summaryrefslogtreecommitdiffstats
path: root/predPy/predictor.py
blob: 159fcf4390013bcfbc640b3a746ee1367d71614b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) 2016 Huawei
# All Rights Reserved.
#
#   Licensed to the Apache Software Foundation (ASF) under one or more
#   contributor license agreements.  See the NOTICE file distributed with
#   this work for additional information regarding copyright ownership.
#   The ASF licenses this file to You under the Apache License, Version 2.0
#   (the "License"); you may not use this file except in compliance with
#   the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#

"""
SVM
Logistic Regression with SGD
Logistic Regression with LBFGS
Multinomial Naive Bayes
Decision Tree
Random Forest
Gradient Boosted Trees
"""
from __future__ import print_function

from pyspark import SparkContext

import csv
import StringIO

import tempfile
from shutil import rmtree

# from pyspark.mllib.classification import SVMWithSGD, SVMModel
from pyspark.mllib.classification import LogisticRegressionWithSGD
# from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from pyspark.mllib.classification import LogisticRegressionModel
# from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel
# from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
# from pyspark.mllib.tree import RandomForest, RandomForestModel
# from pyspark.mllib.tree import GradientBoostedTrees, GradientBoostedTreesModel
from pyspark.mllib.linalg import Vectors
from pyspark.mllib.regression import LabeledPoint


def loadRecord(line):
    """Load a CSV line and select 26 indicative parameters"""
    input = StringIO.StringIO(line)
    reader = csv.reader(input)
    parameters = reader.next()
    # Instances that were collected within seven days before the failures
    # are used to train the failing model
    if parameters[3] >= 168:
        parameters[-1] = 0
    selectedParameters = parameters[12:17] + parameters[19:20] \
        + parameters[23:26] + parameters[39:47] + parameters[54:61] \
        + parameters[62:]
    return selectedParameters


def parseLine(line):
    """Parse a row """
    label = float(line[-1])
    features = Vectors.dense(map(float, line[:-1]))
    return LabeledPoint(label, features)


if __name__ == "__main__":

    sc = SparkContext(appName="HardDriveFailurePrediction")

    # $example on$
    data = sc.textFile('hdd/harddrive1.csv').map(loadRecord)\
        .map(parseLine)

    # Split data aproximately into training (60%) and test (40%)
    [trainingData, testData] = data.randomSplit([0.6, 0.4], seed=0)

    # Train a SVM model
#    model = SVMWithSGD.train(trainingData, iterations=2)
    # Train a logistic regression model
    model = LogisticRegressionWithSGD.train(trainingData, iterations=3)
#    model = LogisticRegressionWithLBFGS.train(trainingData)
    # Train a multinomial naive Bayes model given an RDD of LabeledPoint.
#    model = NaiveBayes.train(trainingData, 0.8)
    # Train a decision tree model.
    # Empty categoricalFeaturesInfo indicates all features are continuous.
#    model = DecisionTree.trainClassifier(trainingData, numClasses=2,
#                                         categoricalFeaturesInfo={},
#                                         impurity='entropy', maxDepth=5,
#                                         maxBins=32)
    # Train a RandomForest model.
    # Empty categoricalFeaturesInfo indicates all features are continuous.
    # Note: Use larger numTrees in practice.
    # Setting featureSubsetStrategy="auto" lets the algorithm choose.
#    model = RandomForest.trainClassifier(trainingData, numClasses=2,
#                                         categoricalFeaturesInfo={},
#                                         numTrees=3,
#                                         featureSubsetStrategy="auto",
#                                         impurity='gini', maxDepth=7,
#                                         maxBins=32)

    # Train a GradientBoostedTrees model.
    # Empty categoricalFeaturesInfo indicates all features are continuous.
#    model = GradientBoostedTrees.trainClassifier(trainingData,
#                                                 categoricalFeaturesInfo={},
#                                                 numIterations=3, maxDepth=3,
#                                                 maxBins=32)
    # Make prediction and test accuracy.
#    labelsAndPredictions = testData\
#        .map(lambda p: (p.label, model.predict(p.features)))
#    accuracy = labelsAndPredictions\
#        .filter(lambda (x, v): x == v).count() / float(testData.count())
    predictions = model.predict(testData.map(lambda x: x.features))
    labelsAndPredictions = testData.map(lambda p: p.label).zip(predictions)
    accuracy = labelsAndPredictions.filter(lambda (v, p): v == p).\
        count() / float(testData.count())
    print('Test Accuracy = ' + str(accuracy))
#    print('Learned classification tree model:')
#    print(model.toDebugString())

    # Save and load model
    path = tempfile.mkdtemp(dir='.')
    model.save(sc, path)
#    sameModel = SVMModel.load(sc, path)
    sameModel = LogisticRegressionModel.load(sc, path)
#    sameModel = NaiveBayesModel.load(sc, path)
#    sameModel = DecisionTreeModel.load(sc, path)
#    sameModel = RandomForestModel.load(sc, path)
#    sameModel = GradientBoostedTreesModel.load(sc, path)
    try:
        rmtree(path)
    except OSError:
        pass