summaryrefslogtreecommitdiffstats
path: root/docs/testing/user/userguide/qpi-compute.rst
diff options
context:
space:
mode:
authorYujun Zhang <zhang.yujunz@zte.com.cn>2017-03-24 07:46:42 +0000
committerGerrit Code Review <gerrit@opnfv.org>2017-03-24 07:46:42 +0000
commit4b58bc19154552264af22e7f53099b0dee28845d (patch)
treeb42df08b2c7988208163014f2a7b752c4d92f270 /docs/testing/user/userguide/qpi-compute.rst
parent31fd7fff783ce793d51a06780c1ab424aa1d8d33 (diff)
parent5c4c42d794a8f3ca0708098790320d2a022ec8ec (diff)
Merge "Sync docs from stable/danube 05ef2c4f46a9dc7a704a290eb15817c80a52c2e6"
Diffstat (limited to 'docs/testing/user/userguide/qpi-compute.rst')
-rw-r--r--docs/testing/user/userguide/qpi-compute.rst104
1 files changed, 104 insertions, 0 deletions
diff --git a/docs/testing/user/userguide/qpi-compute.rst b/docs/testing/user/userguide/qpi-compute.rst
new file mode 100644
index 00000000..369240c9
--- /dev/null
+++ b/docs/testing/user/userguide/qpi-compute.rst
@@ -0,0 +1,104 @@
+.. This work is licensed under a Creative Commons Attribution 4.0 International License.
+.. http://creativecommons.org/licenses/by/4.0
+.. (c) 2015 Dell Inc.
+.. (c) 2016 ZTE Corp.
+
+
+Compute Suite
+=============
+
+Introduction
+------------
+
+The QTIP testing suite aims to benchmark the compute components of an OPNFV platform.
+Such components include, the CPU performance, the memory performance.
+Additionally virtual computing performance provided by the Hypervisor (KVM) installed as part of OPNFV platforms would be benchmarked too.
+
+The test suite consists of both synthetic and application specific benchmarks to test compute components.
+
+All the compute benchmarks could be run in 2 scenarios:
+
+1. On Baremetal Machines provisioned by an OPNFV installer (Host machines)
+2. On Virtual Machines brought up through OpenStack on an OPNFV platform
+
+Note: The Compute benchmank suite constains relatively old benchmarks such as dhrystone and whetstone. The suite would be updated for better benchmarks such as Linbench for the OPNFV C release.
+
+Benchmarks
+----------
+
+The benchmarks include:
+
+Dhrystone 2.1
+^^^^^^^^^^^^^
+
+Dhrystone is a synthetic benchmark for measuring CPU performance. It uses integer calculations to evaluate CPU capabilities.
+Both Single CPU performance is measured along multi-cpu performance.
+
+
+Dhrystone, however, is a dated benchmark and has some short comings.
+Written in C, it is a small program that doesn't test the CPU memory subsystem.
+Additionally, dhrystone results could be modified by optimizing the compiler and insome cases hardware configuration.
+
+References: http://www.eembc.org/techlit/datasheets/dhrystone_wp.pdf
+
+Whetstone
+^^^^^^^^^
+
+Whetstone is a synthetic benchmark to measure CPU floating point operation performance.
+Both Single CPU performance is measured along multi-cpu performance.
+
+Like Dhrystone, Whetstone is a dated benchmark and has short comings.
+
+References:
+
+http://www.netlib.org/benchmark/whetstone.c
+
+OpenSSL Speed
+^^^^^^^^^^^^^
+
+OpenSSL Speed can be used to benchmark compute performance of a machine. In QTIP, two OpenSSL Speed benchmarks are incorporated:
+1. RSA signatunes/sec signed by a machine
+2. AES 128-bit encryption throughput for a machine for cipher block sizes
+
+References:
+
+https://www.openssl.org/docs/manmaster/apps/speed.html
+
+RAMSpeed
+^^^^^^^^
+
+RAMSpeed is used to measure a machine's memory perfomace.
+The problem(array)size is large enough to ensure Cache Misses so that the main machine memory is used.
+INTmem and FLOATmem benchmarks are executed in 4 different scenarios:
+
+a. Copy: a(i)=b(i)
+b. Add: a(i)=b(i)+c(i)
+c. Scale: a(i)=b(i)*d
+d. Tniad: a(i)=b(i)+c(i)*d
+
+INTmem uses integers in these four benchmarks whereas FLOATmem uses floating points for these benchmarks.
+
+References:
+
+http://alasir.com/software/ramspeed/
+
+https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/W51a7ffcf4dfd_4b40_9d82_446ebc23c550/page/Untangling+memory+access+measurements
+
+DPI
+^^^
+
+nDPI is a modified variant of OpenDPI, Open source Deep packet Inspection, that is maintained by ntop.
+An example application called *pcapreader* has been developed and is available for use along nDPI.
+
+A sample .pcap file is passed to the *pcapreader* application.
+nDPI classifies traffic in the pcap file into different categories based on string matching.
+The *pcapreader* application provides a throughput number for the rate at which traffic was classified, indicating a machine's computational performance.
+The results are run 10 times and an average is taken for the obtained number.
+
+*nDPI may provide non consistent results and was added to Brahmaputra for experimental purposes*
+
+References:
+
+http://www.ntop.org/products/deep-packet-inspection/ndpi/
+
+http://www.ntop.org/wp-content/uploads/2013/12/nDPI_QuickStartGuide.pdf