summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--src/model/Model.java325
-rw-r--r--src/model/ModelInterface.java32
2 files changed, 357 insertions, 0 deletions
diff --git a/src/model/Model.java b/src/model/Model.java
new file mode 100644
index 0000000..ca9897b
--- /dev/null
+++ b/src/model/Model.java
@@ -0,0 +1,325 @@
+package model;
+
+import java.io.*;
+import java.util.*;
+import java.text.DateFormat;
+import java.text.SimpleDateFormat;
+
+import org.apache.log4j.*;
+
+import org.apache.commons.math3.stat.descriptive.moment.*;
+import org.apache.commons.math3.distribution.NormalDistribution;
+
+import weka.core.*;
+import weka.classifiers.evaluation.*;
+import weka.core.converters.*;
+
+import input.ARFFReader;
+import predictor.*;
+
+
+public class Model implements ModelInterface {
+ protected Logger logger = Logger.getLogger(Model.class);
+
+ protected String datapath;
+ protected Instances trainingInstances;
+ protected Instances preprocessedInstances;
+ protected ArrayList<PredictorInterface> predictors;
+
+ protected static DateFormat dateFormat = new SimpleDateFormat("yyyyMMdd_HHmmss");
+ protected static Date date = new Date();
+ protected static String resultFilename = dateFormat.format(date);
+
+ public Model(){
+ this.datapath = "";
+ this.trainingInstances = null;
+ this.preprocessedInstances = null;
+ this.predictors = new ArrayList<PredictorInterface>();
+ }
+
+ public Model (ModelInterface model) {
+ this.datapath = model.getDatapath();
+ this.trainingInstances = new Instances(model.getTrainingInstances());
+ this.preprocessedInstances = new Instances(model.getPreprocessedInstances());
+ this.predictors = new ArrayList<PredictorInterface>(model.getPredictors());
+ }
+
+ @Override
+ public Instances getPreprocessedInstances() {
+ return this.preprocessedInstances;
+ }
+
+ @Override
+ public Instances getTrainingInstances() {
+ return this.trainingInstances;
+ }
+
+
+ @Override
+ public String getDatapath() {
+ return this.datapath;
+ }
+
+
+ @Override
+ public ArrayList<PredictorInterface> getPredictors() {
+ return this.predictors;
+ }
+
+
+ @Override
+ public void loadTrainingData(String path) {
+ logger.debug("Reading training data from " + path);
+ this.datapath = path;
+ try {
+ trainingInstances = ARFFReader.read(path);
+ preprocessedInstances = trainingInstances;
+ logger.debug("Training data is read");
+ logger.trace(trainingInstances);
+ } catch (Exception e) {
+ logger.warn(e.toString());
+ }
+ }
+
+ @Override
+ public void loadRawLog(String path) {
+ logger.debug("Reading logfile from " + path);
+ try {
+ BufferedReader in = new BufferedReader(new FileReader(path));
+ String line = in.readLine();
+ System.out.println(line);
+ } catch (Exception e) {
+ logger.warn(e.toString());
+ }
+ }
+
+
+
+ @Override
+ public void setPreprocessedInstances(Instances instances){
+ this.preprocessedInstances=new Instances(instances);
+ }
+
+ @Override
+ public void savePreprocessedInstances(String path) {
+ ArffSaver saver = new ArffSaver();
+ saver.setInstances(this.preprocessedInstances);
+ try {
+ saver.setFile(new File(path));
+ saver.writeBatch();
+ } catch (Exception e) {
+ logger.error("Cannot save preprocessed instances to file " + path);
+ }
+ }
+
+ @Override
+ public void addPredictor(String shortName) {
+ for (PredictorFactory.PredictionTechnique pTechnique : PredictorFactory.PredictionTechnique.values()) {
+ if (pTechnique.getShortName().equals(shortName)) {
+ predictors.add(PredictorFactory.createPredictor(pTechnique));
+ logger.info("Added predictor: " + pTechnique.getName());
+ return;
+ }
+ }
+ logger.warn("Added predictor: None");
+ logger.warn(shortName + " is not in the list.");
+ }
+
+ @Override
+ public void selectTrainingMethod() {
+
+ }
+
+ @Override
+ public void trainPredictors() throws Exception{
+ if (preprocessedInstances == null) {
+ throw new Exception("No training data");
+ }
+ if (predictors.size() == 0) {
+ throw new Exception("No predictors selected");
+ }
+ for (PredictorInterface p : predictors) {
+ try {
+ logger.info("Training " + p.getName());
+ p.train(preprocessedInstances);
+ logger.debug(p.toString());
+ } catch (Exception e) {
+ logger.error(e.toString());
+ }
+ }
+ }
+
+ @Override
+ public void crossValidatePredictors(int numFold) {
+ long seed = 1;
+ this.crossValidatePredictors(numFold, seed);
+ }
+
+ @Override
+ public void crossValidatePredictors(int numFold, long seed) {
+ for (PredictorInterface p : predictors) {
+ try {
+ logger.debug(numFold + "-fold cross-validating: " + p.getName());
+ Random rand = new Random(seed);
+ p.crossValidate(preprocessedInstances, numFold, rand);
+
+ ///*
+ ThresholdCurve tc = new ThresholdCurve();
+ int classIndex = 1;
+ Instances result = tc.getCurve(p.getEvaluationPredictions(), classIndex);
+
+
+ // Save ROC
+
+ BufferedWriter br = new BufferedWriter(new FileWriter(resultFilename + "_" + p.getName().replace(" ", "_") + "_ROC.arff"));
+ br.write(result.toString());
+ br.close();
+ } catch (Exception e) {
+ logger.error(e.toString());
+ }
+ }
+ }
+
+ @Override
+ public void benchmark(int rounds, String filename) throws Exception {
+ ArrayList<ArrayList<Double>> trainingTime = new ArrayList<ArrayList<Double>>(this.predictors.size());
+ ArrayList<ArrayList<Double>> predictionTime = new ArrayList<ArrayList<Double>>(this.predictors.size());
+
+ Runtime runtime = Runtime.getRuntime();
+
+ for (int i=0; i<this.predictors.size(); i++) {
+ trainingTime.add(new ArrayList<Double>(rounds));
+ predictionTime.add(new ArrayList<Double>(rounds));
+ }
+
+ // Benchmark - using preprocessed instances
+ long startTime;
+ long endTime;
+ double elapsedTime;
+ for (int pIndex=0; pIndex<this.predictors.size(); pIndex++) {
+ for (int rIndex=0; rIndex<rounds; rIndex++) {
+ logger.debug("Benchmarking " + this.predictors.get(pIndex).getName() + " round " + rIndex);
+
+ // Training time
+ startTime = System.currentTimeMillis();
+ this.predictors.get(pIndex).train(this.preprocessedInstances);
+ endTime = System.currentTimeMillis();
+ elapsedTime = ((double)(endTime - startTime))/1000;
+ trainingTime.get(pIndex).add(elapsedTime);
+ logger.debug("Training time = " + elapsedTime + " seconds");
+
+ // Prediction time
+ startTime = System.currentTimeMillis();
+ this.predictors.get(pIndex).predict(this.preprocessedInstances);
+ endTime = System.currentTimeMillis();
+ elapsedTime = ((double)(endTime - startTime))/1000;
+ predictionTime.get(pIndex).add(elapsedTime);
+ logger.debug("Prediction time = " + elapsedTime + " seconds");
+ }
+ }
+
+ // Save time results to file
+ BufferedWriter br = new BufferedWriter(new FileWriter(filename+"_benchmark"));
+ // Write header
+ String header = "";
+ for (int pIndex=0; pIndex<this.predictors.size(); pIndex++) {
+ header += "\"" + this.predictors.get(pIndex).getName() + " Training\" ";
+ header += "\"" + this.predictors.get(pIndex).getName() + " Prediction\" ";
+ }
+ header += "\n";
+ br.write(header);
+
+ for (int rIndex=0; rIndex<rounds; rIndex++) {
+ String line = "";
+ for (int pIndex=0; pIndex<this.predictors.size(); pIndex++) {
+ line += trainingTime.get(pIndex).get(rIndex).toString() + " " + predictionTime.get(pIndex).get(rIndex).toString() + " ";
+ }
+ line += "\n";
+ br.write(line);
+ }
+ br.close();
+
+ // TODO: move to another function
+ // refactor
+ // Calculate and save summary results
+ BufferedWriter brSummary = new BufferedWriter(new FileWriter(filename+"_benchmark_time_summary"));
+ //header = "Algorithms tMean tError pMean pError\n";
+ //brSummary.write(header);
+ for (int pIndex=0; pIndex<this.predictors.size(); pIndex++) {
+ String line = "\"" + this.predictors.get(pIndex).getName() + "\" ";
+ // Calculate mean
+ double [] training = new double[rounds];
+ // Convert ArrayList to array for Mean.evaluate
+ for (int rIndex=0; rIndex<rounds; rIndex++) {
+ //System.out.println("pIndex = " + pIndex + " rIndex = " + rIndex);
+ //System.out.println("array size = " + training.length);
+ training[rIndex] = trainingTime.get(pIndex).get(rIndex);
+ }
+ double meanTraining = new Mean().evaluate(training);
+ double varTraining = new Variance().evaluate(training);
+ double stdTraining = Math.sqrt(varTraining);
+ double errorTraining = new NormalDistribution().inverseCumulativeProbability(0.975)*(stdTraining/Math.sqrt(rounds));
+ double lowerCITraining = meanTraining - errorTraining;
+ double upperCITraining = meanTraining + errorTraining;
+ line += meanTraining + " " + errorTraining + " ";
+ //brSummary.write(line);
+
+ //line = "\"" + this.predictors.get(pIndex).getName() + " Prediction\" ";
+ // Calculate mean
+ double [] prediction = new double[rounds];
+ // Convert ArrayList to array for Mean.evaluate
+ for (int rIndex=0; rIndex<rounds; rIndex++) {
+ prediction[rIndex] = predictionTime.get(pIndex).get(rIndex);
+ }
+ double meanPrediction = new Mean().evaluate(prediction);
+ double varPrediction = new Variance().evaluate(prediction);
+ double stdPrediction = Math.sqrt(varPrediction);
+ double errorPrediction = new NormalDistribution().inverseCumulativeProbability(0.975)*(stdPrediction/Math.sqrt(rounds));
+ double lowerCIPrediction = meanPrediction - errorPrediction;
+ double upperCIPrediction = meanPrediction + errorPrediction;
+ line += meanPrediction + " " + errorPrediction + "\n";
+ brSummary.write(line);
+ }
+ brSummary.close();
+ }
+
+
+ @Override
+ public String getPredictorNames() {
+ String str = "";
+ for (PredictorInterface p : this.predictors) {
+ str += p.getName() + "\n";
+ }
+ return str;
+ }
+
+ @Override
+ public String toString() {
+ String str = "";
+ str += "Training data:\n" + this.datapath + "\n";
+ str += "Training data summary:\n" + this.getTrainingInstances().toSummaryString() + "\n";
+ str += "Preprocessed data summary:\n" + this.getPreprocessedInstances().toSummaryString() + "\n";
+ str += "Predictors:\n" + this.getPredictorNames() + "\n";
+ return str;
+ }
+
+ @Override
+ public void saveSettings(String filename) throws Exception {
+ BufferedWriter br = new BufferedWriter(new FileWriter(filename,true));
+ br.write(this.toString());
+ br.close();
+ }
+
+ @Override
+ public void saveResults(String filename) throws Exception {
+ BufferedWriter br = new BufferedWriter(new FileWriter(filename,true));
+
+ for (PredictorInterface p : this.predictors) {
+ logger.info(p.getEvaluationResults());
+ br.write(p.getEvaluationResults());
+ }
+
+ br.close();
+ }
+}
+
diff --git a/src/model/ModelInterface.java b/src/model/ModelInterface.java
new file mode 100644
index 0000000..a4d1b7b
--- /dev/null
+++ b/src/model/ModelInterface.java
@@ -0,0 +1,32 @@
+package model;
+
+import java.util.ArrayList;
+
+import weka.core.Instances;
+
+import predictor.*;
+
+
+public interface ModelInterface {
+ public String getDatapath();
+ public ArrayList<PredictorInterface> getPredictors();
+
+ public void loadTrainingData(String path);
+ public void loadRawLog(String path);
+ public Instances getTrainingInstances();
+ public void setPreprocessedInstances(Instances instances);
+ public Instances getPreprocessedInstances();
+ public void savePreprocessedInstances(String path);
+ public void addPredictor(String shortName);
+ public void crossValidatePredictors(int numFold);
+ public void crossValidatePredictors(int numFold, long seed);
+ public void selectTrainingMethod();
+ public void trainPredictors() throws Exception;
+ public void benchmark(int rounds, String filename) throws Exception;
+
+ public String getPredictorNames();
+ public String toString();
+ public void saveSettings(String filename) throws Exception;
+ public void saveResults(String filename) throws Exception;
+}
+