMKXC6XR8VJJBL5teJkMpmgUqlAURRkMlnQ5tYNBHa7HWq1Gkaj\nETKZDGKx2G8bQYqiulScGCfivmYW9gfvKA9fiSS1QY16cz2y47IRHxmcuYM0TbPxOImJicjIyAio\ng0eaptn5S2ZNdXZ2ArjY0v7f//4X+fn5GDduHCQSCd5++228+eabWLZsGR588MGAbL++lL+DTqcD\nADzyyCPYtWsXXnnlFQgEAgiFQjz33HO47rrrrujn2+12/OEPf8BTTz0FhUIBnU6HvLw8nD17FnV1\nddiyZQv4fD7Onz+POXPmYOPGjRAKhbDb7XjllVfwyCOPBMTBD4FwBRAhSSAwLFy4EKtWrYLJZMK2\nbduwZ88eTJkyBdXV1QAuZk/Nnj0bZ86cQV5eHg4fPoy0tDQAgFwuR3l5OdavX48pU6bg7rvvBgDc\nf//9mD17NhYuXOi3xxWsMJW7c+fOsbOXlZWVaGlpQVJSEnJzc9kKZnZ2dr8+eGmahl6vh0qlglAo\nhEwmCwgjCMbqn9sea7FYulScGHOfgdp4WCwWqFQqOBwOyOVy0orIwel0QqPRoK2tDVKpFAkJCQG7\nAWRaGrnryfuwgqk6+eKwwjvKIz093Wci6Zn/PoMdJ3YgLCQMbsqN/bfsx68yf+WTnz1Y6PV6VFdX\nY8SIEZDJZEFl0MU4ex8+fBhnzpxBRUUFa0I2Y8YMjB8/nj38YyLAhhLexjfcCqLJZMLkyZPxwQcf\nsJEid955JxwOBz744AMYjUZUVlYiNTWVHYkhFUhCkHJFizbwjpMIBB9z6NAhJCQkoKCgwCPTkuA/\nGLE0ceJETJw4kb2dCbhnxOVLL72ECxcusLNojLFPfn4+UlJSLrshpigKer0eGo0GERERyMnJCag5\nPx6Ph4iICERERGDUqFHs7dyKk16vh06nYw1ZvLMv+7Nxt1qtUKlU6OzshFwuJ5E8HNxuN3Q6HRob\nG5GRkQG5XB7ws4mhoaFdMguZwwpGWLa1tcFisfRrltc7ymPChAk+rXx+3/g9XjzxImwuG2wuGwDg\njo/vQP1j9eDzAvtvAHiaDOXm5gbUe86VwufzkZ6ejilTpuDQoUNQKBQ4cOAAxGIxzp8/j8rKShw6\ndAhbtmxBc3Mz4uLi8PzzzwfUnGR/YN5Xy8vLMWnSJPZ14XQ6IRKJMHv2bPzpT3/CZ599BgDIzc3F\nunXrcOLECUycOBH/93//B+DiezmPxyMikjCkIUKSMOT55ptv8Mknn6CsrAw2mw1GoxGFhYUwGAxs\nZlNtbS1SU1MBAKmpqaipqUFaWhpcLhc6OjogFovZ2xm430PwDXw+HykpKUhJScHs2bPZ2x0OBy5c\nuIDTp0/j22+/xV/+8hfU1dUhJibGwzmWEYtlZWUoKSnBE088gVmzZgXVZo7P50MkEkEkEnk4IHqH\nmDOGLMyMEyMye8qYs9lsUKvVMJlMfm/TDDSYSkxtbS1SUlIwadKkgGpF7C3cwwqukQhFUewsr9Fo\nRH19PWw2G+tk6R0pwdDe3o7q6mpERUXhmmuuGZAoj+r2aoTwPZ9zu8uOdls7xELfm9P4CrvdDqVS\nCYvFgqysrKCu7Dc2NmLDhg1Qq9XYunWrh5jyPvwDgNbW1iHl5nzs2DEUFxcjLCwMY8eORXZ2NhYv\nXsw+B9u3b8f//d//4fHHH8f58+eRnZ2NI0eOdHleAv3wiUDwBaS1lTCs4AYR33rrrViwYAFrtnP1\n1Vdj2bJleOmll1BZWcma7Xz44Yc4cOAAzp49izvvvJM125kxYwaqqqqCeqMZzDAzj1xzn2PHjqGl\npQXp6emYOnUqpkyZgry8PEil0iH5d2JmnLjtjEzGnLcgoGkaGo0GBoMBUql0QOdRgw2aptHQ0ACt\nVouEhARkZmYG5PzXQONyudj2WKYq7nA4EBISwkZLSKVSxMfHD9jrqbK5Er9671ewuqzsbbERsdAt\n1wVkRdLtdkOj0aClpSXg2597wmKx4MUXX8Snn36KtWvXYv78+cNKDDEtqKtWrcLChQuRlpaGu+++\nG2KxGO+++y4EAgHb9lpXV4cLFy6goqLCw4mVtLEShhBkRpJA8IYrJFUqFRYtWgS9Xo9x48bh3Xff\nRXh4OGw2G+655x58//33iIuLw759+yCTyQAAmzZtwu7duyEQCLBjxw6PqhnBf/z3v//F008/DbFY\njDVr1iAsLMxj9lKtVkMoFLKzl0w0SUxMzJD80He73ayw7OjoQFtbGxwOByIjIyEWiz2yL4fTRtEb\npk1TrVYjNjYWEokkqGbZBhomysNisSAxMREALun4ycST+OL1tOvkLhT9pwhhIRdngz9e8DEmp07u\n98/1JTRNo66uDjU1NUhNTUVaWlrQvpbcbjf27t2Ll156CUuWLMHy5csRHh7u78saUCiKAp/PB0VR\nAICPPvoIiYmJKCgowK9//WvcdNNN+Oyzz3DjjTdiw4YNPR6cMD+PQBhCECFJIBCGNm63G7/73e8Q\nFRWFoqIi5OXldXs/mqZhMpk8YkkqKythNBqRmprqYe6TlZUVsNEcvcHpdEKn06G5uRmZmZlITEyE\n0+nsEgFA03QXc5/h4Cqo1+uhVCoRFRUFmUw2IG2awcqVRHlwo2641XAej9dte2xv11NrZyuaLE2Q\njJQgKixwWtOZ/FmVSoW4uDhIJJKgfb+gaRpHjx5FcXExJk+ejKKiol5lKQ4V7HY7li1bBoVCgT/+\n8Y8oLCzE//73P/zwww9sZ8LBgwcxY8YMREdHd/l+UoUkDFGIkCQQhioGgwEPPPAAzpw5Ax6Ph927\ndyM7Oxu33347NBoNJBIJDhw4gNjYWNA0jcLCQpSVlSEyMhJ79uzB+PHjAQBvv/02Nm7cCABYu3Yt\nlixZ4s+H1Sfq6+uRkpLSp+9l8t0qKirYCmZ1dTVCQkKQnZ3NVi4Zd8Jg2CxwjWLS0tKQmpraoylR\nZ2enR3ssEyfhbe4zFNo9Ozo6UF1djdDQUMjl8qCanx1ouGunr1Eebre7SzwJYxblLTCDbT0ZjUZU\nVVUhPDwcCoUiqA8ffvzxR6xbtw6hoaHYsmULsrOz/X1JA4q38U17ezueeuop3HPPPbjhhhvwxRdf\n4O9//ztuvvlmxMbG4tFHH8XOnTvB4/Gwfv16pKWlYdu2bYiNjfXzIyEQBg0iJAmEocqSJUtw/fXX\n44EHHoDD4UBnZyc2b96MuLg4rFy5Elu2bEF7eztKS0tRVlaGnTt3oqysDOXl5SgsLER5eTn0ej0m\nTJiAkydPgsfjoaCgAKdOnRr2H5TM3OG5c+c85i9bWlowatQo5OTksNXL0aNHX7Hb5UDjdrtRW1uL\n+vp6pKamIjU1tV9zbNzqJTMz53K5upj7+KqdcaAxm81QKpWsA7BIJPL3JQUMFEWhvr4eNTU1SElJ\nQVpams9nILlmUUw1nLueuO2xgdYiaLVaoVQq4XA4kJWVFdRrp7W1FSUlJfjhhx9QUlKCadOmBcXr\ntz9wK4YNDQ0YOXIkBAIBNm/ejPr6erz++usAgOLiYlAUhdWrV2P//v04ceIEvvvuO9x///144IEH\n/PkQCAR/QIQkgTAU6ejowDXXXAOVSuWxAWCc45KTk9HQ0IDp06fjxx9/xMMPP4zp06fjjjvu8Lgf\n8/Xaa68BQJf7ETxhwsWZ6mVlZSXOnz8Pl8sFhULBVi7z8/N7rAL6Eq7TaFJS0oCGntM0DZvN5lG9\n7Ozs7NLOyGRfBgKMCLDZbJDL5cP+oISLd5THYLdpMuuJe2DBrCem3ToqKspv7dZMjqher4dcLg/q\ntk+bzYbXXnsN77//Pp588kncfffdQ9KA7FK0tLTgD3/4A9ra2pCRkYGnnnoKDocDGzduxJ133ol5\n8+bhyJEjuO+++1BSUoJFixYB8Jx9JHOQhGEGyZEkEIYiarUao0aNwn333YfTp0+joKAAL7zwApqa\nmti4iKSkJDQ1NQEA6urqkJ6ezn5/Wloa6urqLnk7oXt4PB6Sk5ORnJyMWbNmsbc7nU7Wve/EiRPY\nvXs3amtrMWLECA9zn9zcXERHR/tsM8wNhE9ISPB5nl938Hg8CIVCCIVCjyBybjtja2srNBoNHA4H\nwsLCPKqXUVFRg7Z5tdvtUKvVMBqNJOakGwYjyqMnuOvpUlmqBoMBtbW1bLu1d3vsQKx5iqJQW1uL\nuro6ZGRkQKFQBO3aoSgKH330EbZv344FCxbg22+/RWRkpL8va9B59tln8atf/QoPP/wwxo4di23b\ntqG4uBizZs3Cc889h3nz5qGtrY013HK5XAgJCQGfz2edWomIJBC6QoQkgRBkuFwufPfdd9i5cycm\nT56MwsJCbNmyxeM+JAR58AgNDUV+fj7y8/Nx1113AbhYaWlvb2erl3v37sWZM2fQ2dkJiUTi4Rwr\nk8l6Ja6YyqhWq4VYLEZBQYHfq38hISEYMWIERowY4XG73W5nq001NTUwm82gaRqRkZEeAtOX7cFO\npxNarRatra2QSCTIzs4mrwUOZrMZVVVV4PP5bO5qoMHNUuXidDrZeJLGxkaYzWa4XC5ERER4iMu+\nuhHTNI3m5mao1WokJCQEdY4oTdM4ceIE1q1bh+zsbHz++eceubRDEe+K4YEDB6BQKDB+/HhERkai\nsbERc+bMQXZ2NoqLi9l4j6NHj2LSpEmIjY3Fyy+/jDFjxnj83GBdAwTCYECEJIEQZKSlpSEtLQ2T\nJ1+0w1+4cCG2bNmCxMRENDQ0sK2tTMUoNTUVNTU17PfX1tayM3RHjhzxuH369OmD+VCGLDweD3Fx\ncZg+fbrHc+p2u6FUKlFZWYnTp0/jgw8+gEqlQkREBMaMGcPOXubm5iIuLs5DAFEUhb179yItLQ3J\nyckYN25cwFv0h4eHIzw8HGLxL0HyFEWx2ZcdHR2oq6uD1Wrtd7WJaxSTkZGBSZMmkQoCB6vVCpVK\nBavVCoVCgZiYGH9fUq8JDQ1FTEyMx7XTNO1xYNHW1sa6ETMHFsyhxeUOLAwGA6qqqhAdHY3x48f7\n/XCmP2i1WhQXF8NoNOKll17C1VdfPeC/s6amBosXL0ZTUxN4PB4eeughFBYWetzncsZvvsD79f7D\nDz/g5ZdfxpEjR6BUKtnnZcaMGQCA//3vf7juuuvw6quvoqamBgqFgr1OAOQAikC4AsiMJIEQhFx/\n/fV44403kJ2djfXr18NisQAAxGIxa7aj1+uxdetWfPbZZ9i1axdrtvPYY4/h+PHj0Ov1KCgowHff\nfQcAGD9+PE6dOoW4uDh/PrRhB03TMJvNOHPmjEf2pcFgQEpKCnJzc8Hj8VBWVobc3FyUlpYOycqC\ny+XymJXjVpu47rHeZizcGdGBMooJZq4kymMowrgRcw1+bDYb+Hy+x2EFn8+HVqsFACgUioCs0F4p\nHR0d2LZtG77++mts2LABs2fPHrS/dUNDAxoaGjB+/HiYTCYUFBTg448/Rk5ODnufSxm/9RWapkHT\nNPt+YDabsW3bNtx7772QSCSw2+2YPHkyduzYgY6ODnz88cdYsGABbrzxRjz++OOoqKjABx98gKSk\nJPZnMm2sBAKBmO0QCEOWH374gXVslclkeOutt0BRFG677TbodDpkZmbiwIEDiIuLA03TWL58OQ4f\nPozIyEi89dZbmDBhAgBg9+7d2Lx5MwBgzZo1uO+++/z5sAgcKIrC/v37sWnTJgiFQkgkEiiVSvD5\nfGRlZXmY+yQkJAzJ6ltPZiwURcFoNGLUqFGQyWRBm+c3EPgiymMo4nK5YLFYYDAYUF9fD5vNhtDQ\n0C5uxIM5z9tfnE4n3nrrLbz55ptYtmwZHnzwQb9Hq8ybNw/Lly/HjTfeyN52KeO3vhyMcQWf1WrF\n8ePHMW3aNMyePRuzZ8/Gww8/jPDwcLz33nvYtWsXjh07hvfffx+ffPIJampqMGHCBGzatCmoDw4I\nhAGGCEkCgUAIRr755hsUFxcjKSkJxcXFyMrKAvCLsDp//rxH9bKpqQnx8fEes5djxowJmGgSX0LT\nNJqamtiWYKFQCKvVCrvdzpr7cL+CRQz4isGI8ghm3G43tFotmpubIZFIkJiYCB6P59Eey8STUBTV\nbTxJoLymKIrCP/7xD2zevBkzZ87EypUrMXLkSH9fFjQaDW644QacOXPGY2567ty5WLlyJaZOnQoA\nmDFjBkpLS9mDzb6wbds2nDhxAnq9Hm+99RYaGhqwevVq7Ny5E9nZ2WhqasLUqVPxxBNPYNmyZTAa\njXA6nWy7PalAEgiXhLi2EggEQrDhdDrxzjvv4IUXXkBubq7HvzEul+PHj/eYLWJMQhhzn9dff52N\nJpHJZKxrbF5eHjIyMoK2eqnX66FUKhEVFYXx48d3cRrlZhXW1tZ2EQNMtUkoFAaMGPAV3CiP+Pj4\nQXHxDSZomkZ9fT10Oh1SUlK6zNB2N8/LZMoy1fDGxkZYrVbw+Xw2noT5CgsLG9Q1VVFRgXXr1iEh\nIQEffvghMjMzB+13Xw6z2YwFCxZgx44dXcy3fInJZMLSpUsRFhaG22+/HZs2bcJ7772HP//5z8jJ\nycHbb7+N1atXQ6lUYuLEifjqq6+wdOlSiEQi8Hg8UBQFHo9HRCSB0E9IRZJAIAQEzz//PN544w3w\neDzk5+ezp8uLFi1CW1sbCgoK8M477yAsLAx2ux2LFy/GqVOnIBaLsX//fkgkEgBASUkJ3nzzTYSE\nhODFF1/0iOoYbjidTvz0008e1UudTgeRSOQhLnNzc9kNViDS0dEBpVIJgUAAuVzeq3Y0mqa7zMox\nYsA7+zJYhRc3ykMmk/klyiOQaWtrQ3V1NWJjYyGVSvv9d+bG3TBfdrsdoaGhXSrivm4xbWxsxIYN\nG6DRaLB161ZMnDgxYF63TqcTc+fOxaxZs/DEE090+Xdftra2tbVh1qxZ+OqrryASifDhhx/iyy+/\nxOLFi5GamoqSkhJ89913MJvN2L17d7+qngTCMIW0thIIhOCgrq4OU6dOxblz5yAUCnHbbbdhzpw5\nKCsrw/z587Fo0SI88sgjGDt2LJYuXYqXX34ZFRUVePXVV7Fv3z589NFH2L9/P86dO4c77rgDx48f\nR319PX7zm9/gp59+IqfOHGiahsFgQEVFBSsuz5w5A7PZjIyMDA/nWLlc7tdZK7PZDKVSCYqioFAo\nusRB9AdmVo4x9jGbzXA6nQgPD/cw9+lrlMRgwI3yCHajGC62L15HyPNbwHNRcD26HBE3r+jTzzGZ\nTKiqqkJoaCgUCgWEQqGPr9QTbkWcaY91uVzdtsf2dk1ZLBa88MILOHToENauXYv58+cH1LqkaRpL\nlixBXFwcduzY0e19LmX81hcsFgv++Mc/4re//S1uvvlmWCwW/L//9/8wbtw4rF+/HiKRCN9++y2m\nTJnCfg9pYyUQegVpbSUQCMGDy+WC1WpFaGgoOjs7kZycjC+//BJ79+4FACxZsgTr16/H0qVLcfDg\nQaxfvx7AxfiT5cuXg6ZpHDx4EIsWLUJ4eDikUikUCgWOHz+Oa6+91o+PLLDg8XiIjY3FtGnTMG3a\nNPZ2t9sNtVrNtsd++OGHUCqVCAsLQ05OjofAFIvFA1oFsVqtUCqVsNlskMvliI2N9fnvEAgEGDly\npMdMWXdREmazGQDYVkZGZIaHh/utEsQ8P3a7HXK5PCijPC6F7Z+vY+SixxFiv/j/3aeKYXDaIbx1\nzZX/DJsN1dXVsNvtyMrKGtAWSy5hYWGIi4vzcL72Noxqbm5GZ2cnAHi0x4pEom7XlNvtxt69e7Fr\n1y7ce++9KC8vD8jYn2+++QbvvPMO8vPzcc011wAANm/eDJ1OBwB45JFH2MNBhULBGr/1lcjISFx1\n1VUoLy/HxIkTkZqaiuTkZLS3t+Pzzz/HbbfdxopIRkASEUkg+B4iJAkEgt9JTU3FihUrkJGRAaFQ\niJkzZ6KgoAAxMTFsRSwtLQ11dXUALlYw09PTAfwiCNra2lBXV+dxAs39HsLlCQkJgUKhgEKhwPz5\n8wFc3ARbLBacPXsWp0+fxmeffcZGyyQnJyM3N5cVmFdddVW/58TsdjvUajWMRiNkMtmAC1ZveDwe\nIiIiEBERgfj4ePZ2JkrCZDKhvb0dNTU1sNlsEAgEHtXLgWhl5OJwOKDRaNDe3g65XD7oz89gELKj\nlBWRABBiB8Ke3wlcgZB0uVxQq9XQ6/UBE3XCzDULhUKMGjWKvZ2iKLY91mAwoLa2Fp9++inKyspw\n1VVXITc3F1FRUdi3bx+mTp2Kr776ymNNBhpTp05FTx1uPB4PL730kk9+H4/Hw+9//3uUlpbi7rvv\nhtlsRn5+PrKzs3Hs2DGMHTsW2dnZAEAEJIEwgBAhSSAQ/E57ezsOHjwItVqNmJgY3HrrrTh8+LC/\nL2vYw+PxEB0djcmTJ2Py5Mns7Ywz6OnTp3H69Gns2LEDP/74IwDgqquu8ogmSUxM7LEFz+l0QqvV\norW1FRKJBNnZ2X4XAFy485RcnE4nW2mqr6+H2WyG2+2GUCjskn3Zn8fjHeWRlZUVUM+PT6Gpbm67\nvEChKAq1tbXsAdPEiRMDqu2zO/h8PkQikUe79rhx47Bs2TIcPnwYH3zwARobGxEREYGvv/4aixcv\nRn5+Pvs1evTogKxMDiZisRhbt27F119/DT6fj+uvvx4XLlzA3/72t2H/3BAIgwURkgQCwe/861//\nglQqZU/s58+fj2+++QYGgwEulwsCgQC1tbVITU0FcLGCWVNTg7S0NLhcLnR0dEAsFrO3M3C/h+A7\n+Hw+0tLSkJaWht/+9rcALlYvHQ4HG01y9OhRvPzyy2hsbERsbKxHNElOTg6EQiHMZjNKS0tRX1+P\nDRs2dHHSDHRCQ0MRGxvr0XrLdfo0m83dOn0yIjMsLOyyP987ymPSpElDvrriWv4Y3N+u/aW1NRyw\nL78fkd3cl3ErVqvVGDVqFCZOnOj3/MT+0NraipKSEvzwww8oKSnBtGnTwOPxWMdZZp75n//8Jy5c\nuIC9e/dCLpf7+7L9DrdFf/To0Vi3bp0fr4ZAGF4Qsx0CgeB3ysvL8fvf/x4nTpyAUCjEvffeiwkT\nJuA///kPFixYwJrtXH311Vi2bBleeuklVFZWsmY7H374IQ4cOICzZ8/izjvvZM12ZsyYgaqqqiG/\n+Q5kmFgKZvayoqICZ8+eRWNjIwBg0qRJuOWWWzB+/HhkZmYGlZDsDYzTJ9fcx+FwIDw83KM1ljH3\n4UZ5ZGZmBq2jbF+wflKK0Od2AC4a9kd/j6g7Nne5j8FgQHV1NSIjIyGXy4O6AmWz2dj3shUrVuCu\nu+4i71kEAsHfENdWAoEQPBQXF2P//v0QCAQYN24c3njjDdTV1WHRokXQ6/UYN24c3n33XYSHh8Nm\ns+Gee+7B999/j7i4OOzbtw8ymQwAsGnTJuzevRsCgQA7duzA7Nmz/fzICAxutxvvv/8+tm/fjnnz\n5mHOnDlQqVSse6xWq0V0dDRr7sNUMEeMGDFkWzkZcx9GYHZ0dMButyMsLAwJCQmIjY1FdHQ0IiIi\nhuxz0Bs6OztRVVUFiqKQlZXVpd04mKAoCh999BG2bduGhQsX4sknn0RkZHe1VwKBQBh0iJAkEAgE\nQmBw/PhxPProo5g2bRpWrlzZrXEITdPo6OjwiCaprKyEyWTqEk2iUCiCuo3RG5PJhOrqavD5fLZd\nkalcmkwm1tyH6/I50OY+gYTD4YBKpYLRaIRCofBwRg02aJrG8ePHUVRUhOzsbDzzzDN9ylIkEAiE\nAYQISQKBQCAEBjU1NeDxeEhLS+v191IUBY1Gw7bHVlZWorq6GqGhoRg9ejQrMPPy8gLCqbM3cKM8\nFAqFRxyJN06ns0t7rMvlQkRERBdzn6HSIsybUDHFAAAbS0lEQVQ1GpJIJEhKSgqqv683Wq0WRUVF\nMJlM2Lp1K66++mp/XxKBQCB0BxGSBAJh6LF7926kpqZi1qxZ/r6ULvz+97/HoUOHkJCQgDNnzgAA\n9Ho9br/9dmg0GkgkEhw4cACxsbGgaRqFhYUoKytDZGQk9uzZg/HjxwMA3n77bWzcuBEAsHbtWixZ\nsgQAcOrUKdx7772wWq2YM2cOXnjhhaDeVPcHmqbR2dnJRpMwFcy2tjYkJSV5RJNkZ2f3O5rE1/gq\nysM7p9BkMqGzsxM8Hq9bc59Aeg4uB03TaGhogFarRXJyMtLT04N6brCjowPbtm3D119/jQ0bNmD2\n7NlB87cgEAjDEiIkCQTC0GPGjBl45JFHcOuttwL4JWz60KFDiImJwdSpU/12bf/5z38QHR2NxYsX\ns0LyqaeeQlxcHFauXIktW7agvb0dpaWlKCsrw86dO1FWVoby8nIUFhaivLwcer0eEyZMwMmTJ8Hj\n8VBQUIBTp04hNjYWkyZNwosvvojJkydjzpw5eOyxx8gMqBcURaGxsZGNJqmsrMSFCxdA0zQU/7+9\new+qus7/OP48eOTmBS+EIicVOKICaqYoZimpyOiabrYa1A4a6XbRsnYtnUzTWiXL3dHES1teK3Xa\nsihD1E3BGhepLCUNRRQDQw2FFOR6+P7+cPj+JNENTRB9PWYcx8/5ip/vQfD79v15v992e7XRJN7e\n3nWeuaurDJvD4TBnX1YFmVW1lxc392natOkNF6CdPn2azMxMPDw88PPza9CNhsrLy1m1ahUrVqxg\n0qRJTJgw4ZY5jiwiDdpv+odJ381EpMEoLi7GYrGQm5tLcnIyXbp0MUeGvPPOO/Tp04e77roLJycn\nDMOgsrISi8VSZ8HCgAEDyMrKqrYWHx9PUlISAOPGjSMsLIz58+cTHx9PdHQ0FouF0NBQCgoKyM3N\nJSkpifDwcLMGLDw8nMTERMLCwjh79iyhoaEAREdH8/HHHyuQ/BUnJyfatWtHu3btzPfGMAzKy8vN\n0SS7du3izTff5KeffqpxNMm1zn2sya9HefTt2/e6/r1s1KjRJXMK4UImtCqwzMnJoaioiMrKyktm\nX7q5udV5xqywsNDsstytWzfc3Nzq9M//PVVWVrJlyxbmzZvH0KFD+fLLL694bFlEpCFSICkiDcbJ\nkydJSUmhZ8+ebN++ncLCQjZu3Ejz5s0pKiqie/fu5sO5xWKpMdNSFWAahoHVaqWsrOx/zvO71j1X\nNdJo27YtJ0+eBDCHp1ex2WwcP378iusX1xdWrcv/ZrFYcHZ2pkePHvTo0cNcNwyD06dPm7WXq1ev\n5sCBA5SWltKxY0eCg4PNILNjx45Xlbm7eNahp6cnvXv3rtcMm7OzM61atarWrKbqmHDV0diffvqJ\nkpISnJycLmnucz32XlJSQmZmJsXFxXTq1KnBB1z79u1jxowZtG3blo0bN9KhQ4f63pKIyHWhQFJE\nGoz09HQ8PT15/fXXARg/fjwJCQncd999FBYWYrPZqKioYO3atbz55pvYbDaeeuopwsLCzI/x6wBz\n4cKFVFRU8Mwzz+Du7k5lZeV1yxRZLBbVRd1ALBYLnp6eDBo0iEGDBpnrFRUVHD582Ky9XL9+PceO\nHcPNzc2svazKYHp4eFz2c3r48GHy8/Np2rQpPXv2vGFnHVbVUzZp0oQ2bdqY6xUVFWZzn5MnT5KZ\nmUl5eTmurq41zr6srYqKCrKyssjLy8PPz4/bbrutQX995Obm8vLLL5OVlcXrr79OSEhIg74fEZH/\nRYGkiDQY+/fv55577gEujEu48847yczM5OTJk7i7u9O6dWvi4+NZtGgR27ZtIz4+niVLljBgwADK\nysrYvHkzixcvxt/fn0GDBhEZGcn58+dp1qyZOb/tcg/EhmFc1UNhmzZtyM3Nxdvbm9zcXLy8vADw\n8fEhOzvbvC4nJwcfHx98fHzMo7BV62FhYfj4+JCTk3PJ9fL7s1qtdOnShS5duvDggw8CFz7/Z8+e\nJS0tjX379rFx40bmzJnDuXPn8PHxqZa9LCgo4KWXXsLb25tly5bRpEmTer6jq2O1WvHw8KiWITQM\no9rsy7y8PIqKirBYLLi7u1c7Huvi4lLj10xlZSXHjx8nJycHm81Gnz59GnSX2aKiIhYtWsSmTZt4\n8cUXGT16dJ3cT03NvS6WlJTEqFGj8PX1BWD06NHMmjXruu9LRG4dCiRFpMHYtWuXWRNZVFREZmYm\n/fv3Jz09HZvNRn5+Pt9//z0xMTF4eXkxZMgQkpOT2b17N0eOHGHx4sXExcWxZ88ezp07R2lpKQUF\nBXTu3Bm40CynpKSEoUOHXvJn//qBOCMjg0OHDvGHP/zhinseOXIka9asYfr06axZs4ZRo0aZ63Fx\ncURGRrJ79248PDzw9vYmIiKCF154gfz8fAC2bt1KbGwsrVq1onnz5qSkpNC3b1/Wrl3LU089dc3v\nqfw2FosFDw8P7r777moNnSorKzl27Bj79u0jOTmZ2bNn43A48PX1xdXVlbffftscTdLQM25w4X1w\ndXXF1dW12izQyspKioqKKCwsJD8/nx9//JHS0lIaN25cLXtZXFzMsWPH8PT0JCQkpEE3nnE4HKxb\nt464uDgeeeQRdu/eXadZ5/HjxzN58mSio6Mve80999zDpk2b6mxPInJrabjfwUXkluJwOMjOzubc\nuXN8+OGHfPHFF5SWlhIREcGSJUvo2LEjLVq0ICcnxxyjUVpair+/P7t376awsJBHH32U3r1707t3\nbwD27t1r1nwtXLiQ//73v4SHhwOYR1wNw2Dfvn3k5ubSq1cvbrvtNgzDoFmzZpSXl5v7MwyDqKgo\nkpOTycvLw2azMWfOHKZPn87YsWNZsWIFHTp04P333wdg+PDhJCQkYLfbcXd3Z9WqVQC0atWKmTNn\nEhISAsCsWbPMeralS5ea4z+GDRumRjs3ACcnJ5o3b87OnTvZtWsXy5cvZ+jQoZSUlHDgwAH27t3L\ntm3b+Oc//8nPP/+Ml5dXtdEkXbp0uWzmriFxcnKqsblPeXm5mbnMzMzEMAycnZ0pKiri2LFj1WZf\nNpT3wDAMdu7cyUsvvUS/fv1ISkqidevWdb6Pmpp7iYjUJY3/EJEG44cffiAzM5PPPvuM0tJSZs+e\nTfv27QkPD2fMmDH85S9/YejQoTzxxBPcf//9LFiwgB9//JEHHniAdevWER0dTf/+/Tl//jzu7u7s\n2LGDV199lTNnzjBu3DhGjRrF7bffbjbjadSoERs3buSTTz7h7NmzHDp0iHHjxvHcc8+RnJyMr68v\nXl5eNGrU6LJNSC7+WHLz+eGHH3jooYeYOnUqUVFRVzzSaBhGjaNJHA7HJaNJ2rVr16CPe1YpLi4m\nIyPDvMdmzZphGAbFxcXm8djCwkKKi4txcnKiSZMm1Y7HXs9GWFfj4MGDzJw5k8aNGzN//nwCAgLq\ndT9ZWVmMGDHiskdbH3jgAWw2G+3atWPBggUEBQXVwy5FpAHSHEkRuTWkpKRgs9mw2Wzs2rWLKVOm\n4ObmRpMmTZgxYwZ33303vXr1YuHChWaNJcCqVatISUnhk08+ISEhgZ49e1JeXk7jxo3NjOTMmTM5\nceIEb731FnDhSK1hGEycOJGhQ4cSGBjI+PHjadu2LZ6engwbNoyoqChcXV0bTIblSmqqw3ruuef4\n9NNPcXZ2xt/fn1WrVtGiRQsAYmNjWbFiBY0aNeKNN94gIiICgMTERKZMmYLD4WDChAlMnz4dgKNH\njxIZGcnp06fp1asX77zzzg0XPFxJZWUl5eXl13SksaysjIMHD5rNfdLS0jh+/DgeHh7VmvsEBQXR\npEmTBvH3qry8nCNHjvDLL7/g7+//mzJ2DofDHE1S9aOsrAwXF5dq3WOvtrnPtcjLy2PevHns3buX\n2NhYBg4ceEN8Hq4USJ49e9bsvJuQkMCUKVPIyMioh12KSAOkQFJEbk0lJSWkp6fj7OxMYGAgAMnJ\nyUydOhUfHx+CgoKYO3cur7zyClarlaCgIFauXMmHH354SebwyJEjLFiwAKvVysSJE+nWrRtZWVm8\n8MILTJ48mbvuuguAY8eOMWTIEAYOHMhrr73Gl19+ybJly8jLy+PRRx8lJiamQQVIVXbu3EnTpk2J\njo42H1a3bt3KoEGDsFqtTJs2DYD58+dz4MABoqKiSE1N5aeffmLIkCEcOnQIgICAALZt24bNZiMk\nJIT169cTGBjI2LFjGT16NJGRkTz++OP06NGDJ554ot7u90ZhGAZnzpwxR5OkpaWxf/9+iouL6dix\nY7XOsb6+vjdMxrvqCHpubi4dOnTA29v7mgIuwzDM2ZdV2cuq/8z5dXOf6/GfNyUlJSxfvpwNGzYw\ndepUHn744RvmvYYrB5K/1rFjR77++utqta0iIpfxm76ZqkZSRG46rq6u3HHHHcD/d1sdOHAgn376\nKWlpaeTl5QEXZup5eHgwcuRI/vOf/xAbG8v06dOrNQDx8/Nj6dKlbNy4kfDwcPbs2cPZs2f55Zdf\nsNvt5nXTpk0jOjqa5557jo8++ohdu3axdOlS2rRpw+TJkwkNDTX31JDUVId1cTOi0NBQPvjgAwDi\n4+OJjIzExcUFX19f7HY7qampANjtdvz8/ACIjIwkPj6erl27sn37dtatWwfAuHHjmD17tgJJLjS1\nad26Nffeey/33nuvue5wOMjMzDSzl++//z5Hjx7F1dWVwMDAagFmy5Yt6yxrVnVsNysri7Zt29Kn\nT5/fJeCyWCy4uLjg4uJSLatZWVlpzr785ZdfyMnJoaSkBKvVesnsy6tp6FNZWclHH33EggULGDNm\nDCkpKWZn54bixIkTtGnTBovFQmpqKpWVlfVSyykiNy8FkiJyU7v4Qbpt27a0bdvW/HVVNg3gb3/7\nG+vXr8dqtZrB5+nTp3nppZcICwvD19cXX19fzp8/T25uLm5ubnh5eZGfn09kZCT9+vVj6tSpuLq6\nsnHjRg4ePEhqaipdunThww8/ZMSIEQ0ykPxfVq5caY7IOH78OKGhoeZrNpuN48ePA3D77bdXW9+9\nezenT5+mRYsW5oP+xddLzRo1akRAQAABAQGMGTMGuBDEnTt3zhxNEh8fz9y5cykoKKg2mqRbt250\n6tTpsvW8V+vMmTMcPnyY5s2b06tXrzrJvFcd2WzatGm19fLycnP2ZW5uLoWFhVRUVODm5late6y7\nu3uNx2MNwyA1NZVZs2bRtWtXtmzZUu17xo0kKiqKpKSkas29qhqAPf7443zwwQcsW7YMq9WKm5sb\nGzZsuCGO44rIzUOBpIgI0KFDB7Nur+phy9nZmW7duhEfH09eXh4TJ07Ebrfz0Ucf4eHhQUFBAZGR\nkQwePJjnn38euNBcxNnZmbfeeotOnTrx7bffMmTIEHPEyM1k7ty5WK1WHn744freyi3NYrHQvHlz\n+vfvT//+/c31yspKsrOzzeOxmzdvJiMjwwxGqzKXwcHBZuaqNgoLCzl8+DAWi4Xg4OAbImPXuHFj\nWrRoYdbswoXgsKSkxDwee+rUKc6fP8+OHTv49ttvCQoKokePHvj4+BAXF8e5c+dYsmQJ3bt3r8c7\n+d/Wr19/xdcnT57M5MmT62g3InIrUiApInIZzZo147HHHuOxxx6rtj5s2DAGDx7MDz/8wI4dOzh3\n7hxbt25l4MCBTJgwgTvuuIN3332XxYsXM3jw4Hra/fW1evVqNm3axOeff24GID4+PmRnZ5vX5OTk\n4OPjA1DjeuvWrSkoKKCiogKr1Vrterl2Tk5OdOjQgQ4dOnDfffcB/x9UVY0m2b59O4sWLeLnn3/G\n09PzktEkNdUd/vjjj3z//ffcdtttdOrUqVrQdiOyWCy4ubnh5uZmzqEF6NatG9999x2pqamsWLGC\n9PR0XFxc8Pf3Z/Xq1XTv3p1u3boRGBiIm5tbPd6BiMiNSc12RESu0fnz5/nuu+/Iz89n8ODB/Pzz\nz0yePJmcnBxatmzJn//8Z8aPH1/f27xqv27okZiYyF//+leSk5OrPZjv37+fhx56yGy2M3jwYDIy\nMjAMg4CAAD7//HN8fHwICQlh3bp1BAUFMWbMGB544AGz2U737t158skn6+tWb1mGYXDy5Ekze7lv\n3z7S09MpLy/H39+f4OBg7HY7SUlJ7Ny5kzlz5jBq1KgGfVSyvLyclStXsnLlSiZNmsSECROwWq2c\nOnWKtLQ086jwgQMHKCsrY9WqVfTo0aO+ty0iUhfUtVVEpD5lZ2eTlpaGzWa74Y/JXc7FdVht2rRh\nzpw5xMbGUlpaajbuCA0NZfny5cCF464rV67EarWycOFChg0bBkBCQgLPPPMMDoeDmJgYZsyYAVzo\nihsZGcmZM2fo2bMn77777jWN0pDfV3l5Ofv37ycuLo5PPvmErl27UlBQQNOmTc3ay6qfmzZt2iAC\ny8rKSrZs2cLcuXOJiIhg+vTpeHh4XPH3OBwODMO4qsY9IiINkAJJERERuTqGYZCQkMDs2bMJDw9n\n2rRpeHh4YBgG+fn57Nu3z5x7+f3331NUVESHDh3Mo7FBQUH4+fndMMGXYRikpaUxY8YMvL29mTdv\nHu3bt6/vbYmI3IgUSIqIiMjVee+999i2bRuvvPJKta67l+NwODhy5Ei12ZdHjhzBxcXFHE1SFWC2\natWqTrOXubm5vPzyyxw7dozXXnuNkJCQBpE9FRGpJwokRUREahITE8OmTZvw8vK6ZJj7P/7xD6ZO\nnWo2oDEMgylTppCQkIC7uzurV6/mzjvvBGDNmjX8/e9/B+DFF19k3LhxAHzzzTeMHz+e4uJihg8f\nzqJFixpc4FI1BudaP0ZhYSH79+83ay/T0tLIz8+nXbt21Zr7BAQE0Lhx49/1fSosLGTRokV89tln\nzJw5k/vvv7/GsR8iIlKNAkkREZGa7Ny5k6ZNmxIdHV0tkMzOzmbChAmkp6fzzTff4OnpSUJCAosX\nLyYhIYHdu3czZcoUdu/ezZkzZ+jduzdff/01FouFXr168c0339CyZUv69OnDG2+8Qd++fRk+fDhP\nP/20WS8qF+oUc3JyqmUvDx06hMViqXE0SW2DP4fDwXvvvceSJUt45JFHmDRpkmpvRUR+u98USN4Y\nhQsiIiJ1aMCAAWRlZV2y/uyzz/Laa68xatQocy0+Pp7o6GgsFguhoaEUFBSQm5tLUlIS4eHhtGrV\nCoDw8HASExMJCwvj7NmzhIaGAhAdHc3HH3+sQPIiTk5OtG/fnvbt2zNixAjgQvayrKzMHE2SnJxM\nXFwcJ06coHXr1mZjn+DgYLp27Yqbm9sl2UvDMEhOTmb27Nn069ePpKQksymUiIj8vhRIioiIcCFg\n9PHxuWTEw/Hjx6vVCNpsNo4fP37FdZvNdsm6XJnFYsHFxYWePXvSs2dPc90wDE6dOmVmL9966y3S\n09MpKyszR5MEBQXh7u7O8uXLcXZ25t133yUgIKAe70ZE5OanQFJERG5558+fZ968eWzdurW+tyK/\nYrFYaNOmDeHh4YSHh5vrFRUVHDp0iL179/Ltt9/y73//m7fffpuBAwc2uHpUEZGGSBXnIiJyy8vM\nzOTo0aP06NGDjh07kpOTw5133smJEyfw8fEhOzvbvDYnJwcfH58rrufk5FyyLr8vq9VKYGAgUVFR\nxMbGcvjwYcLCwhREiojUEQWSIiJyy+vWrRunTp0iKyuLrKwsbDYbe/bsoW3btowcOZK1a9diGAYp\nKSl4eHjg7e1NREQEW7duJT8/n/z8fLZu3UpERATe3t40b96clJQUDMNg7dq11WoupWGKiYnBy8uL\n4ODgGl83DIOnn34au91O9+7d2bNnTx3vUESkbimQFBGRW05UVBT9+vXj4MGD2Gw2VqxYcdlrhw8f\njp+fH3a7nYkTJ7J06VIAWrVqxcyZMwkJCSEkJIRZs2aZjXeWLl3KhAkTsNvt+Pv7q9HOTWD8+PEk\nJiZe9vXNmzeTkZFBRkYG//rXv3jiiSfqcHciInVP4z9EREREfoOsrCxGjBhxyexRgMcee4ywsDCi\noqIA6Ny5M0lJSXh7e9f1NkVErtVvqhFQRlJERETkGl2ui6+IyM1KgaSIiMhN5HK1fIsXL6ZLly4E\nBQXx/PPPm+uxsbHY7XY6d+7Mli1bzPXExEQ6d+6M3W7n1VdfNdePHj1K3759sdvtPPjgg5SVlV3/\nmxIRkRuOAkkREZGbSE21fDt27CA+Pp69e/eyf/9+pk6dCsCBAwfYsGED+/fvJzExkSeffBKHw4HD\n4WDSpEls3ryZAwcOsH79eg4cOADAtGnTePbZZzl8+DAtW7a8Yn3preRyXXxFRG5WCiRFRERuIgMG\nDDCb/lRZtmwZ06dPx8XFBQAvLy8A4uPjiYyMxMXFBV9fX+x2O6mpqaSmpmK32/Hz88PZ2ZnIyEji\n4+MxDIPt27fzpz/9CYBx48bx8ccf1+0N3qAu191XRORmpUBSRETkJnfo0CG++OIL+vbty8CBA/nq\nq6+Ay9f1XW799OnTtGjRAqvVWm39VlBTp9/ly5ezfPly4PLdfUVEblbW+t6AiIiIXF8VFRWcOXOG\nlJQUvvrqK8aOHcuRI0fqe1sNyvr166/4usViYcmSJXW0GxGR+qdAUkRE5CZns9kYPXo0FouFPn36\n4OTkRF5e3hXr+mpab926NQUFBVRUVGC1WlUHKCJyC9PRVhERkZvcH//4R3bs2AFcOOZaVlaGp6cn\nI0eOZMOGDZSWlnL06FEyMjLo06cPISEhZGRkcPToUcrKytiwYQMjR47EYrFw77338sEHHwCwZs0a\nRo0aVZ+3JiIi9UQZSRERkZtIVFQUSUlJ5OXlYbPZmDNnDjExMcTExBAcHIyzszNr1qzBYrEQFBTE\n2LFjCQwMxGq1smTJEho1agRAXFwcEREROBwOYmJiCAoKAmD+/PlERkby4osv0rNnTx599NH6vF0R\nEaknFsMwanN9rS4WERERERGRBsXyWy7S0VYRERERERGpFQWSIiIiIiIiUisKJEVERERERKRWFEiK\niIiIiIhIrSiQFBERERERkVpRICkiIiIiIiK1okBSREREREREakWBpIiIiIiIiNSKAkkRERERERGp\nFQWSIiIiIiIiUisKJEVERERERKRWFEiKiIiIiIhIrSiQFBERERERkVpRICkiIiIiIiK1okBSRERE\nREREasVay+st12UXIiIiIiIi0mAoIykiIiIiIiK1okBSREREREREakWBpIiIiIiIiNSKAkkRERER\nERGpFQWSIiIiIiIiUisKJEVERERERKRWFEiKiIiIiIhIrSiQFBERERERkVpRICkiIiIiIiK1okBS\nREREREREauX/AMe8yCZi7/+iAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<matplotlib.figure.Figure at 0x105808e50>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_metric('lat.mean')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## System Information\n", + "\n", + "### Hardware\n", + "\n", + "TBD\n", + "\n", + "### Software\n", + "\n", + "TBD" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Test Configuration\n", + "\n", + "TBD" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.13" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "state": { + "02716bf59114496283eac740bc0695aa": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_2cb207c6ed604d7fa6a406e3b802850a" + } + }, + "0706117690ab4d7b89d5646fb7a11014": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "0bf8d8302b344a8bbef9e18230167590": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "13327a15549844b499b334d6b6ece711": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_e2c122d2e84f4d2b9f98a615820a7889" + } + }, + "1b894f69e28e46849f37133ecf830de9": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":2,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":31.8015,\"workload_name\":\"wr\"},{\"Index\":8,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":101.28575,\"workload_name\":\"rw\"},{\"Index\":10,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":269.8525,\"workload_name\":\"rw\"},{\"Index\":12,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":308.64,\"workload_name\":\"rw\"},{\"Index\":17,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":13.09925,\"workload_name\":\"wr\"},{\"Index\":32,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":41.94025,\"workload_name\":\"rw\"},{\"Index\":39,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":132.45771,\"workload_name\":\"rw\"},{\"Index\":44,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4774.06125,\"workload_name\":\"rr\"},{\"Index\":48,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":15.8125,\"workload_name\":\"wr\"},{\"Index\":55,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":43.4755,\"workload_name\":\"rw\"},{\"Index\":62,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":17.797,\"workload_name\":\"wr\"},{\"Index\":63,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":115.91083,\"workload_name\":\"rw\"},{\"Index\":64,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1645.45325,\"workload_name\":\"rr\"},{\"Index\":67,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":8974.82225,\"workload_name\":\"rr\"},{\"Index\":69,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1446.302,\"workload_name\":\"rr\"},{\"Index\":70,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":97.773,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_8b8dbbef24d84250b7c49d25dcd30289" + } + }, + "2cb207c6ed604d7fa6a406e3b802850a": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "4588125732ee43cda179b2404f891e03": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":0,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":741.59292,\"workload_name\":\"rw\"},{\"Index\":3,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":76441.21425,\"workload_name\":\"wr\"},{\"Index\":6,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":802.74146,\"workload_name\":\"rw\"},{\"Index\":26,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":840.98775,\"workload_name\":\"rr\"},{\"Index\":28,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":28466.22208,\"workload_name\":\"rw\"},{\"Index\":34,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":253079.29675,\"workload_name\":\"wr\"},{\"Index\":37,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":445.57225,\"workload_name\":\"rr\"},{\"Index\":43,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":719.53475,\"workload_name\":\"rw\"},{\"Index\":53,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":22165.34,\"workload_name\":\"rw\"},{\"Index\":54,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":644.558,\"workload_name\":\"rw\"},{\"Index\":58,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":125744.8595,\"workload_name\":\"wr\"},{\"Index\":61,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":607.45825,\"workload_name\":\"rr\"},{\"Index\":65,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":691.00825,\"workload_name\":\"rr\"},{\"Index\":66,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":21498.49425,\"workload_name\":\"rw\"},{\"Index\":68,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":32651.65104,\"workload_name\":\"rw\"},{\"Index\":76,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":56424.977,\"workload_name\":\"wr\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_fd25a7a42ed449bbb505af9ff97f5c41" + } + }, + "4a9ed2d89d8a4e9ca0b5a37c87c35306": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":2,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":31.8015,\"workload_name\":\"wr\"},{\"Index\":8,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":101.28575,\"workload_name\":\"rw\"},{\"Index\":10,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":269.8525,\"workload_name\":\"rw\"},{\"Index\":12,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":308.64,\"workload_name\":\"rw\"},{\"Index\":17,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":13.09925,\"workload_name\":\"wr\"},{\"Index\":32,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":41.94025,\"workload_name\":\"rw\"},{\"Index\":39,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":132.45771,\"workload_name\":\"rw\"},{\"Index\":44,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4774.06125,\"workload_name\":\"rr\"},{\"Index\":48,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":15.8125,\"workload_name\":\"wr\"},{\"Index\":55,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":43.4755,\"workload_name\":\"rw\"},{\"Index\":62,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":17.797,\"workload_name\":\"wr\"},{\"Index\":63,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":115.91083,\"workload_name\":\"rw\"},{\"Index\":64,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1645.45325,\"workload_name\":\"rr\"},{\"Index\":67,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":8974.82225,\"workload_name\":\"rr\"},{\"Index\":69,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1446.302,\"workload_name\":\"rr\"},{\"Index\":70,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":97.773,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_e9038729af794615b237d9cad9edf64b" + } + }, + "4ccbb3a8b5094e368055d28b9dcb1892": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":0,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":741.59292,\"workload_name\":\"rw\"},{\"Index\":3,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":76441.21425,\"workload_name\":\"wr\"},{\"Index\":6,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":802.74146,\"workload_name\":\"rw\"},{\"Index\":26,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":840.98775,\"workload_name\":\"rr\"},{\"Index\":28,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":28466.22208,\"workload_name\":\"rw\"},{\"Index\":34,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":253079.29675,\"workload_name\":\"wr\"},{\"Index\":37,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":445.57225,\"workload_name\":\"rr\"},{\"Index\":43,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":719.53475,\"workload_name\":\"rw\"},{\"Index\":53,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":22165.34,\"workload_name\":\"rw\"},{\"Index\":54,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":644.558,\"workload_name\":\"rw\"},{\"Index\":58,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":125744.8595,\"workload_name\":\"wr\"},{\"Index\":61,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":607.45825,\"workload_name\":\"rr\"},{\"Index\":65,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":691.00825,\"workload_name\":\"rr\"},{\"Index\":66,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":21498.49425,\"workload_name\":\"rw\"},{\"Index\":68,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":32651.65104,\"workload_name\":\"rw\"},{\"Index\":76,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":56424.977,\"workload_name\":\"wr\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_b5d9fe0b25b048e0974ef9661ea58df0" + } + }, + "55fe3c2bb3d44d638f9f01a487c27014": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_fa4783ac5c084c9890d6032ead9caca7" + } + }, + "606beef3b661415f979ab50e25689332": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_a4d4a69249ae419a924d0de93f54b10b" + } + }, + "61de1e40362a4a6e9cee82badcf4e7f5": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_ab17d6c9c72944bc90a12fac19002b09" + } + }, + "661e4730cf3b4be0be6c9ba4b8fa7411": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":0,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":741.59292,\"workload_name\":\"rw\"},{\"Index\":3,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":76441.21425,\"workload_name\":\"wr\"},{\"Index\":6,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":802.74146,\"workload_name\":\"rw\"},{\"Index\":26,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":840.98775,\"workload_name\":\"rr\"},{\"Index\":28,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":28466.22208,\"workload_name\":\"rw\"},{\"Index\":34,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":253079.29675,\"workload_name\":\"wr\"},{\"Index\":37,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":445.57225,\"workload_name\":\"rr\"},{\"Index\":43,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":719.53475,\"workload_name\":\"rw\"},{\"Index\":53,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":22165.34,\"workload_name\":\"rw\"},{\"Index\":54,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":644.558,\"workload_name\":\"rw\"},{\"Index\":58,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":125744.8595,\"workload_name\":\"wr\"},{\"Index\":61,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":607.45825,\"workload_name\":\"rr\"},{\"Index\":65,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":691.00825,\"workload_name\":\"rr\"},{\"Index\":66,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":21498.49425,\"workload_name\":\"rw\"},{\"Index\":68,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":32651.65104,\"workload_name\":\"rw\"},{\"Index\":76,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":56424.977,\"workload_name\":\"wr\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_0706117690ab4d7b89d5646fb7a11014" + } + }, + "6bff0e20a3084332adb5f3ef9ff2f4b8": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":0,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":741.59292,\"workload_name\":\"rw\"},{\"Index\":3,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":76441.21425,\"workload_name\":\"wr\"},{\"Index\":6,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":802.74146,\"workload_name\":\"rw\"},{\"Index\":26,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":840.98775,\"workload_name\":\"rr\"},{\"Index\":28,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":28466.22208,\"workload_name\":\"rw\"},{\"Index\":34,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":253079.29675,\"workload_name\":\"wr\"},{\"Index\":37,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":445.57225,\"workload_name\":\"rr\"},{\"Index\":43,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":719.53475,\"workload_name\":\"rw\"},{\"Index\":53,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":22165.34,\"workload_name\":\"rw\"},{\"Index\":54,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":644.558,\"workload_name\":\"rw\"},{\"Index\":58,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":125744.8595,\"workload_name\":\"wr\"},{\"Index\":61,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":607.45825,\"workload_name\":\"rr\"},{\"Index\":65,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":691.00825,\"workload_name\":\"rr\"},{\"Index\":66,\"block_size\":2048,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":21498.49425,\"workload_name\":\"rw\"},{\"Index\":68,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":32651.65104,\"workload_name\":\"rw\"},{\"Index\":76,\"block_size\":16384,\"metric_name\":\"lat.mean\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":56424.977,\"workload_name\":\"wr\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_f406c0e4c92044f9a7658bd1b7eacc46" + } + }, + "799848af5bc64afab757c1b901daea60": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "8b8dbbef24d84250b7c49d25dcd30289": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "a4d4a69249ae419a924d0de93f54b10b": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "a773102d7c8f444cbe4b5c2aac4bdd42": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "ab17d6c9c72944bc90a12fac19002b09": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "b2dac425f9c846eb9390688de201f207": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":2,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":31.8015,\"workload_name\":\"wr\"},{\"Index\":8,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":101.28575,\"workload_name\":\"rw\"},{\"Index\":10,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":269.8525,\"workload_name\":\"rw\"},{\"Index\":12,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":308.64,\"workload_name\":\"rw\"},{\"Index\":17,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":13.09925,\"workload_name\":\"wr\"},{\"Index\":32,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":41.94025,\"workload_name\":\"rw\"},{\"Index\":39,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":132.45771,\"workload_name\":\"rw\"},{\"Index\":44,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4774.06125,\"workload_name\":\"rr\"},{\"Index\":48,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":15.8125,\"workload_name\":\"wr\"},{\"Index\":55,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":43.4755,\"workload_name\":\"rw\"},{\"Index\":62,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":17.797,\"workload_name\":\"wr\"},{\"Index\":63,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":115.91083,\"workload_name\":\"rw\"},{\"Index\":64,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1645.45325,\"workload_name\":\"rr\"},{\"Index\":67,\"block_size\":2048,\"metric_name\":\"iops\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":8974.82225,\"workload_name\":\"rr\"},{\"Index\":69,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1446.302,\"workload_name\":\"rr\"},{\"Index\":70,\"block_size\":16384,\"metric_name\":\"iops\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":97.773,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_0bf8d8302b344a8bbef9e18230167590" + } + }, + "b5d9fe0b25b048e0974ef9661ea58df0": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "c6102a771b224f72b8586e9c03abb880": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_799848af5bc64afab757c1b901daea60" + } + }, + "df6fc40ce4e646b5ba59d42567565786": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "e2c0c6d956714164a438e823986a1e73": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_a773102d7c8f444cbe4b5c2aac4bdd42" + } + }, + "e2c122d2e84f4d2b9f98a615820a7889": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "e9038729af794615b237d9cad9edf64b": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "f0aca7d0d04345ccba3da6b80e2ac2f4": { + "model_module": "jupyter-js-widgets", + "model_module_version": "*", + "model_name": "DOMWidgetModel", + "state": { + "_cdn_base_url": "/nbextensions/qgridjs", + "_column_types_json": "[{\"field\": \"Index\", \"type\": \"Integer\"}, {\"field\": \"block_size\", \"type\": \"Integer\"}, {\"field\": \"metric_name\"}, {\"field\": \"queue_depth\", \"type\": \"Integer\"}, {\"field\": \"read_write\"}, {\"field\": \"value\", \"type\": \"Float\"}, {\"field\": \"workload_name\"}]", + "_df_json": "[{\"Index\":13,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":507.9,\"workload_name\":\"wr\"},{\"Index\":14,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":3290.425,\"workload_name\":\"rr\"},{\"Index\":15,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":1853.91667,\"workload_name\":\"rw\"},{\"Index\":18,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":670.45,\"workload_name\":\"rw\"},{\"Index\":20,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":284.125,\"workload_name\":\"wr\"},{\"Index\":23,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":17949.1,\"workload_name\":\"rr\"},{\"Index\":25,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":86.45,\"workload_name\":\"rw\"},{\"Index\":31,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":30.975,\"workload_name\":\"wr\"},{\"Index\":35,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":616.8125,\"workload_name\":\"rw\"},{\"Index\":40,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":23140.2,\"workload_name\":\"rr\"},{\"Index\":41,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":202.125,\"workload_name\":\"rw\"},{\"Index\":49,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"write\",\"value\":264.39583,\"workload_name\":\"rw\"},{\"Index\":50,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":76384.225,\"workload_name\":\"rr\"},{\"Index\":57,\"block_size\":2048,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"write\",\"value\":25.8,\"workload_name\":\"wr\"},{\"Index\":60,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":4,\"read_write\":\"read\",\"value\":4317.125,\"workload_name\":\"rw\"},{\"Index\":72,\"block_size\":16384,\"metric_name\":\"bw\",\"queue_depth\":1,\"read_write\":\"read\",\"value\":1563.825,\"workload_name\":\"rw\"}]", + "_model_name": "DOMWidgetModel", + "_view_module": "nbextensions/qgridjs/qgrid.widget", + "_view_name": "QGridView", + "grid_options": { + "autoEdit": false, + "defaultColumnWidth": 150, + "editable": true, + "enableColumnReorder": false, + "enableTextSelectionOnCells": true, + "forceFitColumns": true, + "fullWidthRows": true, + "rowHeight": 28, + "syncColumnCellResize": true + }, + "layout": "IPY_MODEL_df6fc40ce4e646b5ba59d42567565786" + } + }, + "f406c0e4c92044f9a7658bd1b7eacc46": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "fa4783ac5c084c9890d6032ead9caca7": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + }, + "fd25a7a42ed449bbb505af9ff97f5c41": { + "model_module": "jupyter-js-widgets", + "model_module_version": "~2.1.4", + "model_name": "LayoutModel", + "state": { + "_model_module_version": "~2.1.4", + "_view_module_version": "~2.1.4" + } + } + }, + "version_major": 1, + "version_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/examples/storage-qpi-report/storperf-danube.json b/examples/storage-qpi-report/storperf-danube.json new file mode 100644 index 00000000..ab43f3fc --- /dev/null +++ b/examples/storage-qpi-report/storperf-danube.json @@ -0,0 +1,4161 @@ +{ + "agent_count": 4, + "build_tag": "jenkins-storperf-daily-danube-85", + "disk_type": "SSD", + "pod_name": "intel-pod9", + "public_network": "external", + "report": { + "agent_count": 4, + "build_tag": "jenkins-storperf-daily-danube-85", + "disk_type": "SSD", + "metrics": { + "_warm_up.queue-depth.8.block-size.16384.read.bw": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.iops": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.lat.mean": 0.0, + "_warm_up.queue-depth.8.block-size.16384.write.bw": 3273.875, + "_warm_up.queue-depth.8.block-size.16384.write.iops": 204.66160714285715, + "_warm_up.queue-depth.8.block-size.16384.write.lat.mean": 39120.8705357143, + "rr.queue-depth.1.block-size.16384.read.bw": 23370.8, + "rr.queue-depth.1.block-size.16384.read.iops": 1460.71275, + "rr.queue-depth.1.block-size.16384.read.lat.mean": 682.7245, + "rr.queue-depth.1.block-size.16384.write.bw": 0.0, + "rr.queue-depth.1.block-size.16384.write.iops": 0.0, + "rr.queue-depth.1.block-size.16384.write.lat.mean": 0.0, + "rr.queue-depth.1.block-size.2048.read.bw": 3289.175, + "rr.queue-depth.1.block-size.2048.read.iops": 1644.85075, + "rr.queue-depth.1.block-size.2048.read.lat.mean": 607.7787500000001, + "rr.queue-depth.1.block-size.2048.write.bw": 0.0, + "rr.queue-depth.1.block-size.2048.write.iops": 0.0, + "rr.queue-depth.1.block-size.2048.write.lat.mean": 0.0, + "rr.queue-depth.4.block-size.16384.read.bw": 75399.45, + "rr.queue-depth.4.block-size.16384.read.iops": 4712.520750000001, + "rr.queue-depth.4.block-size.16384.read.lat.mean": 851.066, + "rr.queue-depth.4.block-size.16384.write.bw": 0.0, + "rr.queue-depth.4.block-size.16384.write.iops": 0.0, + "rr.queue-depth.4.block-size.16384.write.lat.mean": 0.0, + "rr.queue-depth.4.block-size.2048.read.bw": 16037.0, + "rr.queue-depth.4.block-size.2048.read.iops": 8018.751249999998, + "rr.queue-depth.4.block-size.2048.read.lat.mean": 500.1266666666667, + "rr.queue-depth.4.block-size.2048.write.bw": 0.0, + "rr.queue-depth.4.block-size.2048.write.iops": 0.0, + "rr.queue-depth.4.block-size.2048.write.lat.mean": 0.0, + "rw.queue-depth.1.block-size.16384.read.bw": 1596.0, + "rw.queue-depth.1.block-size.16384.read.iops": 99.77975, + "rw.queue-depth.1.block-size.16384.read.lat.mean": 729.06, + "rw.queue-depth.1.block-size.16384.write.bw": 685.125, + "rw.queue-depth.1.block-size.16384.write.iops": 42.85875, + "rw.queue-depth.1.block-size.16384.write.lat.mean": 21630.089, + "rw.queue-depth.1.block-size.2048.read.bw": 204.825, + "rw.queue-depth.1.block-size.2048.read.iops": 102.63825, + "rw.queue-depth.1.block-size.2048.read.lat.mean": 631.59725, + "rw.queue-depth.1.block-size.2048.write.bw": 87.575, + "rw.queue-depth.1.block-size.2048.write.iops": 44.051, + "rw.queue-depth.1.block-size.2048.write.lat.mean": 21228.210750000002, + "rw.queue-depth.4.block-size.16384.read.bw": 4661.166666666667, + "rw.queue-depth.4.block-size.16384.read.iops": 291.35133333333334, + "rw.queue-depth.4.block-size.16384.read.lat.mean": 816.2015, + "rw.queue-depth.4.block-size.16384.write.bw": 1999.3916666666669, + "rw.queue-depth.4.block-size.16384.write.iops": 125.02008333333336, + "rw.queue-depth.4.block-size.16384.write.lat.mean": 30107.46316666666, + "rw.queue-depth.4.block-size.2048.read.bw": 603.25, + "rw.queue-depth.4.block-size.2048.read.iops": 301.8797916666667, + "rw.queue-depth.4.block-size.2048.read.lat.mean": 756.7747916666664, + "rw.queue-depth.4.block-size.2048.write.bw": 258.6041666666667, + "rw.queue-depth.4.block-size.2048.write.iops": 129.56499999999997, + "rw.queue-depth.4.block-size.2048.write.lat.mean": 29105.120416666672, + "wr.queue-depth.1.block-size.16384.read.bw": 0.0, + "wr.queue-depth.1.block-size.16384.read.iops": 0.0, + "wr.queue-depth.1.block-size.16384.read.lat.mean": 0.0, + "wr.queue-depth.1.block-size.16384.write.bw": 319.875, + "wr.queue-depth.1.block-size.16384.write.iops": 20.01975, + "wr.queue-depth.1.block-size.16384.write.lat.mean": 50005.268000000004, + "wr.queue-depth.1.block-size.2048.read.bw": 0.0, + "wr.queue-depth.1.block-size.2048.read.iops": 0.0, + "wr.queue-depth.1.block-size.2048.read.lat.mean": 0.0, + "wr.queue-depth.1.block-size.2048.write.bw": 26.05, + "wr.queue-depth.1.block-size.2048.write.iops": 13.268833333333333, + "wr.queue-depth.1.block-size.2048.write.lat.mean": 75413.91191666666, + "wr.queue-depth.4.block-size.16384.read.bw": 0.0, + "wr.queue-depth.4.block-size.16384.read.iops": 0.0, + "wr.queue-depth.4.block-size.16384.read.lat.mean": 0.0, + "wr.queue-depth.4.block-size.16384.write.bw": 514.5, + "wr.queue-depth.4.block-size.16384.write.iops": 32.21275, + "wr.queue-depth.4.block-size.16384.write.lat.mean": 124288.48649999997, + "wr.queue-depth.4.block-size.2048.read.bw": 0.0, + "wr.queue-depth.4.block-size.2048.read.iops": 0.0, + "wr.queue-depth.4.block-size.2048.read.lat.mean": 0.0, + "wr.queue-depth.4.block-size.2048.write.bw": 31.525, + "wr.queue-depth.4.block-size.2048.write.iops": 16.027499999999996, + "wr.queue-depth.4.block-size.2048.write.lat.mean": 249853.26175 + }, + "pod_name": "intel-pod9", + "public_network": "external", + "report_data": { + "_warm_up.queue-depth.8.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 21, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 3273.875, + "range": 282.5, + "series": [ + [ + 9, + 3099.0 + ], + [ + 10, + 3122.25 + ], + [ + 11, + 3154.0 + ], + [ + 12, + 3206.75 + ], + [ + 13, + 3246.25 + ], + [ + 14, + 3282.25 + ], + [ + 15, + 3301.75 + ], + [ + 16, + 3320.25 + ], + [ + 17, + 3343.0 + ], + [ + 18, + 3345.5 + ], + [ + 19, + 3344.75 + ], + [ + 20, + 3346.5 + ], + [ + 21, + 3381.5 + ], + [ + 21, + 3340.5 + ] + ], + "slope": 21.47695623342175, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 21, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 204.66160714285715, + "range": 17.64749999999998, + "series": [ + [ + 9, + 193.73250000000002 + ], + [ + 10, + 195.1975 + ], + [ + 11, + 197.1825 + ], + [ + 12, + 200.46749999999997 + ], + [ + 13, + 202.92 + ], + [ + 14, + 205.1825 + ], + [ + 15, + 206.39999999999998 + ], + [ + 16, + 207.56 + ], + [ + 17, + 208.9975 + ], + [ + 18, + 209.13 + ], + [ + 19, + 209.085 + ], + [ + 20, + 209.2125 + ], + [ + 21, + 211.38 + ], + [ + 21, + 208.815 + ] + ], + "slope": 1.3415600132626055, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 21, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 39120.8705357143, + "range": 3452.165000000001, + "series": [ + [ + 9, + 41297.41 + ], + [ + 10, + 40986.26 + ], + [ + 11, + 40575.345 + ], + [ + 12, + 39910.02500000001 + ], + [ + 13, + 39427.0175 + ], + [ + 14, + 38992.2625 + ], + [ + 15, + 38762.50750000001 + ], + [ + 16, + 38544.439999999995 + ], + [ + 17, + 38280.86749999999 + ], + [ + 18, + 38256.3825 + ], + [ + 19, + 38264.2 + ], + [ + 20, + 38240.65 + ], + [ + 21, + 37845.245 + ], + [ + 21, + 38309.575 + ] + ], + "slope": -261.12805205572704, + "steady_state": true + } + } + }, + "rr.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 23370.8, + "range": 313.0, + "series": [ + [ + 1, + 23599.25 + ], + [ + 2, + 23471.75 + ], + [ + 3, + 23425.0 + ], + [ + 4, + 23323.5 + ], + [ + 5, + 23286.25 + ], + [ + 6, + 23291.5 + ], + [ + 7, + 23334.75 + ], + [ + 8, + 23342.5 + ], + [ + 9, + 23318.5 + ], + [ + 10, + 23315.0 + ] + ], + "slope": -24.26969696969697, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 1460.71275, + "range": 19.605000000000018, + "series": [ + [ + 1, + 1475.0149999999999 + ], + [ + 2, + 1467.03 + ], + [ + 3, + 1464.11 + ], + [ + 4, + 1457.7675 + ], + [ + 5, + 1455.4099999999999 + ], + [ + 6, + 1455.7499999999998 + ], + [ + 7, + 1458.4599999999998 + ], + [ + 8, + 1458.94 + ], + [ + 9, + 1457.4475000000002 + ], + [ + 10, + 1457.1975 + ] + ], + "slope": -1.520409090908978, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 682.7245, + "range": 9.220000000000027, + "series": [ + [ + 1, + 675.9825 + ], + [ + 2, + 679.745 + ], + [ + 3, + 681.0425 + ], + [ + 4, + 684.1374999999999 + ], + [ + 5, + 685.2025 + ], + [ + 6, + 684.975 + ], + [ + 7, + 683.8075000000001 + ], + [ + 8, + 683.6525 + ], + [ + 9, + 684.3199999999999 + ], + [ + 10, + 684.38 + ] + ], + "slope": 0.7238484848485413, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 3289.175, + "range": 518.5, + "series": [ + [ + 1, + 3379.75 + ], + [ + 2, + 3381.0 + ], + [ + 3, + 3389.75 + ], + [ + 4, + 3413.5 + ], + [ + 5, + 3403.25 + ], + [ + 6, + 3412.5 + ], + [ + 7, + 3418.75 + ], + [ + 8, + 3192.5 + ], + [ + 9, + 3000.5 + ], + [ + 10, + 2900.25 + ] + ], + "slope": -48.122727272727275, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 1644.85075, + "range": 259.33749999999986, + "series": [ + [ + 1, + 1690.23 + ], + [ + 2, + 1690.645 + ], + [ + 3, + 1695.145 + ], + [ + 4, + 1707.1100000000001 + ], + [ + 5, + 1701.7575 + ], + [ + 6, + 1706.5149999999999 + ], + [ + 7, + 1709.6999999999998 + ], + [ + 8, + 1596.545 + ], + [ + 9, + 1500.4975000000002 + ], + [ + 10, + 1450.3625 + ] + ], + "slope": -24.062499999999858, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 607.7787500000001, + "range": 104.6825, + "series": [ + [ + 1, + 589.4525 + ], + [ + 2, + 589.1275 + ], + [ + 3, + 587.7425 + ], + [ + 4, + 583.6775 + ], + [ + 5, + 585.4075 + ], + [ + 6, + 583.7850000000001 + ], + [ + 7, + 582.6975000000001 + ], + [ + 8, + 624.1925 + ], + [ + 9, + 664.325 + ], + [ + 10, + 687.3800000000001 + ] + ], + "slope": 9.608590909090937, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 75399.45, + "range": 224.0, + "series": [ + [ + 1, + 75247.5 + ], + [ + 2, + 75297.75 + ], + [ + 3, + 75370.75 + ], + [ + 4, + 75379.0 + ], + [ + 5, + 75424.25 + ], + [ + 6, + 75434.75 + ], + [ + 7, + 75459.5 + ], + [ + 8, + 75453.75 + ], + [ + 9, + 75455.75 + ], + [ + 10, + 75471.5 + ] + ], + "slope": 22.963636363636365, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 4712.520750000001, + "range": 13.930000000000291, + "series": [ + [ + 1, + 4703.085 + ], + [ + 2, + 4706.1825 + ], + [ + 3, + 4710.725 + ], + [ + 4, + 4711.2475 + ], + [ + 5, + 4714.0575 + ], + [ + 6, + 4714.7225 + ], + [ + 7, + 4716.255 + ], + [ + 8, + 4715.9 + ], + [ + 9, + 4716.0175 + ], + [ + 10, + 4717.015 + ] + ], + "slope": 1.4289545454542067, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 851.066, + "range": 2.0274999999998045, + "series": [ + [ + 1, + 852.4399999999999 + ], + [ + 2, + 851.91 + ], + [ + 3, + 851.2925 + ], + [ + 4, + 851.2525 + ], + [ + 5, + 850.8725 + ], + [ + 6, + 850.79 + ], + [ + 7, + 850.5350000000001 + ], + [ + 8, + 850.595 + ], + [ + 9, + 850.56 + ], + [ + 10, + 850.4125000000001 + ] + ], + "slope": -0.20254545454535577, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 16037.0, + "range": 2882.75, + "series": [ + [ + 4, + 14046.75 + ], + [ + 5, + 14861.75 + ], + [ + 6, + 15371.25 + ], + [ + 7, + 15740.5 + ], + [ + 8, + 16010.5 + ], + [ + 9, + 16240.5 + ], + [ + 10, + 16406.25 + ], + [ + 11, + 16544.5 + ], + [ + 12, + 16665.75 + ], + [ + 13, + 16771.5 + ], + [ + 14, + 16855.25 + ], + [ + 15, + 16929.5 + ] + ], + "slope": 230.23601398601397, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 8018.751249999998, + "range": 1441.5149999999994, + "series": [ + [ + 4, + 7023.49 + ], + [ + 5, + 7431.1275 + ], + [ + 6, + 7685.955 + ], + [ + 7, + 7870.6225 + ], + [ + 8, + 8005.565 + ], + [ + 9, + 8120.575 + ], + [ + 10, + 8203.3975 + ], + [ + 11, + 8272.392500000002 + ], + [ + 12, + 8333.1175 + ], + [ + 13, + 8385.96 + ], + [ + 14, + 8427.8075 + ], + [ + 15, + 8465.005 + ] + ], + "slope": 115.11398601398689, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 500.1266666666667, + "range": 96.99000000000001, + "series": [ + [ + 4, + 569.3375 + ], + [ + 5, + 538.0625 + ], + [ + 6, + 520.2 + ], + [ + 7, + 508.01 + ], + [ + 8, + 499.43000000000006 + ], + [ + 9, + 492.3575 + ], + [ + 10, + 487.385 + ], + [ + 11, + 483.33000000000004 + ], + [ + 12, + 479.8275 + ], + [ + 13, + 476.7975 + ], + [ + 14, + 474.43499999999995 + ], + [ + 15, + 472.34749999999997 + ] + ], + "slope": -7.4739160839160785, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rw.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 1596.0, + "range": 44.5, + "series": [ + [ + 1, + 1573.5 + ], + [ + 2, + 1618.0 + ], + [ + 3, + 1608.0 + ], + [ + 4, + 1601.25 + ], + [ + 5, + 1591.0 + ], + [ + 6, + 1586.25 + ], + [ + 7, + 1591.75 + ], + [ + 8, + 1596.75 + ], + [ + 9, + 1597.75 + ], + [ + 10, + 1595.75 + ] + ], + "slope": -0.18787878787878787, + "steady_state": true + }, + "write": { + "average": 685.125, + "range": 13.5, + "series": [ + [ + 1, + 682.0 + ], + [ + 2, + 686.75 + ], + [ + 3, + 690.25 + ], + [ + 4, + 692.5 + ], + [ + 5, + 682.75 + ], + [ + 6, + 679.0 + ], + [ + 7, + 682.5 + ], + [ + 8, + 683.25 + ], + [ + 9, + 686.0 + ], + [ + 10, + 686.25 + ] + ], + "slope": -0.21666666666666667, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 99.77975, + "range": 2.7874999999999943, + "series": [ + [ + 1, + 98.375 + ], + [ + 2, + 101.1625 + ], + [ + 3, + 100.52499999999999 + ], + [ + 4, + 100.1 + ], + [ + 5, + 99.46000000000001 + ], + [ + 6, + 99.17750000000001 + ], + [ + 7, + 99.5125 + ], + [ + 8, + 99.8225 + ], + [ + 9, + 99.8875 + ], + [ + 10, + 99.775 + ] + ], + "slope": -0.011409090909106783, + "steady_state": true + }, + "write": { + "average": 42.85875, + "range": 0.865000000000002, + "series": [ + [ + 1, + 42.660000000000004 + ], + [ + 2, + 42.955 + ], + [ + 3, + 43.1925 + ], + [ + 4, + 43.335 + ], + [ + 5, + 42.715 + ], + [ + 6, + 42.47 + ], + [ + 7, + 42.68749999999999 + ], + [ + 8, + 42.745000000000005 + ], + [ + 9, + 42.9 + ], + [ + 10, + 42.927499999999995 + ] + ], + "slope": -0.014560606060602534, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 729.06, + "range": 20.522500000000036, + "series": [ + [ + 1, + 741.5125 + ], + [ + 2, + 735.0875000000001 + ], + [ + 3, + 735.1375 + ], + [ + 4, + 735.2375 + ], + [ + 5, + 729.9625 + ], + [ + 6, + 724.395 + ], + [ + 7, + 722.945 + ], + [ + 8, + 723.99 + ], + [ + 9, + 720.99 + ], + [ + 10, + 721.3425 + ] + ], + "slope": -2.2933030303029316, + "steady_state": true + }, + "write": { + "average": 21630.089, + "range": 474.1775000000016, + "series": [ + [ + 1, + 21747.78 + ], + [ + 2, + 21542.545 + ], + [ + 3, + 21431.397500000003 + ], + [ + 4, + 21371.074999999997 + ], + [ + 5, + 21703.985 + ], + [ + 6, + 21845.2525 + ], + [ + 7, + 21732.59 + ], + [ + 8, + 21695.125 + ], + [ + 9, + 21621.5975 + ], + [ + 10, + 21609.542500000003 + ] + ], + "slope": 11.234424242424694, + "steady_state": true + } + } + }, + "rw.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 204.825, + "range": 12.75, + "series": [ + [ + 1, + 207.25 + ], + [ + 2, + 213.0 + ], + [ + 3, + 209.5 + ], + [ + 4, + 200.25 + ], + [ + 5, + 203.0 + ], + [ + 6, + 202.75 + ], + [ + 7, + 203.5 + ], + [ + 8, + 202.75 + ], + [ + 9, + 202.75 + ], + [ + 10, + 203.5 + ] + ], + "slope": -0.7863636363636364, + "steady_state": true + }, + "write": { + "average": 87.575, + "range": 3.75, + "series": [ + [ + 1, + 89.5 + ], + [ + 2, + 89.5 + ], + [ + 3, + 90.0 + ], + [ + 4, + 86.25 + ], + [ + 5, + 86.75 + ], + [ + 6, + 86.5 + ], + [ + 7, + 87.0 + ], + [ + 8, + 86.5 + ], + [ + 9, + 86.75 + ], + [ + 10, + 87.0 + ] + ], + "slope": -0.346969696969697, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 102.63825, + "range": 6.434999999999988, + "series": [ + [ + 1, + 103.8575 + ], + [ + 2, + 106.7375 + ], + [ + 3, + 104.99000000000001 + ], + [ + 4, + 100.30250000000001 + ], + [ + 5, + 101.715 + ], + [ + 6, + 101.7025 + ], + [ + 7, + 101.92 + ], + [ + 8, + 101.67 + ], + [ + 9, + 101.64 + ], + [ + 10, + 101.8475 + ] + ], + "slope": -0.3971666666666649, + "steady_state": true + }, + "write": { + "average": 44.051, + "range": 1.7249999999999943, + "series": [ + [ + 1, + 44.9575 + ], + [ + 2, + 45.114999999999995 + ], + [ + 3, + 45.1575 + ], + [ + 4, + 43.432500000000005 + ], + [ + 5, + 43.64750000000001 + ], + [ + 6, + 43.550000000000004 + ], + [ + 7, + 43.66250000000001 + ], + [ + 8, + 43.575 + ], + [ + 9, + 43.65 + ], + [ + 10, + 43.7625 + ] + ], + "slope": -0.17169696969697146, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 631.59725, + "range": 49.625, + "series": [ + [ + 1, + 599.27 + ], + [ + 2, + 610.665 + ], + [ + 3, + 626.25 + ], + [ + 4, + 632.355 + ], + [ + 5, + 627.12 + ], + [ + 6, + 635.93 + ], + [ + 7, + 642.945 + ], + [ + 8, + 643.775 + ], + [ + 9, + 648.895 + ], + [ + 10, + 648.7675 + ] + ], + "slope": 5.098742424242452, + "steady_state": true + }, + "write": { + "average": 21228.210750000002, + "range": 874.9924999999967, + "series": [ + [ + 1, + 20853.032499999998 + ], + [ + 2, + 20716.175 + ], + [ + 3, + 20680.995000000003 + ], + [ + 4, + 21555.9875 + ], + [ + 5, + 21444.2875 + ], + [ + 6, + 21469.905 + ], + [ + 7, + 21396.84 + ], + [ + 8, + 21440.1525 + ], + [ + 9, + 21391.19 + ], + [ + 10, + 21333.542500000003 + ] + ], + "slope": 75.11307575757304, + "steady_state": true + } + } + }, + "rw.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 4661.166666666667, + "range": 306.75, + "series": [ + [ + 1, + 4801.5 + ], + [ + 2, + 4748.0 + ], + [ + 2, + 4773.666666666667 + ], + [ + 3, + 4807.25 + ], + [ + 4, + 4738.0 + ], + [ + 5, + 4632.0 + ], + [ + 6, + 4557.75 + ], + [ + 7, + 4534.0 + ], + [ + 8, + 4519.0 + ], + [ + 9, + 4500.5 + ] + ], + "slope": -43.39574155653451, + "steady_state": true + }, + "write": { + "average": 1999.3916666666669, + "range": 128.25, + "series": [ + [ + 1, + 2056.75 + ], + [ + 2, + 2031.0 + ], + [ + 2, + 2043.6666666666667 + ], + [ + 3, + 2064.25 + ], + [ + 4, + 2032.5 + ], + [ + 5, + 1980.5 + ], + [ + 6, + 1954.75 + ], + [ + 7, + 1949.25 + ], + [ + 8, + 1945.25 + ], + [ + 9, + 1936.0 + ] + ], + "slope": -17.33957415565328, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 291.35133333333334, + "range": 19.16749999999996, + "series": [ + [ + 1, + 300.13 + ], + [ + 2, + 296.76 + ], + [ + 2, + 298.37333333333333 + ], + [ + 3, + 300.48249999999996 + ], + [ + 4, + 296.15749999999997 + ], + [ + 5, + 289.5325 + ], + [ + 6, + 284.89 + ], + [ + 7, + 283.39750000000004 + ], + [ + 8, + 282.475 + ], + [ + 9, + 281.315 + ] + ], + "slope": -2.710991189427352, + "steady_state": true + }, + "write": { + "average": 125.02008333333336, + "range": 8.034999999999997, + "series": [ + [ + 1, + 128.65500000000003 + ], + [ + 2, + 127.01 + ], + [ + 2, + 127.79333333333334 + ], + [ + 3, + 129.07 + ], + [ + 4, + 127.08500000000001 + ], + [ + 5, + 123.835 + ], + [ + 6, + 122.2225 + ], + [ + 7, + 121.87 + ], + [ + 8, + 121.625 + ], + [ + 9, + 121.035 + ] + ], + "slope": -1.0898274596182094, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 816.2015, + "range": 159.02750000000003, + "series": [ + [ + 1, + 933.94 + ], + [ + 2, + 891.54 + ], + [ + 2, + 826.89 + ], + [ + 3, + 806.905 + ], + [ + 4, + 797.3225 + ], + [ + 5, + 791.4825000000001 + ], + [ + 6, + 783.2950000000001 + ], + [ + 7, + 779.1600000000001 + ], + [ + 8, + 776.5675 + ], + [ + 9, + 774.9125 + ] + ], + "slope": -15.897364170337626, + "steady_state": true + }, + "write": { + "average": 30107.46316666666, + "range": 2326.2524999999987, + "series": [ + [ + 1, + 28915.3425 + ], + [ + 2, + 29406.87 + ], + [ + 2, + 29365.486666666664 + ], + [ + 3, + 29108.229999999996 + ], + [ + 4, + 29612.032499999998 + ], + [ + 5, + 30445.089999999997 + ], + [ + 6, + 30896.2925 + ], + [ + 7, + 31004.734999999997 + ], + [ + 8, + 31078.957499999997 + ], + [ + 9, + 31241.594999999998 + ] + ], + "slope": 317.5399706314254, + "steady_state": true + } + } + }, + "rw.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 603.25, + "range": 15.5, + "series": [ + [ + 7, + 594.25 + ], + [ + 8, + 594.0 + ], + [ + 9, + 598.25 + ], + [ + 10, + 602.0 + ], + [ + 11, + 605.5 + ], + [ + 12, + 608.5 + ], + [ + 13, + 609.5 + ], + [ + 14, + 603.5 + ], + [ + 15, + 604.75 + ], + [ + 16, + 605.0 + ], + [ + 17, + 606.0 + ], + [ + 18, + 607.75 + ] + ], + "slope": 1.0926573426573427, + "steady_state": true + }, + "write": { + "average": 258.6041666666667, + "range": 5.75, + "series": [ + [ + 7, + 255.25 + ], + [ + 8, + 255.75 + ], + [ + 9, + 257.25 + ], + [ + 10, + 258.25 + ], + [ + 11, + 260.0 + ], + [ + 12, + 260.5 + ], + [ + 13, + 261.0 + ], + [ + 14, + 258.25 + ], + [ + 15, + 258.5 + ], + [ + 16, + 259.0 + ], + [ + 17, + 259.5 + ], + [ + 18, + 260.0 + ] + ], + "slope": 0.3312937062937063, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 301.8797916666667, + "range": 7.652499999999975, + "series": [ + [ + 7, + 297.3575 + ], + [ + 8, + 297.2875 + ], + [ + 9, + 299.325 + ], + [ + 10, + 301.1575 + ], + [ + 11, + 302.98249999999996 + ], + [ + 12, + 304.6125 + ], + [ + 13, + 304.94 + ], + [ + 14, + 301.97249999999997 + ], + [ + 15, + 302.58500000000004 + ], + [ + 16, + 302.855 + ], + [ + 17, + 303.295 + ], + [ + 18, + 304.1875 + ] + ], + "slope": 0.5536451048950669, + "steady_state": true + }, + "write": { + "average": 129.56499999999997, + "range": 2.867500000000021, + "series": [ + [ + 7, + 127.81499999999998 + ], + [ + 8, + 128.035 + ], + [ + 9, + 128.8125 + ], + [ + 10, + 129.53250000000003 + ], + [ + 11, + 130.2075 + ], + [ + 12, + 130.5825 + ], + [ + 13, + 130.6825 + ], + [ + 14, + 129.3475 + ], + [ + 15, + 129.6025 + ], + [ + 16, + 129.77 + ], + [ + 17, + 130.0525 + ], + [ + 18, + 130.34 + ] + ], + "slope": 0.1765909090909084, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 756.7747916666664, + "range": 122.92000000000007, + "series": [ + [ + 7, + 835.5725 + ], + [ + 8, + 812.6424999999999 + ], + [ + 9, + 790.255 + ], + [ + 10, + 775.4975 + ], + [ + 11, + 762.1875 + ], + [ + 12, + 751.0999999999999 + ], + [ + 13, + 742.0925 + ], + [ + 14, + 734.3775 + ], + [ + 15, + 726.0250000000001 + ], + [ + 16, + 721.9174999999999 + ], + [ + 17, + 716.9775 + ], + [ + 18, + 712.6524999999999 + ] + ], + "slope": -10.59883741258713, + "steady_state": true + }, + "write": { + "average": 29105.120416666672, + "range": 476.49250000000393, + "series": [ + [ + 7, + 29346.415 + ], + [ + 8, + 29348.405000000002 + ], + [ + 9, + 29211.829999999998 + ], + [ + 10, + 29071.642499999998 + ], + [ + 11, + 28940.472500000003 + ], + [ + 12, + 28873.4375 + ], + [ + 13, + 28871.9125 + ], + [ + 14, + 29203.537500000002 + ], + [ + 15, + 29162.8125 + ], + [ + 16, + 29132.777499999997 + ], + [ + 17, + 29078.515 + ], + [ + 18, + 29019.687499999996 + ] + ], + "slope": -18.646363636374577, + "steady_state": true + } + } + }, + "wr.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 319.875, + "range": 19.5, + "series": [ + [ + 1, + 326.25 + ], + [ + 2, + 327.75 + ], + [ + 3, + 328.0 + ], + [ + 4, + 321.25 + ], + [ + 5, + 322.5 + ], + [ + 6, + 322.25 + ], + [ + 7, + 322.25 + ], + [ + 8, + 308.5 + ], + [ + 8, + 310.5 + ], + [ + 9, + 309.5 + ] + ], + "slope": -2.3990455212922175, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 20.01975, + "range": 1.230000000000004, + "series": [ + [ + 1, + 20.4325 + ], + [ + 2, + 20.52 + ], + [ + 3, + 20.53 + ], + [ + 4, + 20.095 + ], + [ + 5, + 20.195 + ], + [ + 6, + 20.165 + ], + [ + 7, + 20.1625 + ], + [ + 8, + 19.299999999999997 + ], + [ + 8, + 19.425 + ], + [ + 9, + 19.3725 + ] + ], + "slope": -0.1519713656387643, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 50005.268000000004, + "range": 3063.4449999999997, + "series": [ + [ + 1, + 48974.862499999996 + ], + [ + 2, + 48871.44 + ], + [ + 3, + 48753.095 + ], + [ + 4, + 49766.262500000004 + ], + [ + 5, + 49523.41 + ], + [ + 6, + 49609.93 + ], + [ + 7, + 49601.2225 + ], + [ + 8, + 51816.54 + ], + [ + 8, + 51516.33 + ], + [ + 9, + 51619.5875 + ] + ], + "slope": 374.2629735682778, + "steady_state": true + } + } + }, + "wr.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 26.05, + "range": 2.0, + "series": [ + [ + 1, + 27.0 + ], + [ + 2, + 26.5 + ], + [ + 3, + 26.0 + ], + [ + 4, + 26.0 + ], + [ + 5, + 26.0 + ], + [ + 6, + 26.0 + ], + [ + 7, + 26.0 + ], + [ + 8, + 25.0 + ], + [ + 8, + 26.0 + ], + [ + 9, + 26.0 + ] + ], + "slope": -0.12701908957415564, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 13.268833333333333, + "range": 0.7866666666666653, + "series": [ + [ + 1, + 13.739999999999998 + ], + [ + 2, + 13.51 + ], + [ + 3, + 13.17 + ], + [ + 4, + 13.425 + ], + [ + 5, + 13.2575 + ], + [ + 6, + 13.309999999999999 + ], + [ + 7, + 13.2525 + ], + [ + 8, + 12.953333333333333 + ], + [ + 8, + 13.02 + ], + [ + 9, + 13.049999999999999 + ] + ], + "slope": -0.07527900146842792, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 75413.91191666666, + "range": 4410.191666666651, + "series": [ + [ + 1, + 72828.675 + ], + [ + 2, + 74035.1075 + ], + [ + 3, + 75952.27249999999 + ], + [ + 4, + 74504.4925 + ], + [ + 5, + 75437.07250000001 + ], + [ + 6, + 75145.6725 + ], + [ + 7, + 75464.92000000001 + ], + [ + 8, + 77238.86666666665 + ], + [ + 8, + 76900.83 + ], + [ + 9, + 76631.21 + ] + ], + "slope": 425.09026064611044, + "steady_state": true + } + } + }, + "wr.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 514.5, + "range": 51.75, + "series": [ + [ + 1, + 520.5 + ], + [ + 2, + 546.75 + ], + [ + 3, + 514.25 + ], + [ + 4, + 519.75 + ], + [ + 5, + 519.25 + ], + [ + 6, + 515.75 + ], + [ + 7, + 510.75 + ], + [ + 8, + 506.25 + ], + [ + 9, + 496.75 + ], + [ + 10, + 495.0 + ] + ], + "slope": -3.9393939393939394, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 32.21275, + "range": 3.2674999999999983, + "series": [ + [ + 1, + 32.644999999999996 + ], + [ + 2, + 34.24 + ], + [ + 3, + 32.1925 + ], + [ + 4, + 32.544999999999995 + ], + [ + 5, + 32.495 + ], + [ + 6, + 32.2775 + ], + [ + 7, + 31.977500000000003 + ], + [ + 8, + 31.6875 + ], + [ + 9, + 31.095 + ], + [ + 10, + 30.972500000000004 + ] + ], + "slope": -0.2515909090909091, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 124288.48649999997, + "range": 12112.875, + "series": [ + [ + 1, + 122632.0725 + ], + [ + 2, + 117034.745 + ], + [ + 3, + 124077.16750000001 + ], + [ + 4, + 122957.715 + ], + [ + 5, + 123059.89 + ], + [ + 6, + 123949.9925 + ], + [ + 7, + 125113.05750000001 + ], + [ + 8, + 126246.8875 + ], + [ + 9, + 128665.7175 + ], + [ + 10, + 129147.62 + ] + ], + "slope": 959.1603939393975, + "steady_state": true + } + } + }, + "wr.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 31.525, + "range": 2.0, + "series": [ + [ + 1, + 32.75 + ], + [ + 2, + 32.75 + ], + [ + 3, + 31.25 + ], + [ + 4, + 31.5 + ], + [ + 5, + 31.5 + ], + [ + 6, + 31.25 + ], + [ + 7, + 31.25 + ], + [ + 8, + 31.25 + ], + [ + 9, + 30.75 + ], + [ + 10, + 31.0 + ] + ], + "slope": -0.18636363636363637, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 16.027499999999996, + "range": 0.9199999999999999, + "series": [ + [ + 1, + 16.6325 + ], + [ + 2, + 16.544999999999998 + ], + [ + 3, + 15.917499999999999 + ], + [ + 4, + 16.0575 + ], + [ + 5, + 15.9275 + ], + [ + 6, + 15.9175 + ], + [ + 7, + 15.907499999999999 + ], + [ + 8, + 15.864999999999998 + ], + [ + 9, + 15.7125 + ], + [ + 10, + 15.7925 + ] + ], + "slope": -0.08551515151514842, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 249853.26175, + "range": 13552.964999999997, + "series": [ + [ + 1, + 241248.145 + ], + [ + 2, + 241965.27749999997 + ], + [ + 3, + 251149.49000000002 + ], + [ + 4, + 249467.10749999998 + ], + [ + 5, + 251446.0275 + ], + [ + 6, + 251520.34 + ], + [ + 7, + 251174.55 + ], + [ + 8, + 252271.7375 + ], + [ + 9, + 254801.11 + ], + [ + 10, + 253488.83250000002 + ] + ], + "slope": 1277.7266212121285, + "steady_state": true + } + } + } + }, + "scenario_name": "os-nosdn-nofeature-noha", + "steady_state": { + "_warm_up.queue-depth.8.block-size.16384": true, + "rr.queue-depth.1.block-size.16384": true, + "rr.queue-depth.1.block-size.2048": true, + "rr.queue-depth.4.block-size.16384": true, + "rr.queue-depth.4.block-size.2048": true, + "rw.queue-depth.1.block-size.16384": true, + "rw.queue-depth.1.block-size.2048": true, + "rw.queue-depth.4.block-size.16384": true, + "rw.queue-depth.4.block-size.2048": true, + "wr.queue-depth.1.block-size.16384": true, + "wr.queue-depth.1.block-size.2048": true, + "wr.queue-depth.4.block-size.16384": true, + "wr.queue-depth.4.block-size.2048": true + }, + "storage_node_count": 4, + "test_case": "snia_steady_state", + "version": "danube", + "volume_size": 4 + }, + "scenario_name": "os-nosdn-nofeature-noha", + "storage_node_count": 4, + "test_case": "snia_steady_state", + "version": "danube", + "volume_size": 4 +}
\ No newline at end of file diff --git a/examples/storage-qpi-report/storperf-master.json b/examples/storage-qpi-report/storperf-master.json new file mode 100644 index 00000000..8895e9ca --- /dev/null +++ b/examples/storage-qpi-report/storperf-master.json @@ -0,0 +1,4161 @@ +{ + "agent_count": 4, + "build_tag": "jenkins-storperf-daily-master-172", + "disk_type": "SSD", + "pod_name": "intel-pod9", + "public_network": "external", + "report": { + "agent_count": 4, + "build_tag": "jenkins-storperf-daily-master-172", + "disk_type": "SSD", + "metrics": { + "_warm_up.queue-depth.8.block-size.16384.read.bw": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.iops": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.lat.mean": 0.0, + "_warm_up.queue-depth.8.block-size.16384.write.bw": 3153.160714285714, + "_warm_up.queue-depth.8.block-size.16384.write.iops": 197.1091071428571, + "_warm_up.queue-depth.8.block-size.16384.write.lat.mean": 40598.686250000006, + "rr.queue-depth.1.block-size.16384.read.bw": 23140.2, + "rr.queue-depth.1.block-size.16384.read.iops": 1446.3020000000001, + "rr.queue-depth.1.block-size.16384.read.lat.mean": 691.00825, + "rr.queue-depth.1.block-size.16384.write.bw": 0.0, + "rr.queue-depth.1.block-size.16384.write.iops": 0.0, + "rr.queue-depth.1.block-size.16384.write.lat.mean": 0.0, + "rr.queue-depth.1.block-size.2048.read.bw": 3290.425, + "rr.queue-depth.1.block-size.2048.read.iops": 1645.45325, + "rr.queue-depth.1.block-size.2048.read.lat.mean": 607.4582499999999, + "rr.queue-depth.1.block-size.2048.write.bw": 0.0, + "rr.queue-depth.1.block-size.2048.write.iops": 0.0, + "rr.queue-depth.1.block-size.2048.write.lat.mean": 0.0, + "rr.queue-depth.4.block-size.16384.read.bw": 76384.225, + "rr.queue-depth.4.block-size.16384.read.iops": 4774.061250000001, + "rr.queue-depth.4.block-size.16384.read.lat.mean": 840.9877499999999, + "rr.queue-depth.4.block-size.16384.write.bw": 0.0, + "rr.queue-depth.4.block-size.16384.write.iops": 0.0, + "rr.queue-depth.4.block-size.16384.write.lat.mean": 0.0, + "rr.queue-depth.4.block-size.2048.read.bw": 17949.1, + "rr.queue-depth.4.block-size.2048.read.iops": 8974.822250000001, + "rr.queue-depth.4.block-size.2048.read.lat.mean": 445.57225, + "rr.queue-depth.4.block-size.2048.write.bw": 0.0, + "rr.queue-depth.4.block-size.2048.write.iops": 0.0, + "rr.queue-depth.4.block-size.2048.write.lat.mean": 0.0, + "rw.queue-depth.1.block-size.16384.read.bw": 1563.825, + "rw.queue-depth.1.block-size.16384.read.iops": 97.773, + "rw.queue-depth.1.block-size.16384.read.lat.mean": 719.53475, + "rw.queue-depth.1.block-size.16384.write.bw": 670.45, + "rw.queue-depth.1.block-size.16384.write.iops": 41.940250000000006, + "rw.queue-depth.1.block-size.16384.write.lat.mean": 22165.340000000004, + "rw.queue-depth.1.block-size.2048.read.bw": 202.125, + "rw.queue-depth.1.block-size.2048.read.iops": 101.28575, + "rw.queue-depth.1.block-size.2048.read.lat.mean": 644.558, + "rw.queue-depth.1.block-size.2048.write.bw": 86.45, + "rw.queue-depth.1.block-size.2048.write.iops": 43.47550000000001, + "rw.queue-depth.1.block-size.2048.write.lat.mean": 21498.49425, + "rw.queue-depth.4.block-size.16384.read.bw": 4317.125, + "rw.queue-depth.4.block-size.16384.read.iops": 269.8525, + "rw.queue-depth.4.block-size.16384.read.lat.mean": 802.7414583333334, + "rw.queue-depth.4.block-size.16384.write.bw": 1853.9166666666667, + "rw.queue-depth.4.block-size.16384.write.iops": 115.91083333333331, + "rw.queue-depth.4.block-size.16384.write.lat.mean": 32651.651041666668, + "rw.queue-depth.4.block-size.2048.read.bw": 616.8125, + "rw.queue-depth.4.block-size.2048.read.iops": 308.64, + "rw.queue-depth.4.block-size.2048.read.lat.mean": 741.5929166666666, + "rw.queue-depth.4.block-size.2048.write.bw": 264.3958333333333, + "rw.queue-depth.4.block-size.2048.write.iops": 132.45770833333336, + "rw.queue-depth.4.block-size.2048.write.lat.mean": 28466.22208333333, + "wr.queue-depth.1.block-size.16384.read.bw": 0.0, + "wr.queue-depth.1.block-size.16384.read.iops": 0.0, + "wr.queue-depth.1.block-size.16384.read.lat.mean": 0.0, + "wr.queue-depth.1.block-size.16384.write.bw": 284.125, + "wr.queue-depth.1.block-size.16384.write.iops": 17.797, + "wr.queue-depth.1.block-size.16384.write.lat.mean": 56424.977, + "wr.queue-depth.1.block-size.2048.read.bw": 0.0, + "wr.queue-depth.1.block-size.2048.read.iops": 0.0, + "wr.queue-depth.1.block-size.2048.read.lat.mean": 0.0, + "wr.queue-depth.1.block-size.2048.write.bw": 25.8, + "wr.queue-depth.1.block-size.2048.write.iops": 13.099249999999998, + "wr.queue-depth.1.block-size.2048.write.lat.mean": 76441.21424999999, + "wr.queue-depth.4.block-size.16384.read.bw": 0.0, + "wr.queue-depth.4.block-size.16384.read.iops": 0.0, + "wr.queue-depth.4.block-size.16384.read.lat.mean": 0.0, + "wr.queue-depth.4.block-size.16384.write.bw": 507.9, + "wr.queue-depth.4.block-size.16384.write.iops": 31.801499999999994, + "wr.queue-depth.4.block-size.16384.write.lat.mean": 125744.85949999999, + "wr.queue-depth.4.block-size.2048.read.bw": 0.0, + "wr.queue-depth.4.block-size.2048.read.iops": 0.0, + "wr.queue-depth.4.block-size.2048.read.lat.mean": 0.0, + "wr.queue-depth.4.block-size.2048.write.bw": 30.975, + "wr.queue-depth.4.block-size.2048.write.iops": 15.8125, + "wr.queue-depth.4.block-size.2048.write.lat.mean": 253079.29674999998 + }, + "pod_name": "intel-pod9", + "public_network": "external", + "report_data": { + "_warm_up.queue-depth.8.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 22, + 0.0 + ], + [ + 22, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 3153.160714285714, + "range": 162.0, + "series": [ + [ + 10, + 3074.0 + ], + [ + 11, + 3084.0 + ], + [ + 12, + 3101.0 + ], + [ + 13, + 3112.0 + ], + [ + 14, + 3101.0 + ], + [ + 15, + 3106.75 + ], + [ + 16, + 3132.25 + ], + [ + 17, + 3165.5 + ], + [ + 18, + 3187.0 + ], + [ + 19, + 3197.5 + ], + [ + 20, + 3204.25 + ], + [ + 21, + 3215.0 + ], + [ + 22, + 3236.0 + ], + [ + 22, + 3228.0 + ] + ], + "slope": 13.815649867374006, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 22, + 0.0 + ], + [ + 22, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 197.1091071428571, + "range": 10.107499999999959, + "series": [ + [ + 10, + 192.16250000000002 + ], + [ + 11, + 192.775 + ], + [ + 12, + 193.87 + ], + [ + 13, + 194.54500000000002 + ], + [ + 14, + 193.86 + ], + [ + 15, + 194.2025 + ], + [ + 16, + 195.79500000000002 + ], + [ + 17, + 197.8825 + ], + [ + 18, + 199.2275 + ], + [ + 19, + 199.88 + ], + [ + 20, + 200.305 + ], + [ + 21, + 200.9825 + ], + [ + 22, + 202.26999999999998 + ], + [ + 22, + 201.77 + ] + ], + "slope": 0.8625033156498859, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 10, + 0.0 + ], + [ + 11, + 0.0 + ], + [ + 12, + 0.0 + ], + [ + 13, + 0.0 + ], + [ + 14, + 0.0 + ], + [ + 15, + 0.0 + ], + [ + 16, + 0.0 + ], + [ + 17, + 0.0 + ], + [ + 18, + 0.0 + ], + [ + 19, + 0.0 + ], + [ + 20, + 0.0 + ], + [ + 21, + 0.0 + ], + [ + 22, + 0.0 + ], + [ + 22, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 40598.686250000006, + "range": 2081.8074999999953, + "series": [ + [ + 10, + 41631.9975 + ], + [ + 11, + 41499.902500000004 + ], + [ + 12, + 41264.925 + ], + [ + 13, + 41120.79 + ], + [ + 14, + 41265.99 + ], + [ + 15, + 41192.81 + ], + [ + 16, + 40858.7025 + ], + [ + 17, + 40427.6175 + ], + [ + 18, + 40154.5475 + ], + [ + 19, + 40024.1125 + ], + [ + 20, + 39938.82000000001 + ], + [ + 21, + 39803.94750000001 + ], + [ + 22, + 39550.19 + ], + [ + 22, + 39647.255000000005 + ] + ], + "slope": -177.60753481432954, + "steady_state": true + } + } + }, + "rr.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 23140.2, + "range": 431.75, + "series": [ + [ + 1, + 23446.5 + ], + [ + 2, + 23195.75 + ], + [ + 3, + 23109.25 + ], + [ + 4, + 23143.25 + ], + [ + 5, + 23151.75 + ], + [ + 6, + 23111.75 + ], + [ + 7, + 23125.25 + ], + [ + 8, + 23069.5 + ], + [ + 9, + 23034.25 + ], + [ + 10, + 23014.75 + ] + ], + "slope": -32.17575757575757, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 1446.3020000000001, + "range": 26.982499999999845, + "series": [ + [ + 1, + 1465.4399999999998 + ], + [ + 2, + 1449.7675000000002 + ], + [ + 3, + 1444.3725 + ], + [ + 4, + 1446.475 + ], + [ + 5, + 1447.04 + ], + [ + 6, + 1444.535 + ], + [ + 7, + 1445.365 + ], + [ + 8, + 1441.88 + ], + [ + 9, + 1439.6875 + ], + [ + 10, + 1438.4575 + ] + ], + "slope": -2.010303030302889, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 691.00825, + "range": 12.094999999999914, + "series": [ + [ + 1, + 682.1625 + ], + [ + 2, + 689.73 + ], + [ + 3, + 692.1800000000001 + ], + [ + 4, + 691.235 + ], + [ + 5, + 690.8599999999999 + ], + [ + 6, + 691.875 + ], + [ + 7, + 691.28 + ], + [ + 8, + 692.7624999999999 + ], + [ + 9, + 693.74 + ], + [ + 10, + 694.2574999999999 + ] + ], + "slope": 0.854469696969697, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 3290.425, + "range": 168.25, + "series": [ + [ + 1, + 3220.25 + ], + [ + 2, + 3208.25 + ], + [ + 3, + 3214.0 + ], + [ + 4, + 3256.5 + ], + [ + 5, + 3287.0 + ], + [ + 6, + 3310.25 + ], + [ + 7, + 3324.25 + ], + [ + 8, + 3342.5 + ], + [ + 9, + 3364.75 + ], + [ + 10, + 3376.5 + ] + ], + "slope": 20.42878787878788, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 1645.45325, + "range": 84.05500000000029, + "series": [ + [ + 1, + 1610.2274999999997 + ], + [ + 2, + 1604.4174999999998 + ], + [ + 3, + 1607.1525000000001 + ], + [ + 4, + 1628.475 + ], + [ + 5, + 1643.7975 + ], + [ + 6, + 1655.4175 + ], + [ + 7, + 1662.4950000000001 + ], + [ + 8, + 1671.4150000000002 + ], + [ + 9, + 1682.6625 + ], + [ + 10, + 1688.4725 + ] + ], + "slope": 10.223712121212122, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 607.4582499999999, + "range": 33.147500000000036, + "series": [ + [ + 1, + 622.5225 + ], + [ + 2, + 623.95 + ], + [ + 3, + 623.175 + ], + [ + 4, + 613.9024999999999 + ], + [ + 5, + 607.4825 + ], + [ + 6, + 602.9325 + ], + [ + 7, + 600.13 + ], + [ + 8, + 596.815 + ], + [ + 9, + 592.87 + ], + [ + 10, + 590.8025 + ] + ], + "slope": -4.125499999999972, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 76384.225, + "range": 93.5, + "series": [ + [ + 1, + 76322.75 + ], + [ + 2, + 76344.75 + ], + [ + 3, + 76416.25 + ], + [ + 4, + 76384.75 + ], + [ + 5, + 76382.0 + ], + [ + 6, + 76393.5 + ], + [ + 7, + 76389.25 + ], + [ + 8, + 76399.25 + ], + [ + 9, + 76404.75 + ], + [ + 10, + 76405.0 + ] + ], + "slope": 6.668181818181818, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 4774.061250000001, + "range": 5.802500000000691, + "series": [ + [ + 1, + 4770.2625 + ], + [ + 2, + 4771.62 + ], + [ + 3, + 4776.0650000000005 + ], + [ + 4, + 4774.0925 + ], + [ + 5, + 4773.8949999999995 + ], + [ + 6, + 4774.6275000000005 + ], + [ + 7, + 4774.3675 + ], + [ + 8, + 4775.005 + ], + [ + 9, + 4775.3225 + ], + [ + 10, + 4775.355 + ] + ], + "slope": 0.41216666666677954, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 840.9877499999999, + "range": 0.9700000000000273, + "series": [ + [ + 1, + 841.665 + ], + [ + 2, + 841.4300000000001 + ], + [ + 3, + 840.6949999999999 + ], + [ + 4, + 840.96 + ], + [ + 5, + 840.9875 + ], + [ + 6, + 840.8525 + ], + [ + 7, + 840.9225 + ], + [ + 8, + 840.8249999999999 + ], + [ + 9, + 840.7674999999999 + ], + [ + 10, + 840.7725 + ] + ], + "slope": -0.07434848484844252, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rr.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 17949.1, + "range": 222.5, + "series": [ + [ + 1, + 17784.75 + ], + [ + 2, + 17864.75 + ], + [ + 3, + 17901.75 + ], + [ + 4, + 17966.5 + ], + [ + 5, + 17987.5 + ], + [ + 6, + 17992.0 + ], + [ + 7, + 17982.75 + ], + [ + 8, + 17999.25 + ], + [ + 9, + 18004.5 + ], + [ + 10, + 18007.25 + ] + ], + "slope": 21.342424242424244, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 8974.822250000001, + "range": 111.11499999999978, + "series": [ + [ + 1, + 8892.692500000001 + ], + [ + 2, + 8932.6625 + ], + [ + 3, + 8951.267500000002 + ], + [ + 4, + 8983.39 + ], + [ + 5, + 8994.12 + ], + [ + 6, + 8996.28 + ], + [ + 7, + 8991.702500000001 + ], + [ + 8, + 8999.8975 + ], + [ + 9, + 9002.402499999998 + ], + [ + 10, + 9003.8075 + ] + ], + "slope": 10.657348484849614, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 445.57225, + "range": 5.335000000000036, + "series": [ + [ + 1, + 449.5 + ], + [ + 2, + 447.6025 + ], + [ + 3, + 446.69 + ], + [ + 4, + 445.14 + ], + [ + 5, + 444.6625 + ], + [ + 6, + 444.57 + ], + [ + 7, + 444.78499999999997 + ], + [ + 8, + 444.36999999999995 + ], + [ + 9, + 444.2375 + ], + [ + 10, + 444.16499999999996 + ] + ], + "slope": -0.5110757575757717, + "steady_state": true + }, + "write": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + } + } + }, + "rw.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 1563.825, + "range": 87.25, + "series": [ + [ + 1, + 1592.5 + ], + [ + 2, + 1617.25 + ], + [ + 3, + 1533.75 + ], + [ + 4, + 1530.0 + ], + [ + 5, + 1538.75 + ], + [ + 6, + 1557.0 + ], + [ + 7, + 1560.75 + ], + [ + 8, + 1569.25 + ], + [ + 9, + 1569.75 + ], + [ + 10, + 1569.25 + ] + ], + "slope": -1.5378787878787878, + "steady_state": true + }, + "write": { + "average": 670.45, + "range": 36.25, + "series": [ + [ + 1, + 689.75 + ], + [ + 2, + 686.25 + ], + [ + 3, + 653.5 + ], + [ + 4, + 659.5 + ], + [ + 5, + 663.25 + ], + [ + 6, + 666.25 + ], + [ + 7, + 668.75 + ], + [ + 8, + 671.25 + ], + [ + 9, + 673.25 + ], + [ + 10, + 672.75 + ] + ], + "slope": -0.7545454545454545, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 97.773, + "range": 5.452499999999986, + "series": [ + [ + 1, + 99.5725 + ], + [ + 2, + 101.1 + ], + [ + 3, + 95.89750000000001 + ], + [ + 4, + 95.64750000000001 + ], + [ + 5, + 96.20750000000001 + ], + [ + 6, + 97.35 + ], + [ + 7, + 97.5925 + ], + [ + 8, + 98.115 + ], + [ + 9, + 98.14500000000001 + ], + [ + 10, + 98.1025 + ] + ], + "slope": -0.09606060606060605, + "steady_state": true + }, + "write": { + "average": 41.940250000000006, + "range": 2.2674999999999983, + "series": [ + [ + 1, + 43.16 + ], + [ + 2, + 42.9375 + ], + [ + 3, + 40.8925 + ], + [ + 4, + 41.26 + ], + [ + 5, + 41.487500000000004 + ], + [ + 6, + 41.660000000000004 + ], + [ + 7, + 41.825 + ], + [ + 8, + 41.995000000000005 + ], + [ + 9, + 42.11 + ], + [ + 10, + 42.075 + ] + ], + "slope": -0.04956060606060694, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 719.53475, + "range": 5.277500000000032, + "series": [ + [ + 1, + 719.4275 + ], + [ + 2, + 715.9325 + ], + [ + 3, + 719.4075 + ], + [ + 4, + 720.7275 + ], + [ + 5, + 720.76 + ], + [ + 6, + 721.21 + ], + [ + 7, + 718.7800000000001 + ], + [ + 8, + 719.7125 + ], + [ + 9, + 718.29 + ], + [ + 10, + 721.1 + ] + ], + "slope": 0.16780303030310087, + "steady_state": true + }, + "write": { + "average": 22165.340000000004, + "range": 1254.0874999999978, + "series": [ + [ + 1, + 21506.395 + ], + [ + 2, + 21596.8275 + ], + [ + 3, + 22760.4825 + ], + [ + 4, + 22559.2275 + ], + [ + 5, + 22425.260000000002 + ], + [ + 6, + 22312.0 + ], + [ + 7, + 22225.457499999997 + ], + [ + 8, + 22123.485 + ], + [ + 9, + 22066.192499999997 + ], + [ + 10, + 22078.072500000002 + ] + ], + "slope": 25.036939393938944, + "steady_state": true + } + } + }, + "rw.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 202.125, + "range": 11.25, + "series": [ + [ + 1, + 193.5 + ], + [ + 2, + 202.25 + ], + [ + 3, + 200.5 + ], + [ + 4, + 201.25 + ], + [ + 5, + 203.5 + ], + [ + 6, + 204.25 + ], + [ + 7, + 204.75 + ], + [ + 8, + 204.75 + ], + [ + 9, + 204.75 + ], + [ + 10, + 201.75 + ] + ], + "slope": 0.753030303030303, + "steady_state": true + }, + "write": { + "average": 86.45, + "range": 4.75, + "series": [ + [ + 1, + 83.0 + ], + [ + 2, + 85.75 + ], + [ + 3, + 86.0 + ], + [ + 4, + 87.0 + ], + [ + 5, + 87.0 + ], + [ + 6, + 87.0 + ], + [ + 7, + 87.0 + ], + [ + 8, + 87.25 + ], + [ + 9, + 87.75 + ], + [ + 10, + 86.75 + ] + ], + "slope": 0.32727272727272727, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 101.28575, + "range": 5.762500000000003, + "series": [ + [ + 1, + 96.91250000000001 + ], + [ + 2, + 101.2725 + ], + [ + 3, + 100.495 + ], + [ + 4, + 100.8675 + ], + [ + 5, + 101.92999999999999 + ], + [ + 6, + 102.30250000000001 + ], + [ + 7, + 102.67500000000001 + ], + [ + 8, + 102.5875 + ], + [ + 9, + 102.54750000000001 + ], + [ + 10, + 101.2675 + ] + ], + "slope": 0.39016666666666316, + "steady_state": true + }, + "write": { + "average": 43.47550000000001, + "range": 2.1500000000000057, + "series": [ + [ + 1, + 41.8775 + ], + [ + 2, + 43.027499999999996 + ], + [ + 3, + 43.185 + ], + [ + 4, + 43.69 + ], + [ + 5, + 43.7025 + ], + [ + 6, + 43.7875 + ], + [ + 7, + 43.94 + ], + [ + 8, + 43.97 + ], + [ + 9, + 44.0275 + ], + [ + 10, + 43.5475 + ] + ], + "slope": 0.16236363636363282, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 644.558, + "range": 41.71749999999997, + "series": [ + [ + 1, + 614.9175 + ], + [ + 2, + 616.9875 + ], + [ + 3, + 636.45 + ], + [ + 4, + 646.31 + ], + [ + 5, + 655.49 + ], + [ + 6, + 652.485 + ], + [ + 7, + 653.74 + ], + [ + 8, + 656.3199999999999 + ], + [ + 9, + 656.245 + ], + [ + 10, + 656.635 + ] + ], + "slope": 4.659969696969669, + "steady_state": true + }, + "write": { + "average": 21498.49425, + "range": 1286.797499999997, + "series": [ + [ + 1, + 22462.6175 + ], + [ + 2, + 21783.592500000002 + ], + [ + 3, + 21667.3125 + ], + [ + 4, + 21388.595 + ], + [ + 5, + 21344.3775 + ], + [ + 6, + 21305.35 + ], + [ + 7, + 21223.4475 + ], + [ + 8, + 21205.315 + ], + [ + 9, + 21175.820000000003 + ], + [ + 10, + 21428.515 + ] + ], + "slope": -99.42901515151515, + "steady_state": true + } + } + }, + "rw.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 4317.125, + "range": 303.25, + "series": [ + [ + 2, + 4302.0 + ], + [ + 3, + 4096.5 + ], + [ + 4, + 4191.0 + ], + [ + 5, + 4273.5 + ], + [ + 6, + 4330.5 + ], + [ + 7, + 4351.5 + ], + [ + 8, + 4369.5 + ], + [ + 9, + 4363.25 + ], + [ + 10, + 4377.5 + ], + [ + 11, + 4392.0 + ], + [ + 12, + 4399.75 + ], + [ + 13, + 4358.5 + ] + ], + "slope": 18.86013986013986, + "steady_state": true + }, + "write": { + "average": 1853.9166666666667, + "range": 136.5, + "series": [ + [ + 2, + 1845.75 + ], + [ + 3, + 1753.0 + ], + [ + 4, + 1798.25 + ], + [ + 5, + 1831.25 + ], + [ + 6, + 1856.5 + ], + [ + 7, + 1867.75 + ], + [ + 8, + 1879.5 + ], + [ + 9, + 1879.5 + ], + [ + 10, + 1883.0 + ], + [ + 11, + 1888.75 + ], + [ + 12, + 1889.5 + ], + [ + 13, + 1874.25 + ] + ], + "slope": 8.793706293706293, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 269.8525, + "range": 18.934999999999945, + "series": [ + [ + 2, + 268.90999999999997 + ], + [ + 3, + 256.06500000000005 + ], + [ + 4, + 261.9675 + ], + [ + 5, + 267.135 + ], + [ + 6, + 270.685 + ], + [ + 7, + 272.005 + ], + [ + 8, + 273.1275 + ], + [ + 9, + 272.7375 + ], + [ + 10, + 273.6225 + ], + [ + 11, + 274.53 + ], + [ + 12, + 275.0 + ], + [ + 13, + 272.445 + ] + ], + "slope": 1.1781643356643587, + "steady_state": true + }, + "write": { + "average": 115.91083333333331, + "range": 8.510000000000005, + "series": [ + [ + 2, + 115.42000000000002 + ], + [ + 3, + 109.61249999999998 + ], + [ + 4, + 112.4475 + ], + [ + 5, + 114.495 + ], + [ + 6, + 116.0875 + ], + [ + 7, + 116.785 + ], + [ + 8, + 117.50750000000001 + ], + [ + 9, + 117.49999999999999 + ], + [ + 10, + 117.715 + ], + [ + 11, + 118.0675 + ], + [ + 12, + 118.12249999999999 + ], + [ + 13, + 117.17 + ] + ], + "slope": 0.5462937062937246, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 802.7414583333334, + "range": 90.07249999999988, + "series": [ + [ + 2, + 870.495 + ], + [ + 3, + 829.4324999999999 + ], + [ + 4, + 812.2325000000001 + ], + [ + 5, + 802.4449999999999 + ], + [ + 6, + 795.5425 + ], + [ + 7, + 791.8375000000001 + ], + [ + 8, + 788.7375 + ], + [ + 9, + 785.3800000000001 + ], + [ + 10, + 782.6800000000001 + ], + [ + 11, + 780.4225000000001 + ], + [ + 12, + 798.0899999999999 + ], + [ + 13, + 795.6025000000001 + ] + ], + "slope": -5.10833041958043, + "steady_state": true + }, + "write": { + "average": 32651.651041666668, + "range": 2553.8724999999977, + "series": [ + [ + 2, + 32625.7025 + ], + [ + 3, + 34552.67 + ], + [ + 4, + 33675.78 + ], + [ + 5, + 33058.7025 + ], + [ + 6, + 32597.08 + ], + [ + 7, + 32401.3775 + ], + [ + 8, + 32201.15 + ], + [ + 9, + 32213.9075 + ], + [ + 10, + 32153.862500000003 + ], + [ + 11, + 32058.4 + ], + [ + 12, + 31998.7975 + ], + [ + 13, + 32282.3825 + ] + ], + "slope": -153.69572552447673, + "steady_state": true + } + } + }, + "rw.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 616.8125, + "range": 12.75, + "series": [ + [ + 6, + 619.75 + ], + [ + 7, + 620.5 + ], + [ + 8, + 622.0 + ], + [ + 9, + 624.0 + ], + [ + 10, + 615.25 + ], + [ + 11, + 615.5 + ], + [ + 12, + 617.5 + ], + [ + 13, + 615.5 + ], + [ + 14, + 614.75 + ], + [ + 15, + 611.25 + ], + [ + 16, + 612.75 + ], + [ + 17, + 613.0 + ] + ], + "slope": -0.9187062937062938, + "steady_state": true + }, + "write": { + "average": 264.3958333333333, + "range": 6.75, + "series": [ + [ + 6, + 265.75 + ], + [ + 7, + 266.25 + ], + [ + 8, + 267.5 + ], + [ + 9, + 268.25 + ], + [ + 10, + 264.25 + ], + [ + 11, + 264.0 + ], + [ + 12, + 264.25 + ], + [ + 13, + 263.5 + ], + [ + 14, + 263.0 + ], + [ + 15, + 261.5 + ], + [ + 16, + 262.25 + ], + [ + 17, + 262.25 + ] + ], + "slope": -0.5061188811188811, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 308.64, + "range": 6.327499999999986, + "series": [ + [ + 6, + 310.14750000000004 + ], + [ + 7, + 310.4325 + ], + [ + 8, + 311.2975 + ], + [ + 9, + 312.2475 + ], + [ + 10, + 307.83000000000004 + ], + [ + 11, + 307.9325 + ], + [ + 12, + 308.91249999999997 + ], + [ + 13, + 308.0875 + ], + [ + 14, + 307.585 + ], + [ + 15, + 305.92 + ], + [ + 16, + 306.51750000000004 + ], + [ + 17, + 306.77 + ] + ], + "slope": -0.4601048951049168, + "steady_state": true + }, + "write": { + "average": 132.45770833333336, + "range": 3.3125, + "series": [ + [ + 6, + 133.1375 + ], + [ + 7, + 133.435 + ], + [ + 8, + 134.005 + ], + [ + 9, + 134.35750000000002 + ], + [ + 10, + 132.38 + ], + [ + 11, + 132.28750000000002 + ], + [ + 12, + 132.345 + ], + [ + 13, + 132.00500000000002 + ], + [ + 14, + 131.72 + ], + [ + 15, + 131.04500000000002 + ], + [ + 16, + 131.305 + ], + [ + 17, + 131.47 + ] + ], + "slope": -0.2534527972028243, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 741.5929166666666, + "range": 134.1775, + "series": [ + [ + 6, + 829.4175 + ], + [ + 7, + 800.0524999999999 + ], + [ + 8, + 776.8399999999999 + ], + [ + 9, + 756.0 + ], + [ + 10, + 746.44 + ], + [ + 11, + 734.8125 + ], + [ + 12, + 724.635 + ], + [ + 13, + 718.1325 + ], + [ + 14, + 711.6325 + ], + [ + 15, + 705.8325 + ], + [ + 16, + 700.0799999999999 + ], + [ + 17, + 695.24 + ] + ], + "slope": -11.152779720279542, + "steady_state": true + }, + "write": { + "average": 28466.22208333333, + "range": 861.0349999999999, + "series": [ + [ + 6, + 28105.237500000003 + ], + [ + 7, + 28109.8425 + ], + [ + 8, + 28039.742500000004 + ], + [ + 9, + 28009.114999999998 + ], + [ + 10, + 28473.942499999997 + ], + [ + 11, + 28520.950000000004 + ], + [ + 12, + 28526.4025 + ], + [ + 13, + 28620.017499999998 + ], + [ + 14, + 28699.9775 + ], + [ + 15, + 28870.149999999998 + ], + [ + 16, + 28822.605 + ], + [ + 17, + 28796.6825 + ] + ], + "slope": 82.97762237762758, + "steady_state": true + } + } + }, + "wr.queue-depth.1.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 284.125, + "range": 49.5, + "series": [ + [ + 1, + 258.5 + ], + [ + 2, + 254.0 + ], + [ + 3, + 271.0 + ], + [ + 4, + 279.75 + ], + [ + 5, + 287.0 + ], + [ + 6, + 289.25 + ], + [ + 7, + 296.75 + ], + [ + 8, + 300.75 + ], + [ + 9, + 303.5 + ], + [ + 10, + 300.75 + ] + ], + "slope": 5.628787878787879, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 17.797, + "range": 3.0974999999999966, + "series": [ + [ + 1, + 16.2075 + ], + [ + 2, + 15.905000000000001 + ], + [ + 3, + 16.967499999999998 + ], + [ + 4, + 17.5425 + ], + [ + 5, + 17.98 + ], + [ + 6, + 18.1175 + ], + [ + 7, + 18.585 + ], + [ + 8, + 18.8275 + ], + [ + 9, + 19.002499999999998 + ], + [ + 10, + 18.835 + ] + ], + "slope": 0.3508787878787861, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 56424.977, + "range": 10172.25, + "series": [ + [ + 1, + 61774.645000000004 + ], + [ + 2, + 62881.7525 + ], + [ + 3, + 58956.9825 + ], + [ + 4, + 57017.409999999996 + ], + [ + 5, + 55665.8275 + ], + [ + 6, + 55209.5325 + ], + [ + 7, + 53813.84 + ], + [ + 8, + 53129.01000000001 + ], + [ + 9, + 52709.5025 + ], + [ + 10, + 53091.2675 + ] + ], + "slope": -1142.806151515155, + "steady_state": true + } + } + }, + "wr.queue-depth.1.block-size.2048": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 25.8, + "range": 3.0, + "series": [ + [ + 1, + 28.0 + ], + [ + 2, + 26.0 + ], + [ + 3, + 26.0 + ], + [ + 4, + 26.0 + ], + [ + 5, + 26.0 + ], + [ + 6, + 26.0 + ], + [ + 7, + 25.0 + ], + [ + 8, + 25.0 + ], + [ + 9, + 25.0 + ], + [ + 10, + 25.0 + ] + ], + "slope": -0.2545454545454545, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 13.099249999999998, + "range": 1.4075000000000006, + "series": [ + [ + 1, + 14.0925 + ], + [ + 2, + 13.09 + ], + [ + 3, + 13.1325 + ], + [ + 4, + 13.302499999999998 + ], + [ + 5, + 13.204999999999998 + ], + [ + 6, + 13.07 + ], + [ + 7, + 12.92 + ], + [ + 8, + 12.8 + ], + [ + 9, + 12.695 + ], + [ + 10, + 12.684999999999999 + ] + ], + "slope": -0.11137878787878655, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 76441.21424999999, + "range": 7805.979999999996, + "series": [ + [ + 1, + 71015.0625 + ], + [ + 2, + 76480.6825 + ], + [ + 3, + 76164.695 + ], + [ + 4, + 75219.8475 + ], + [ + 5, + 75749.98 + ], + [ + 6, + 76554.33 + ], + [ + 7, + 77502.7225 + ], + [ + 8, + 78126.875 + ], + [ + 9, + 78776.905 + ], + [ + 10, + 78821.0425 + ] + ], + "slope": 629.0378939393976, + "steady_state": true + } + } + }, + "wr.queue-depth.4.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 507.9, + "range": 28.25, + "series": [ + [ + 1, + 525.5 + ], + [ + 2, + 509.5 + ], + [ + 3, + 497.25 + ], + [ + 4, + 505.75 + ], + [ + 5, + 509.0 + ], + [ + 6, + 503.0 + ], + [ + 7, + 509.5 + ], + [ + 8, + 507.5 + ], + [ + 9, + 506.5 + ], + [ + 10, + 505.5 + ] + ], + "slope": -0.8757575757575757, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 31.801499999999994, + "range": 1.8150000000000013, + "series": [ + [ + 1, + 32.955 + ], + [ + 2, + 31.919999999999998 + ], + [ + 3, + 31.139999999999997 + ], + [ + 4, + 31.677500000000002 + ], + [ + 5, + 31.8525 + ], + [ + 6, + 31.47 + ], + [ + 7, + 31.8825 + ], + [ + 8, + 31.7675 + ], + [ + 9, + 31.7025 + ], + [ + 10, + 31.6475 + ] + ], + "slope": -0.060121212121210355, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 125744.85949999999, + "range": 7612.485000000001, + "series": [ + [ + 1, + 120890.205 + ], + [ + 2, + 125378.54000000001 + ], + [ + 3, + 128502.69 + ], + [ + 4, + 126162.44 + ], + [ + 5, + 125607.9175 + ], + [ + 6, + 127101.9225 + ], + [ + 7, + 125454.8925 + ], + [ + 8, + 125917.375 + ], + [ + 9, + 126192.6775 + ], + [ + 10, + 126239.935 + ] + ], + "slope": 244.18981818184707, + "steady_state": true + } + } + }, + "wr.queue-depth.4.block-size.2048": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 30.975, + "range": 0.5, + "series": [ + [ + 1, + 31.25 + ], + [ + 2, + 30.75 + ], + [ + 3, + 30.75 + ], + [ + 4, + 31.0 + ], + [ + 5, + 31.0 + ], + [ + 6, + 31.0 + ], + [ + 7, + 31.0 + ], + [ + 8, + 31.0 + ], + [ + 9, + 31.0 + ], + [ + 10, + 31.0 + ] + ], + "slope": 0.004545454545454545, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 15.8125, + "range": 0.4450000000000003, + "series": [ + [ + 1, + 16.095 + ], + [ + 2, + 15.649999999999999 + ], + [ + 3, + 15.66 + ], + [ + 4, + 15.737499999999999 + ], + [ + 5, + 15.795 + ], + [ + 6, + 15.782499999999999 + ], + [ + 7, + 15.7625 + ], + [ + 8, + 15.8725 + ], + [ + 9, + 15.855 + ], + [ + 10, + 15.915 + ] + ], + "slope": 0.005696969696968374, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ], + [ + 3, + 0.0 + ], + [ + 4, + 0.0 + ], + [ + 5, + 0.0 + ], + [ + 6, + 0.0 + ], + [ + 7, + 0.0 + ], + [ + 8, + 0.0 + ], + [ + 9, + 0.0 + ], + [ + 10, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": true + }, + "write": { + "average": 253079.29674999998, + "range": 6518.812500000029, + "series": [ + [ + 1, + 249438.96999999997 + ], + [ + 2, + 255957.7825 + ], + [ + 3, + 255619.9275 + ], + [ + 4, + 254254.6875 + ], + [ + 5, + 252680.81499999997 + ], + [ + 6, + 253216.695 + ], + [ + 7, + 253914.02500000002 + ], + [ + 8, + 252136.93 + ], + [ + 9, + 252300.5075 + ], + [ + 10, + 251272.6275 + ] + ], + "slope": -163.63092424237368, + "steady_state": true + } + } + } + }, + "scenario_name": "os-nosdn-nofeature-noha", + "steady_state": { + "_warm_up.queue-depth.8.block-size.16384": true, + "rr.queue-depth.1.block-size.16384": true, + "rr.queue-depth.1.block-size.2048": true, + "rr.queue-depth.4.block-size.16384": true, + "rr.queue-depth.4.block-size.2048": true, + "rw.queue-depth.1.block-size.16384": true, + "rw.queue-depth.1.block-size.2048": true, + "rw.queue-depth.4.block-size.16384": true, + "rw.queue-depth.4.block-size.2048": true, + "wr.queue-depth.1.block-size.16384": true, + "wr.queue-depth.1.block-size.2048": true, + "wr.queue-depth.4.block-size.16384": true, + "wr.queue-depth.4.block-size.2048": true + }, + "storage_node_count": 4, + "test_case": "snia_steady_state", + "version": "master", + "volume_size": 4 + }, + "scenario_name": "os-nosdn-nofeature-noha", + "storage_node_count": 4, + "test_case": "snia_steady_state", + "version": "master", + "volume_size": 4 +} diff --git a/examples/storage-qpi-report/zte-apex-virtual.json b/examples/storage-qpi-report/zte-apex-virtual.json new file mode 100644 index 00000000..2314f271 --- /dev/null +++ b/examples/storage-qpi-report/zte-apex-virtual.json @@ -0,0 +1,484 @@ +{ + "agent_count": 2, + "build_tag": "", + "disk_type": "HDD", + "pod_name": "virt-apex", + "public_network": "external", + "report": { + "agent_count": 2, + "build_tag": "", + "disk_type": "HDD", + "metrics": { + "_warm_up.queue-depth.8.block-size.16384.read.bw": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.iops": 0.0, + "_warm_up.queue-depth.8.block-size.16384.read.lat.mean": null, + "_warm_up.queue-depth.8.block-size.16384.write.bw": 20138.5, + "_warm_up.queue-depth.8.block-size.16384.write.iops": 1258.7424999999998, + "_warm_up.queue-depth.8.block-size.16384.write.lat.mean": 6386.112499999999, + "rw.queue-depth.1.block-size.1024.read.bw": 378.6666666666667, + "rw.queue-depth.1.block-size.1024.read.iops": 379.1729166666667, + "rw.queue-depth.1.block-size.1024.read.lat.mean": 973.2041666666668, + "rw.queue-depth.1.block-size.1024.write.bw": 162.125, + "rw.queue-depth.1.block-size.1024.write.iops": 162.72041666666667, + "rw.queue-depth.1.block-size.1024.write.lat.mean": 3865.463333333333 + }, + "pod_name": "virt-apex", + "public_network": "external", + "report_data": { + "_warm_up.queue-depth.8.block-size.16384": { + "bw": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": false + }, + "write": { + "average": 20138.5, + "range": 2869.0, + "series": [ + [ + 1, + 21573.0 + ], + [ + 2, + 18704.0 + ] + ], + "slope": -2869.0, + "steady_state": false + } + }, + "iops": { + "read": { + "average": 0.0, + "range": 0.0, + "series": [ + [ + 1, + 0.0 + ], + [ + 2, + 0.0 + ] + ], + "slope": -0.0, + "steady_state": false + }, + "write": { + "average": 1258.7424999999998, + "range": 179.42499999999995, + "series": [ + [ + 1, + 1348.455 + ], + [ + 2, + 1169.03 + ] + ], + "slope": -179.42499999999927, + "steady_state": false + } + }, + "lat.mean": { + "read": { + "average": null, + "range": null, + "series": [], + "slope": null, + "steady_state": false + }, + "write": { + "average": 6386.112499999999, + "range": 909.6950000000006, + "series": [ + [ + 1, + 5931.264999999999 + ], + [ + 2, + 6840.96 + ] + ], + "slope": 909.6949999999997, + "steady_state": false + } + } + }, + "rw.queue-depth.1.block-size.1024": { + "bw": { + "read": { + "average": 378.6666666666667, + "range": 18.5, + "series": [ + [ + 4, + 392.0 + ], + [ + 5, + 386.5 + ], + [ + 6, + 381.0 + ], + [ + 7, + 379.5 + ], + [ + 8, + 378.5 + ], + [ + 9, + 377.5 + ], + [ + 10, + 377.0 + ], + [ + 11, + 375.5 + ], + [ + 12, + 374.5 + ], + [ + 13, + 374.0 + ], + [ + 14, + 374.5 + ], + [ + 15, + 373.5 + ] + ], + "slope": -1.381118881118881, + "steady_state": true + }, + "write": { + "average": 162.125, + "range": 8.0, + "series": [ + [ + 4, + 167.5 + ], + [ + 5, + 166.0 + ], + [ + 6, + 164.0 + ], + [ + 7, + 163.0 + ], + [ + 8, + 162.0 + ], + [ + 9, + 161.5 + ], + [ + 10, + 161.5 + ], + [ + 11, + 160.5 + ], + [ + 12, + 160.0 + ], + [ + 13, + 159.5 + ], + [ + 14, + 160.0 + ], + [ + 15, + 160.0 + ] + ], + "slope": -0.6555944055944056, + "steady_state": true + } + }, + "iops": { + "read": { + "average": 379.1729166666667, + "range": 18.174999999999955, + "series": [ + [ + 4, + 392.27 + ], + [ + 5, + 387.15 + ], + [ + 6, + 381.505 + ], + [ + 7, + 379.89 + ], + [ + 8, + 378.735 + ], + [ + 9, + 377.945 + ], + [ + 10, + 377.475 + ], + [ + 11, + 376.43 + ], + [ + 12, + 375.08500000000004 + ], + [ + 13, + 374.5 + ], + [ + 14, + 374.995 + ], + [ + 15, + 374.095 + ] + ], + "slope": -1.3628146853147343, + "steady_state": true + }, + "write": { + "average": 162.72041666666667, + "range": 8.004999999999995, + "series": [ + [ + 4, + 168.24 + ], + [ + 5, + 166.445 + ], + [ + 6, + 164.2 + ], + [ + 7, + 163.495 + ], + [ + 8, + 162.88 + ], + [ + 9, + 162.365 + ], + [ + 10, + 161.725 + ], + [ + 11, + 161.33 + ], + [ + 12, + 160.69 + ], + [ + 13, + 160.445 + ], + [ + 14, + 160.59500000000003 + ], + [ + 15, + 160.235 + ] + ], + "slope": -0.6514160839160764, + "steady_state": true + } + }, + "lat.mean": { + "read": { + "average": 973.2041666666668, + "range": 182.28500000000008, + "series": [ + [ + 4, + 848.53 + ], + [ + 5, + 890.565 + ], + [ + 6, + 928.585 + ], + [ + 7, + 950.91 + ], + [ + 8, + 974.73 + ], + [ + 9, + 985.0050000000001 + ], + [ + 10, + 996.59 + ], + [ + 11, + 1007.46 + ], + [ + 12, + 1016.815 + ], + [ + 13, + 1023.115 + ], + [ + 14, + 1025.33 + ], + [ + 15, + 1030.815 + ] + ], + "slope": 15.101503496503458, + "steady_state": true + }, + "write": { + "average": 3865.463333333333, + "range": 133.55499999999984, + "series": [ + [ + 4, + 3952.305 + ], + [ + 5, + 3923.01 + ], + [ + 6, + 3919.105 + ], + [ + 7, + 3894.0 + ], + [ + 8, + 3860.1549999999997 + ], + [ + 9, + 3852.81 + ], + [ + 10, + 3844.0150000000003 + ], + [ + 11, + 3834.4449999999997 + ], + [ + 12, + 3835.975 + ], + [ + 13, + 3830.63 + ], + [ + 14, + 3818.75 + ], + [ + 15, + 3820.36 + ] + ], + "slope": -11.836048951049039, + "steady_state": true + } + } + } + }, + "scenario_name": "none", + "steady_state": { + "_warm_up.queue-depth.8.block-size.16384": false, + "rw.queue-depth.1.block-size.1024": true + }, + "storage_node_count": 2, + "test_case": "snia_steady_state", + "version": "danube", + "volume_size": 2 + }, + "scenario_name": "none", + "storage_node_count": 2, + "test_case": "snia_steady_state", + "version": "danube", + "volume_size": 2 +} + diff --git a/tests/ci/run_ci.sh b/tests/ci/run_ci.sh index 03d9d846..02dfca09 100644 --- a/tests/ci/run_ci.sh +++ b/tests/ci/run_ci.sh @@ -9,7 +9,7 @@ set -e usage(){ - echo "usage: $0 -t <installer_type> -i <installer_ip> -p <pod_name> -s <scenario>" >&2 + echo "usage: $0 -t <installer_type> -i <installer_ip> -p <pod_name> -s <scenario> -r <report_url>" >&2 } verify_connectivity(){ @@ -26,12 +26,13 @@ verify_connectivity(){ } #Getoptions -while getopts ":t:i:p:s:he" optchar; do +while getopts ":t:i:p:s:r:he" optchar; do case "${optchar}" in t) installer_type=${OPTARG} ;; i) installer_ip=${OPTARG} ;; p) pod_name=${OPTARG} ;; s) scenario=${OPTARG} ;; + r) testapi_url=${OPTARG} ;; h) usage exit 0 ;; @@ -47,6 +48,7 @@ installer_type=${installer_type:-$INSTALLER_TYPE} installer_ip=${installer_ip:-$INSTALLER_IP} pod_name=${pod_name:-$POD_NAME} scenario=${scenario:-$SCENARIO} +testapi_url=${testapi_url:-$TESTAPI_URL} sshoptions="-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" @@ -74,7 +76,11 @@ cd /home/opnfv/workspace/ qtip setup eval `ssh-agent` -qtip run +if [[ -z $testapi_url ]];then + qtip run +else + qtip run --extra-vars "testapi_url=$testapi_url" +fi qtip teardown # Remove ssh public key from installer |