diff options
Diffstat (limited to 'src/predictor/PredictorFactory.java')
-rw-r--r-- | src/predictor/PredictorFactory.java | 98 |
1 files changed, 98 insertions, 0 deletions
diff --git a/src/predictor/PredictorFactory.java b/src/predictor/PredictorFactory.java new file mode 100644 index 0000000..af21b10 --- /dev/null +++ b/src/predictor/PredictorFactory.java @@ -0,0 +1,98 @@ +package predictor; + +import org.apache.log4j.*; + +import weka.classifiers.bayes.*; +import weka.classifiers.trees.*; +import weka.classifiers.rules.*; +import weka.classifiers.functions.*; +import weka.classifiers.functions.LibSVM; +import weka.classifiers.lazy.*; + +import predictor.PredictorInterface; + +public class PredictorFactory { + public static Logger logger = Logger.getLogger(PredictorFactory.class); + + public static enum PredictionTechnique { + NAIVE_BAYES ("NBC", "Naive Bayes Classifier"), + BAYES_NET ("BN", "Bayesian Network"), + M5P ("M5P", "M5P Decision Tree"), + J48 ("J48", "C4.5 Decision Tree"), + DT ("DT", "Decision Table"), + ZEROR ("ZEROR", "ZeroR"), + REPTREE ("REPTREE", "REPTree"), + SMO ("SMO", "Sequential Minimal Optimization"), + RBFN ("RBFN", "RBF Network"), + MP ("MP", "Multilayer Perceptron"), + SLR ("SLR", "Simple Linear Regression"), + SL ("SL", "Simple Logistic"), + SVM ("SVM", "Support Vector Machine"), + LOG ("LOG", "Logistic"), + SGD ("SGD", "Stochastic Gradient Descent"), + VP ("VP", "VotedPerceptron"), + SMOR ("SMOR", "Sequential Minimal Optimization Regression"), + KSTAR ("KSTAR", "KStar"), + LWL ("LWL", "Locally weighted learning"), + RF ("RF", "Random Forest"), + NBM ("NBM", "Naive Bayes Multinomial"), + IBK ("IBK", "Instance-based Learning"), + JRIP ("JRIP", "JRip"), + M5R ("M5R", "M5Rules"), + ONER ("ONER", "OneR"), + PART ("PART", "PART"), + ; + + private final String shortName; + private final String name; + + PredictionTechnique(String shortName, String name) { + this.shortName = shortName; + this.name = name; + } + + public String getShortName() { + return this.shortName; + } + + public String getName() { + return this.name; + } + } + + public static PredictorInterface createPredictor(PredictionTechnique pTechnique) { + String name = pTechnique.getName(); + logger.debug("Creating predictor: " + name); + + switch(pTechnique) { + case NAIVE_BAYES: return new ClassifierAdapter(new NaiveBayes(),name); + case BAYES_NET: return new ClassifierAdapter(new BayesNet(),name); + case M5P: return new ClassifierAdapter(new M5P(), name); + case J48: return new ClassifierAdapter(new J48(), name); + case DT: return new ClassifierAdapter(new DecisionTable(), name); + case ZEROR: return new ClassifierAdapter(new ZeroR(), name); + case REPTREE: return new ClassifierAdapter(new REPTree(), name); + case SMO: return new ClassifierAdapter(new SMO(), name); + //case RBFN: return new ClassifierAdapter(new RBFNetwork(), name); + case MP: return new ClassifierAdapter(new MultilayerPerceptron(), name); + case SLR: return new ClassifierAdapter(new SimpleLinearRegression(), name); + case SL: return new ClassifierAdapter(new SimpleLogistic(), name); + case SVM: return new ClassifierAdapter(new LibSVM(), name); + case LOG: return new ClassifierAdapter(new Logistic(), name); + //case SGD: return new ClassifierAdapter(new SGD(), name); + case VP: return new ClassifierAdapter(new VotedPerceptron(), name); + case SMOR: return new ClassifierAdapter(new SMOreg(), name); + case KSTAR: return new ClassifierAdapter(new KStar(), name); + case LWL: return new ClassifierAdapter(new LWL(), name); + case RF: return new ClassifierAdapter(new RandomForest(), name); + case NBM: return new ClassifierAdapter(new NaiveBayesMultinomial(), name); + case IBK: return new ClassifierAdapter(new IBk(), name); + case JRIP: return new ClassifierAdapter(new JRip(), name); + case M5R: return new ClassifierAdapter(new M5Rules(), name); + case ONER: return new ClassifierAdapter(new OneR(), name); + case PART: return new ClassifierAdapter(new PART(), name); + default: return new ClassifierAdapter(new NaiveBayes(),name); + } + } +} + |