summaryrefslogtreecommitdiffstats
path: root/docs/release/overview.rst
blob: 8ba26078edb395429f40f8475385fedf8661e4c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
.. _opnfv-overview:

.. This work is licensed under a Creative Commons Attribution 4.0 International License.
.. SPDX-License-Identifier: CC-BY-4.0
.. (c) Open Platform for NFV Project, Inc. and its contributors

===============
OPNFV Overview
===============

Introduction
============

Network Functions Virtualization (NFV) is transforming the networking industry via
software-defined infrastructures and open source is the proven method for quickly developing
software for commercial products and services that can move markets.
Open Platform for NFV (OPNFV) facilitates the development and evolution of NFV
components across various open source ecosystems. Through system level integration,
deployment and testing, OPNFV constructs a reference NFV platform to accelerate the
transformation of enterprise and service provider networks.
As an open source project, OPNFV is uniquely positioned to bring together the work
of standards bodies, open source communities, service providers and commercial suppliers to deliver
a de facto NFV platform for the industry.

By integrating components from upstream projects, the community is able to conduct performance
and use case-based testing on a variety of solutions to ensure the platform’s suitability for
NFV use cases. OPNFV also works upstream with other open source communities to bring contributions
and learnings from its work directly to those communities in the form of blueprints, patches, bugs,
and new code.

OPNFV initially focused on building NFV Infrastructure (NFVI) and Virtualised Infrastructure
Management (VIM) by integrating components from upstream projects such as OpenDaylight,
OpenStack, Ceph Storage, KVM, Open vSwitch, and Linux.
More recently, OPNFV has extended its portfolio of forwarding solutions to include fd.io and ODP,
is able to run on both Intel and ARM commercial and white-box hardware, support VM, Container and
BareMetal workloads, and includes Management and Network Orchestration MANO components primarily
for application composition and management in the Danube release.

These capabilities, along with application programmable interfaces (APIs) to other NFV
elements, form the basic infrastructure required for Virtualized Network Functions (VNF)
and MANO components.

Concentrating on these components while also considering proposed projects on additional
topics (such as the MANO components and applications themselves), OPNFV aims to enhance
NFV services by increasing performance and power efficiency improving reliability,
availability and serviceability, and delivering comprehensive platform instrumentation.


OPNFV Platform Architecture
===========================

The OPNFV project addresses a number of aspects in the development of a consistent virtualisation
platform including common hardware requirements, software architecture, MANO and applications.


OPNFV Platform Overview Diagram

.. image:: ../images/opnfvplatformgraphic.png
   :alt: Overview infographic of the opnfv platform and projects.


To address these areas effectively, the OPNFV platform architecture can be decomposed
into the following basic building blocks:

* Hardware: with the Infra working group, Pharos project and associated activities
* Software Platform: through the platform integration and deployment projects
* MANO: through the MANO working group and associated projects
* Applications: which affect all other areas and drive requirements for OPNFV

OPNFV Lab Infrastructure
========================

The infrastructure working group oversees such topics as lab management, workflow,
definitions, metrics and tools for OPNFV infrastructure.

Fundamental to the WG is the
`Pharos Specification <https://wiki.opnfv.org/display/pharos/Pharos+Specification>`_
which provides a set of defined lab infrastructures over a geographically and technically
diverse federated global OPNFV lab.

Labs may instantiate bare-metal and virtual environments that are accessed remotely by the
community and used for OPNFV platform and feature development, build, deploy and testing.
No two labs are the same and the heterogeneity of the Pharos environment provides the ideal
platform for establishing hardware and software abstractions providing well understood
performance characteristics.

Community labs are hosted by OPNFV member companies on a voluntary basis.
The Linux Foundation also hosts an OPNFV lab that provides centralized CI
and other production resources which are linked to community labs.
Future lab capabilities will include the ability easily automate deploy and test of any
OPNFV install scenario in any lab environment as well as on a nested "lab as a service"
virtual infrastructure.

OPNFV Software Platform Architecture
====================================

The OPNFV software platform is comprised exclusively of open source implementations of
platform component pieces.  OPNFV is able to draw from the rich ecosystem of NFV related
technologies available in open-source then integrate, test, measure and improve these
components in conjunction with our source communities.

While the composition of the OPNFV software platform is highly complex and constituted of many
projects and components, a subset of these projects gain the most attention from the OPNFV community
to drive the development of new technologies and capabilities.

---------------------------------
Virtual Infrastructure Management
---------------------------------

OPNFV derives it's virtual infrastructure management from one of our largest upstream ecosystems
OpenStack.  OpenStack provides a complete reference cloud management system and associated technologies.
While the OpenStack community sustains a broad set of projects, not all technologies are relevant in
an NFV domain, the OPNFV community consumes a sub-set of OpenStack projects where the usage and
composition may vary depending on the installer and scenario.

For details on the scenarios available in OPNFV and the specific composition of components
refer to the :ref:`OPNFV User Guide & Configuration Guide <opnfv-user-config>`

-----------------
Operating Systems
-----------------

OPNFV currently uses Linux on all target machines, this can include Ubuntu, Centos or SUSE linux. The
specific version of Linux used for any deployment is documented in the installation guide.

-----------------------
Networking Technologies
-----------------------

SDN Controllers
---------------

OPNFV, as an NFV focused project, has a significant investment on networking technologies
and provides a broad variety of integrated open source reference solutions.  The diversity
of controllers able to be used in OPNFV is supported by a similarly diverse set of
forwarding technologies.

There are many SDN controllers available today relevant to virtual environments
where the OPNFV community supports and contributes to a number of these.  The controllers
being worked on by the community during this release of OPNFV include:

* Neutron: an OpenStack project to provide “network connectivity as a service” between
  interface devices (e.g., vNICs) managed by other OpenStack services (e.g., nova).
* OpenDaylight: addresses multivendor, traditional and greenfield networks, establishing the
  industry’s de facto SDN platform and providing the foundation for networks of the future.
* ONOS: a carrier-grade SDN network operating system designed for high availability,
  performance, scale-out.

.. OpenContrail SDN controller is planned to be supported in the next release.

Data Plane
----------

OPNFV extends Linux virtual networking capabilities by using virtual switching
and routing components. The OPNFV community proactively engages with these source
communities to address performance, scale and resiliency needs apparent in carrier
networks.

* FD.io (Fast data - Input/Output): a collection of several projects and libraries to
  amplify the transformation that began with Data Plane Development Kit (DPDK) to support
  flexible, programmable and composable services on a generic hardware platform.
* Open vSwitch: a production quality, multilayer virtual switch designed to enable
  massive network automation through programmatic extension, while still supporting standard
  management interfaces and protocols.

Deployment Architecture
=======================

A typical OPNFV deployment starts with three controller nodes running in a high availability
configuration including control plane components from OpenStack, SDN, etc. and a minimum
of two compute nodes for deployment of workloads (VNFs).
A detailed description of the hardware requirements required to support the 5 node configuration
can be found in pharos specification: `Pharos Project <https://www.opnfv.org/developers/pharos>`_

In addition to the deployment on a highly available physical infrastructure, OPNFV can be
deployed for development and lab purposes in a virtual environment.  In this case each of the hosts
is provided by a virtual machine and allows control and workload placement using nested virtualization.

The initial deployment is done using a staging server, referred to as the "jumphost".
This server-either physical or virtual-is first installed with the installation program
that then installs OpenStack and other components on the controller nodes and compute nodes.
See the :ref:`OPNFV User Guide & Configuration Guide <opnfv-user-config>` for more details.


The OPNFV Testing Ecosystem
===========================

The OPNFV community has set out to address the needs of virtualization in the carrier
network and as such platform validation and measurements are a cornerstone to the
iterative releases and objectives.

To simplify the complex task of feature, component and platform validation and characterization
the testing community has established a fully automated method for addressing all key areas of
platform validation. This required the integration of a variety of testing frameworks in our CI
systems, real time and automated analysis of results, storage and publication of key facts for
each run as shown in the following diagram.

.. image:: ../images/OPNFV_testing_working_group.png
  :alt: Overview infographic of the OPNFV testing Ecosystem

Release Verification
====================

The OPNFV community relies on its testing community to establish release criteria for each OPNFV
release. Each release cycle the testing criteria become more stringent and better representative
of our feature and resiliency requirements.


As each OPNFV release establishes a set of deployment scenarios to validate, the testing
infrastructure and test suites need to accommodate these features and capabilities. It’s not
only in the validation of the scenarios themselves where complexity increases, there are test
cases that require multiple datacenters to execute when evaluating features, including multisite
and distributed datacenter solutions.

The release criteria as established by the testing teams include passing a set of test cases
derived from the functional testing project ‘functest,’ a set of test cases derived from our
platform system and performance test project ‘yardstick,’ and a selection of test cases for
feature capabilities derived from other test projects such as bottlenecks, vsperf, cperf and
storperf. The scenario needs to be able to be deployed, pass these tests, and be removed from
the infrastructure iteratively (no less that 4 times) in order to fulfil the release criteria.

--------
Functest
--------

Functest provides a functional testing framework incorporating a number of test suites
and test cases that test and verify OPNFV platform functionality.
The scope of Functest and relevant test cases can be found in the :ref:`Functest User Guide <functest-userguide>`

Functest provides both feature project and component test suite integration, leveraging
OpenStack and SDN controllers testing frameworks to verify the key components of the OPNFV
platform are running successfully.

---------
Yardstick
---------

Yardstick is a testing project for verifying the infrastructure compliance when running VNF applications.
Yardstick benchmarks a number of characteristics and performance vectors on the infrastructure making it
a valuable pre-deployment NFVI testing tools.

Yardstick provides a flexible testing framework for launching other OPNFV testing projects.

There are two types of test cases in Yardstick:

* Yardstick generic test cases and OPNFV feature test cases;
  including basic characteristics benchmarking in compute/storage/network area.
* OPNFV feature test cases include basic telecom feature testing from OPNFV projects;
  for example nfv-kvm, sfc, ipv6, Parser, Availability and SDN VPN

System Evaluation and compliance testing
========================================

The OPNFV community is developing a set of test suites intended to evaluate a set of reference
behaviors and capabilities for NFV systems developed externally from the OPNFV ecosystem to
evaluate and measure their ability to provide the features and capabilities developed in the
OPNFV ecosystem.

The Dovetail project will provide a test framework and methodology able to be used on any NFV platform,
including an agreed set of test cases establishing an evaluation criteria for exercising
an OPNFV compatible system. The Dovetail project has begun establishing the test framework
and will provide a preliminary methodology for the Danube release. Work will continue to
develop these test cases to establish a stand alone compliance evaluation solution
in future releases.

Additional Testing
==================

Besides the test suites and cases for release verification, additional testing is performed to validate
specific features or characteristics of the OPNFV platform.
These testing framework and test cases may include some specific needs; such as extended measurements,
additional testing stimuli, or tests simulating environmental disturbances or failures.

These additional testing activities provide a more complete evaluation of the OPNFV platform.
Some of the projects focused on these testing areas include:

------
VSPERF
------

VSPERF provides an automated test-framework and comprehensive test suite for measuring data-plane
performance of the NFVI including switching technology, physical and virtual network interfaces.
The provided test cases with network topologies can be customized while also allowing individual
versions of Operating System, vSwitch and hypervisor to be specified.

-----------
Bottlenecks
-----------

Bottlenecks provides a framework to find system limitations and bottlenecks, providing
root cause isolation capabilities to facilitate system evaluation.


.. _`OPNFV Configuration Guide`: `OPNFV User Guide & Configuration Guide`
.. _`OPNFV User Guide`: `OPNFV User Guide & Configuration Guide`
.. _`Dovetail project`: https://wiki.opnfv.org/display/dovetail
8 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
Network Working Group                                          M. Tahhan
Internet-Draft                                               B. O'Mahony
Intended status: Informational                                     Intel
Expires: September 22, 2016                                    A. Morton
                                                               AT&T Labs
                                                          March 21, 2016


                 Benchmarking Virtual Switches in OPNFV
                   draft-vsperf-bmwg-vswitch-opnfv-02

Abstract

   This memo describes the progress of the Open Platform for NFV (OPNFV)
   project on virtual switch performance "VSWITCHPERF".  This project
   intends to build on the current and completed work of the
   Benchmarking Methodology Working Group in IETF, by referencing
   existing literature.  The Benchmarking Methodology Working Group has
   traditionally conducted laboratory characterization of dedicated
   physical implementations of internetworking functions.  Therefore,
   this memo begins to describe the additional considerations when
   virtual switches are implemented in general-purpose hardware.  The
   expanded tests and benchmarks are also influenced by the OPNFV
   mission to support virtualization of the "telco" infrastructure.

Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 22, 2016.




Tahhan, et al.         Expires September 22, 2016               [Page 1]

Internet-Draft           Benchmarking vSwitches               March 2016


Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Benchmarking Considerations . . . . . . . . . . . . . . . . .   4
     3.1.  Comparison with Physical Network Functions  . . . . . . .   4
     3.2.  Continued Emphasis on Black-Box Benchmarks  . . . . . . .   4
     3.3.  New Configuration Parameters  . . . . . . . . . . . . . .   4
     3.4.  Flow classification . . . . . . . . . . . . . . . . . . .   6
     3.5.  Benchmarks using Baselines with Resource Isolation  . . .   7
   4.  VSWITCHPERF Specification Summary . . . . . . . . . . . . . .   8
   5.  3x3 Matrix Coverage . . . . . . . . . . . . . . . . . . . . .  16
     5.1.  Speed of Activation . . . . . . . . . . . . . . . . . . .  17
     5.2.  Accuracy of Activation section  . . . . . . . . . . . . .  17
     5.3.  Reliability of Activation . . . . . . . . . . . . . . . .  17
     5.4.  Scale of Activation . . . . . . . . . . . . . . . . . . .  17
     5.5.  Speed of Operation  . . . . . . . . . . . . . . . . . . .  17
     5.6.  Accuracy of Operation . . . . . . . . . . . . . . . . . .  17
     5.7.  Reliability of Operation  . . . . . . . . . . . . . . . .  17
     5.8.  Scalability of Operation  . . . . . . . . . . . . . . . .  18
     5.9.  Summary . . . . . . . . . . . . . . . . . . . . . . . . .  18
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  18
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  19
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  19
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  19
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  19
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  21
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  22








Tahhan, et al.         Expires September 22, 2016               [Page 2]

Internet-Draft           Benchmarking vSwitches               March 2016


1.  Introduction

   Benchmarking Methodology Working Group (BMWG) has traditionally
   conducted laboratory characterization of dedicated physical
   implementations of internetworking functions.  The Black-box
   Benchmarks of Throughput, Latency, Forwarding Rates and others have
   served our industry for many years.  Now, Network Function
   Virtualization (NFV) has the goal to transform how internetwork
   functions are implemented, and therefore has garnered much attention.

   This memo summarizes the progress of the Open Platform for NFV
   (OPNFV) project on virtual switch performance characterization,
   "VSWITCHPERF", through the Brahmaputra (second) release [BrahRel].
   This project intends to build on the current and completed work of
   the Benchmarking Methodology Working Group in IETF, by referencing
   existing literature.  For example, currently the most often
   referenced RFC is [RFC2544] (which depends on [RFC1242]) and
   foundation of the benchmarking work in OPNFV is common and strong.

   See https://wiki.opnfv.org/
   characterize_vswitch_performance_for_telco_nfv_use_cases for more
   background, and the OPNFV website for general information:
   https://www.opnfv.org/

   The authors note that OPNFV distinguishes itself from other open
   source compute and networking projects through its emphasis on
   existing "telco" services as opposed to cloud-computing.  There are
   many ways in which telco requirements have different emphasis on
   performance dimensions when compared to cloud computing: support for
   and transfer of isochronous media streams is one example.

   Note also that the move to NFV Infrastructure has resulted in many
   new benchmarking initiatives across the industry.  The authors are
   currently doing their best to maintain alignment with many other
   projects, and this Internet Draft is one part of the efforts.  We
   acknowledge the early work in
   [I-D.huang-bmwg-virtual-network-performance], and useful discussion
   with the authors.

2.  Scope

   The primary purpose and scope of the memo is to inform the industry
   of work-in-progress that builds on the body of extensive BMWG
   literature and experience, and describe the extensions needed for
   benchmarking virtual switches.  Inital feedback indicates that many
   of these extensions may be applicable beyond the current scope (to
   hardware switches in the NFV Infrastructure and to virtual routers,
   for example).  Additionally, this memo serves as a vehicle to include



Tahhan, et al.         Expires September 22, 2016               [Page 3]

Internet-Draft           Benchmarking vSwitches               March 2016


   more detail and commentary from BMWG and other Open Source
   communities, under BMWG's chartered work to characterize the NFV
   Infrastructure (a virtual switch is an important aspect of that
   infrastructure).

3.  Benchmarking Considerations

   This section highlights some specific considerations (from
   [I-D.ietf-bmwg-virtual-net])related to Benchmarks for virtual
   switches.  The OPNFV project is sharing its present view on these
   areas, as they develop their specifications in the Level Test Design
   (LTD) document.

3.1.  Comparison with Physical Network Functions

   To compare the performance of virtual designs and implementations
   with their physical counterparts, identical benchmarks are needed.
   BMWG has developed specifications for many network functions this
   memo re-uses existing benchmarks through references, and expands them
   during development of new methods.  A key configuration aspect is the
   number of parallel cores required to achieve comparable performance
   with a given physical device, or whether some limit of scale was
   reached before the cores could achieve the comparable level.

   It's unlikely that the virtual switch will be the only application
   running on the SUT, so CPU utilization, Cache utilization, and Memory
   footprint should also be recorded for the virtual implementations of
   internetworking functions.

3.2.  Continued Emphasis on Black-Box Benchmarks

   External observations remain essential as the basis for Benchmarks.
   Internal observations with fixed specification and interpretation
   will be provided in parallel to assist the development of operations
   procedures when the technology is deployed.

3.3.  New Configuration Parameters

   A key consideration when conducting any sort of benchmark is trying
   to ensure the consistency and repeatability of test results.  When
   benchmarking the performance of a vSwitch there are many factors that
   can affect the consistency of results, one key factor is matching the
   various hardware and software details of the SUT.  This section lists
   some of the many new parameters which this project believes are
   critical to report in order to achieve repeatability.

   Hardware details including:




Tahhan, et al.         Expires September 22, 2016               [Page 4]

Internet-Draft           Benchmarking vSwitches               March 2016


   o  Platform details

   o  Processor details

   o  Memory information (type and size)

   o  Number of enabled cores

   o  Number of cores used for the test

   o  Number of physical NICs, as well as their details (manufacturer,
      versions, type and the PCI slot they are plugged into)

   o  NIC interrupt configuration

   o  BIOS version, release date and any configurations that were
      modified

   o  CPU microcode level

   o  Memory DIMM configurations (quad rank performance may not be the
      same as dual rank) in size, freq and slot locations

   o  PCI configuration parameters (payload size, early ack option...)

   o  Power management at all levels (ACPI sleep states, processor
      package, OS...)

   Software details including:

   o  OS parameters and behavior (text vs graphical no one typing at the
      console on one system)

   o  OS version (for host and VNF)

   o  Kernel version (for host and VNF)

   o  GRUB boot parameters (for host and VNF)

   o  Hypervisor details (Type and version)

   o  Selected vSwitch, version number or commit id used

   o  vSwitch launch command line if it has been parameterised

   o  Memory allocation to the vSwitch

   o  which NUMA node it is using, and how many memory channels



Tahhan, et al.         Expires September 22, 2016               [Page 5]

Internet-Draft           Benchmarking vSwitches               March 2016


   o  DPDK or any other SW dependency version number or commit id used

   o  Memory allocation to a VM - if it's from Hugpages/elsewhere

   o  VM storage type: snapshot/independent persistent/independent non-
      persistent

   o  Number of VMs

   o  Number of Virtual NICs (vNICs), versions, type and driver

   o  Number of virtual CPUs and their core affinity on the host

   o  Number vNIC interrupt configuration

   o  Thread affinitization for the applications (including the vSwitch
      itself) on the host

   o  Details of Resource isolation, such as CPUs designated for Host/
      Kernel (isolcpu) and CPUs designated for specific processes
      (taskset). - Test duration. - Number of flows.

   Test Traffic Information:

   o  Traffic type - UDP, TCP, IMIX / Other

   o  Packet Sizes

   o  Deployment Scenario

3.4.  Flow classification

   Virtual switches group packets into flows by processing and matching
   particular packet or frame header information, or by matching packets
   based on the input ports.  Thus a flow can be thought of a sequence
   of packets that have the same set of header field values or have
   arrived on the same port.  Performance results can vary based on the
   parameters the vSwitch uses to match for a flow.  The recommended
   flow classification parameters for any vSwitch performance tests are:
   the input port, the source IP address, the destination IP address and
   the Ethernet protocol type field.  It is essential to increase the
   flow timeout time on a vSwitch before conducting any performance
   tests that do not measure the flow setup time.  Normally the first
   packet of a particular stream will install the flow in the virtual
   switch which adds an additional latency, subsequent packets of the
   same flow are not subject to this latency if the flow is already
   installed on the vSwitch.




Tahhan, et al.         Expires September 22, 2016               [Page 6]

Internet-Draft           Benchmarking vSwitches               March 2016


3.5.  Benchmarks using Baselines with Resource Isolation

   This outline describes measurement of baseline with isolated
   resources at a high level, which is the intended approach at this
   time.

   1.  Baselines:

       *  Optional: Benchmark platform forwarding capability without a
          vswitch or VNF for at least 72 hours (serves as a means of
          platform validation and a means to obtain the base performance
          for the platform in terms of its maximum forwarding rate and
          latency).

   Benchmark platform forwarding capability

                                                                   __
              +--------------------------------------------------+   |
              |   +------------------------------------------+   |   |
              |   |                                          |   |   |
              |   |          Simple Forwarding App           |   |  Host
              |   |                                          |   |   |
              |   +------------------------------------------+   |   |
              |   |                 NIC                      |   |   |
              +---+------------------------------------------+---+ __|
                         ^                           :
                         |                           |
                         :                           v
              +--------------------------------------------------+
              |                                                  |
              |                traffic generator                 |
              |                                                  |
              +--------------------------------------------------+

       *  Benchmark VNF forwarding capability with direct connectivity
          (vSwitch bypass, e.g., SR/IOV) for at least 72 hours (serves
          as a means of VNF validation and a means to obtain the base
          performance for the VNF in terms of its maximum forwarding
          rate and latency).  The metrics gathered from this test will
          serve as a key comparison point for vSwitch bypass
          technologies performance and vSwitch performance.










Tahhan, et al.         Expires September 22, 2016               [Page 7]

Internet-Draft           Benchmarking vSwitches               March 2016


                                     Benchmark VNF forwarding capability

                                                         __
    +--------------------------------------------------+   |
    |   +------------------------------------------+   |   |
    |   |                                          |   |   |
    |   |                 VNF                      |   |   |
    |   |                                          |   |   |
    |   +------------------------------------------+   |   |
    |   |          Passthrough/SR-IOV              |   |  Host
    |   +------------------------------------------+   |   |
    |   |                 NIC                      |   |   |
    +---+------------------------------------------+---+ __|
               ^                           :
               |                           |
               :                           v
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+

       *  Benchmarking with isolated resources alone, with other
          resources (both HW&SW) disabled Example, vSw and VM are SUT

       *  Benchmarking with isolated resources alone, leaving some
          resources unused

       *  Benchmark with isolated resources and all resources occupied

   2.  Next Steps

       *  Limited sharing

       *  Production scenarios

       *  Stressful scenarios

4.  VSWITCHPERF Specification Summary

   The overall specification in preparation is referred to as a Level
   Test Design (LTD) document, which will contain a suite of performance
   tests.  The base performance tests in the LTD are based on the pre-
   existing specifications developed by BMWG to test the performance of
   physical switches.  These specifications include:

   o  [RFC2544] Benchmarking Methodology for Network Interconnect
      Devices



Tahhan, et al.         Expires September 22, 2016               [Page 8]

Internet-Draft           Benchmarking vSwitches               March 2016


   o  [RFC2889] Benchmarking Methodology for LAN Switching

   o  [RFC6201] Device Reset Characterization

   o  [RFC5481] Packet Delay Variation Applicability Statement

   Some of the above/newer RFCs are being applied in benchmarking for
   the first time, and represent a development challenge for test
   equipment developers.  Fortunately, many members of the testing
   system community have engaged on the VSPERF project, including an
   open source test system.

   In addition to this, the LTD also re-uses the terminology defined by:

   o  [RFC2285] Benchmarking Terminology for LAN Switching Devices

   o  [RFC5481] Packet Delay Variation Applicability Statement

   Specifications to be included in future updates of the LTD include:

   o  [RFC3918] Methodology for IP Multicast Benchmarking

   o  [RFC4737] Packet Reordering Metrics

   As one might expect, the most fundamental internetworking
   characteristics of Throughput and Latency remain important when the
   switch is virtualized, and these benchmarks figure prominently in the
   specification.

   When considering characteristics important to "telco" network
   functions, we must begin to consider additional performance metrics.
   In this case, the project specifications have referenced metrics from
   the IETF IP Performance Metrics (IPPM) literature.  This means that
   the [RFC2544] test of Latency is replaced by measurement of a metric
   derived from IPPM's [RFC2679], where a set of statistical summaries
   will be provided (mean, max, min, etc.).  Further metrics planned to
   be benchmarked include packet delay variation as defined by [RFC5481]
   , reordering, burst behaviour, DUT availability, DUT capacity and
   packet loss in long term testing at Throughput level, where some low-
   level of background loss may be present and characterized.

   Tests have been (or will be) designed to collect the metrics below:

   o  Throughput Tests to measure the maximum forwarding rate (in frames
      per second or fps) and bit rate (in Mbps) for a constant load (as
      defined by [RFC1242]) without traffic loss.





Tahhan, et al.         Expires September 22, 2016               [Page 9]

Internet-Draft           Benchmarking vSwitches               March 2016


   o  Packet and Frame Delay Distribution Tests to measure average, min
      and max packet and frame delay for constant loads.

   o  Packet Delay Tests to understand latency distribution for
      different packet sizes and over an extended test run to uncover
      outliers.

   o  Scalability Tests to understand how the virtual switch performs as
      the number of flows, active ports, complexity of the forwarding
      logic's configuration... it has to deal with increases.

   o  Stream Performance Tests (TCP, UDP) to measure bulk data transfer
      performance, i.e. how fast systems can send and receive data
      through the switch.

   o  Control Path and Datapath Coupling Tests, to understand how
      closely coupled the datapath and the control path are as well as
      the effect of this coupling on the performance of the DUT
      (example: delay of the initial packet of a flow).

   o  CPU and Memory Consumption Tests to understand the virtual
      switch's footprint on the system, usually conducted as auxiliary
      measurements with benchmarks above.  They include: CPU
      utilization, Cache utilization and Memory footprint.

   o  The so-called "Soak" tests, where the selected test is conducted
      over a long period of time (with an ideal duration of 24 hours,
      and at least 6 hours).  The purpose of soak tests is to capture
      transient changes in performance which may occur due to infrequent
      processes or the low probability coincidence of two or more
      processes.  The performance must be evaluated periodically during
      continuous testing, and this results in use of [RFC2889] Frame
      Rate metrics instead of [RFC2544] Throughput (which requires
      stopping traffic to allow time for all traffic to exit internal
      queues).

   Future/planned test specs include:

   o  Request/Response Performance Tests (TCP, UDP) which measure the
      transaction rate through the switch.

   o  Noisy Neighbour Tests, to understand the effects of resource
      sharing on the performance of a virtual switch.

   o  Tests derived from examination of ETSI NFV Draft GS IFA003
      requirements [IFA003] on characterization of acceleration
      technologies applied to vswitches.




Tahhan, et al.         Expires September 22, 2016              [Page 10]

Internet-Draft           Benchmarking vSwitches               March 2016


   The flexibility of deployment of a virtual switch within a network
   means that the BMWG IETF existing literature needs to be used to
   characterize the performance of a switch in various deployment
   scenarios.  The deployment scenarios under consideration include:

   Physical port to virtual switch to physical port

                                                         __
    +--------------------------------------------------+   |
    |              +--------------------+              |   |
    |              |                    |              |   |
    |              |                    v              |   |  Host
    |   +--------------+            +--------------+   |   |
    |   |   phy port   |  vSwitch   |   phy port   |   |   |
    +---+--------------+------------+--------------+---+ __|
               ^                           :
               |                           |
               :                           v
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+




























Tahhan, et al.         Expires September 22, 2016              [Page 11]

Internet-Draft           Benchmarking vSwitches               March 2016


   Physical port to virtual switch to VNF to virtual switch to physical
   port

                                                         __
    +---------------------------------------------------+   |
    |                                                   |   |
    |   +-------------------------------------------+   |   |
    |   |                 Application               |   |   |
    |   +-------------------------------------------+   |   |
    |       ^                                  :        |   |
    |       |                                  |        |   |  Guest
    |       :                                  v        |   |
    |   +---------------+           +---------------+   |   |
    |   | logical port 0|           | logical port 1|   |   |
    +---+---------------+-----------+---------------+---+ __|
            ^                                  :
            |                                  |
            :                                  v         __
    +---+---------------+----------+---------------+---+   |
    |   | logical port 0|          | logical port 1|   |   |
    |   +---------------+          +---------------+   |   |
    |       ^                                  :       |   |
    |       |                                  |       |   |  Host
    |       :                                  v       |   |
    |   +--------------+            +--------------+   |   |
    |   |   phy port   |  vSwitch   |   phy port   |   |   |
    +---+--------------+------------+--------------+---+ __|
               ^                           :
               |                           |
               :                           v
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+
















Tahhan, et al.         Expires September 22, 2016              [Page 12]

Internet-Draft           Benchmarking vSwitches               March 2016


   Physical port to virtual switch to VNF to virtual switch to VNF to
   virtual switch to physical port

                                                      __
    +----------------------+  +----------------------+  |
    |   Guest 1            |  |   Guest 2            |  |
    |   +---------------+  |  |   +---------------+  |  |
    |   |  Application  |  |  |   |  Application  |  |  |
    |   +---------------+  |  |   +---------------+  |  |
    |       ^       |      |  |       ^       |      |  |
    |       |       v      |  |       |       v      |  |  Guests
    |   +---------------+  |  |   +---------------+  |  |
    |   | logical ports |  |  |   | logical ports |  |  |
    |   |   0       1   |  |  |   |   0       1   |  |  |
    +---+---------------+--+  +---+---------------+--+__|
            ^       :                 ^       :
            |       |                 |       |
            :       v                 :       v       _
    +---+---------------+---------+---------------+--+ |
    |   |   0       1   |         |   3       4   |  | |
    |   | logical ports |         | logical ports |  | |
    |   +---------------+         +---------------+  | |
    |       ^       |                 ^       |      | |  Host
    |       |       |-----------------|       v      | |
    |   +--------------+          +--------------+   | |
    |   |   phy ports  | vSwitch  |   phy ports  |   | |
    +---+--------------+----------+--------------+---+_|
            ^                                 :
            |                                 |
            :                                 v
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+
















Tahhan, et al.         Expires September 22, 2016              [Page 13]

Internet-Draft           Benchmarking vSwitches               March 2016


   Physical port to virtual switch to VNF

                                                          __
    +---------------------------------------------------+   |
    |                                                   |   |
    |   +-------------------------------------------+   |   |
    |   |                 Application               |   |   |
    |   +-------------------------------------------+   |   |
    |       ^                                           |   |
    |       |                                           |   |  Guest
    |       :                                           |   |
    |   +---------------+                               |   |
    |   | logical port 0|                               |   |
    +---+---------------+-------------------------------+ __|
            ^
            |
            :                                            __
    +---+---------------+------------------------------+   |
    |   | logical port 0|                              |   |
    |   +---------------+                              |   |
    |       ^                                          |   |
    |       |                                          |   |  Host
    |       :                                          |   |
    |   +--------------+                               |   |
    |   |   phy port   |  vSwitch                      |   |
    +---+--------------+------------ -------------- ---+ __|
               ^
               |
               :
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+

















Tahhan, et al.         Expires September 22, 2016              [Page 14]

Internet-Draft           Benchmarking vSwitches               March 2016


   VNF to virtual switch to physical port

                                                          __
    +---------------------------------------------------+   |
    |                                                   |   |
    |   +-------------------------------------------+   |   |
    |   |                 Application               |   |   |
    |   +-------------------------------------------+   |   |
    |                                          :        |   |
    |                                          |        |   |  Guest
    |                                          v        |   |
    |                               +---------------+   |   |
    |                               | logical port  |   |   |
    +-------------------------------+---------------+---+ __|
                                               :
                                               |
                                               v         __
    +------------------------------+---------------+---+   |
    |                              | logical port  |   |   |
    |                              +---------------+   |   |
    |                                          :       |   |
    |                                          |       |   |  Host
    |                                          v       |   |
    |                               +--------------+   |   |
    |                     vSwitch   |   phy port   |   |   |
    +-------------------------------+--------------+---+ __|
                                           :
                                           |
                                           v
    +--------------------------------------------------+
    |                                                  |
    |                traffic generator                 |
    |                                                  |
    +--------------------------------------------------+

















Tahhan, et al.         Expires September 22, 2016              [Page 15]

Internet-Draft           Benchmarking vSwitches               March 2016


   VNF to virtual switch to VNF

                                                      __
    +----------------------+  +----------------------+  |
    |   Guest 1            |  |   Guest 2            |  |
    |   +---------------+  |  |   +---------------+  |  |
    |   |  Application  |  |  |   |  Application  |  |  |
    |   +---------------+  |  |   +---------------+  |  |
    |              |       |  |       ^              |  |
    |              v       |  |       |              |  |  Guests
    |   +---------------+  |  |   +---------------+  |  |
    |   | logical ports |  |  |   | logical ports |  |  |
    |   |           0   |  |  |   |   0           |  |  |
    +---+---------------+--+  +---+---------------+--+__|
                    :                 ^
                    |                 |
                    v                 :               _
    +---+---------------+---------+---------------+--+ |
    |   |           1   |         |   1           |  | |
    |   | logical ports |         | logical ports |  | |
    |   +---------------+         +---------------+  | |
    |               |                 ^              | |  Host
    |               L-----------------+              | |
    |                                                | |
    |                    vSwitch                     | |
    +------------------------------------------------+_|

   A set of Deployment Scenario figures is available on the VSPERF Test
   Methodology Wiki page [TestTopo].

5.  3x3 Matrix Coverage

   This section organizes the many existing test specifications into the
   "3x3" matrix (introduced in [I-D.ietf-bmwg-virtual-net]).  Because
   the LTD specification ID names are quite long, this section is
   organized into lists for each occupied cell of the matrix (not all
   are occupied, also the matrix has grown to 3x4 to accommodate scale
   metrics when displaying the coverage of many metrics/benchmarks).
   The current version of the LTD specification is available [LTD].

   The tests listed below assess the activation of paths in the data
   plane, rather than the control plane.

   A complete list of tests with short summaries is available on the
   VSPERF "LTD Test Spec Overview" Wiki page [LTDoverV].






Tahhan, et al.         Expires September 22, 2016              [Page 16]

Internet-Draft           Benchmarking vSwitches               March 2016


5.1.  Speed of Activation

   o  Activation.RFC2889.AddressLearningRate

   o  PacketLatency.InitialPacketProcessingLatency

5.2.  Accuracy of Activation section

   o  CPDP.Coupling.Flow.Addition

5.3.  Reliability of Activation

   o  Throughput.RFC2544.SystemRecoveryTime

   o  Throughput.RFC2544.ResetTime

5.4.  Scale of Activation

   o  Activation.RFC2889.AddressCachingCapacity

5.5.  Speed of Operation

   o  Throughput.RFC2544.PacketLossRate

   o  CPU.RFC2544.0PacketLoss

   o  Throughput.RFC2544.PacketLossRateFrameModification

   o  Throughput.RFC2544.BackToBackFrames

   o  Throughput.RFC2889.MaxForwardingRate

   o  Throughput.RFC2889.ForwardPressure

   o  Throughput.RFC2889.BroadcastFrameForwarding

5.6.  Accuracy of Operation

   o  Throughput.RFC2889.ErrorFramesFiltering

   o  Throughput.RFC2544.Profile

5.7.  Reliability of Operation

   o  Throughput.RFC2889.Soak

   o  Throughput.RFC2889.SoakFrameModification




Tahhan, et al.         Expires September 22, 2016              [Page 17]

Internet-Draft           Benchmarking vSwitches               March 2016


   o  PacketDelayVariation.RFC3393.Soak

5.8.  Scalability of Operation

   o  Scalability.RFC2544.0PacketLoss

   o  MemoryBandwidth.RFC2544.0PacketLoss.Scalability

5.9.  Summary

|------------------------------------------------------------------------|
|               |             |            |               |             |
|               |   SPEED     |  ACCURACY  |  RELIABILITY  |    SCALE    |
|               |             |            |               |             |
|------------------------------------------------------------------------|
|               |             |            |               |             |
|  Activation   |      X      |     X      |       X       |      X      |
|               |             |            |               |             |
|------------------------------------------------------------------------|
|               |             |            |               |             |
|  Operation    |      X      |      X     |       X       |      X      |
|               |             |            |               |             |
|------------------------------------------------------------------------|
|               |             |            |               |             |
| De-activation |             |            |               |             |
|               |             |            |               |             |
|------------------------------------------------------------------------|

6.  Security Considerations

   Benchmarking activities as described in this memo are limited to
   technology characterization of a Device Under Test/System Under Test
   (DUT/SUT) using controlled stimuli in a laboratory environment, with
   dedicated address space and the constraints specified in the sections
   above.

   The benchmarking network topology will be an independent test setup
   and MUST NOT be connected to devices that may forward the test
   traffic into a production network, or misroute traffic to the test
   management network.

   Further, benchmarking is performed on a "black-box" basis, relying
   solely on measurements observable external to the DUT/SUT.

   Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
   benchmarking purposes.  Any implications for network security arising
   from the DUT/SUT SHOULD be identical in the lab and in production
   networks.



Tahhan, et al.         Expires September 22, 2016              [Page 18]

Internet-Draft           Benchmarking vSwitches               March 2016


7.  IANA Considerations

   No IANA Action is requested at this time.

8.  Acknowledgements

   The authors appreciate and acknowledge comments from Scott Bradner,
   Marius Georgescu, Ramki Krishnan, Doug Montgomery, Martin Klozik,
   Christian Trautman, and others for their reviews.

9.  References

9.1.  Normative References

   [NFV.PER001]
              "Network Function Virtualization: Performance and
              Portability Best Practices", Group Specification ETSI GS
              NFV-PER 001 V1.1.1 (2014-06), June 2014.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC2285]  Mandeville, R., "Benchmarking Terminology for LAN
              Switching Devices", RFC 2285, DOI 10.17487/RFC2285,
              February 1998, <http://www.rfc-editor.org/info/rfc2285>.

   [RFC2330]  Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
              "Framework for IP Performance Metrics", RFC 2330,
              DOI 10.17487/RFC2330, May 1998,
              <http://www.rfc-editor.org/info/rfc2330>.

   [RFC2544]  Bradner, S. and J. McQuaid, "Benchmarking Methodology for
              Network Interconnect Devices", RFC 2544,
              DOI 10.17487/RFC2544, March 1999,
              <http://www.rfc-editor.org/info/rfc2544>.

   [RFC2679]  Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
              Delay Metric for IPPM", RFC 2679, DOI 10.17487/RFC2679,
              September 1999, <http://www.rfc-editor.org/info/rfc2679>.

   [RFC2680]  Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
              Packet Loss Metric for IPPM", RFC 2680,
              DOI 10.17487/RFC2680, September 1999,
              <http://www.rfc-editor.org/info/rfc2680>.





Tahhan, et al.         Expires September 22, 2016              [Page 19]

Internet-Draft           Benchmarking vSwitches               March 2016


   [RFC2681]  Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-trip
              Delay Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681,
              September 1999, <http://www.rfc-editor.org/info/rfc2681>.

   [RFC2889]  Mandeville, R. and J. Perser, "Benchmarking Methodology
              for LAN Switching Devices", RFC 2889,
              DOI 10.17487/RFC2889, August 2000,
              <http://www.rfc-editor.org/info/rfc2889>.

   [RFC3393]  Demichelis, C. and P. Chimento, "IP Packet Delay Variation
              Metric for IP Performance Metrics (IPPM)", RFC 3393,
              DOI 10.17487/RFC3393, November 2002,
              <http://www.rfc-editor.org/info/rfc3393>.

   [RFC3432]  Raisanen, V., Grotefeld, G., and A. Morton, "Network
              performance measurement with periodic streams", RFC 3432,
              DOI 10.17487/RFC3432, November 2002,
              <http://www.rfc-editor.org/info/rfc3432>.

   [RFC3918]  Stopp, D. and B. Hickman, "Methodology for IP Multicast
              Benchmarking", RFC 3918, DOI 10.17487/RFC3918, October
              2004, <http://www.rfc-editor.org/info/rfc3918>.

   [RFC4689]  Poretsky, S., Perser, J., Erramilli, S., and S. Khurana,
              "Terminology for Benchmarking Network-layer Traffic
              Control Mechanisms", RFC 4689, DOI 10.17487/RFC4689,
              October 2006, <http://www.rfc-editor.org/info/rfc4689>.

   [RFC4737]  Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
              S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
              DOI 10.17487/RFC4737, November 2006,
              <http://www.rfc-editor.org/info/rfc4737>.

   [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <http://www.rfc-editor.org/info/rfc5357>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <http://www.rfc-editor.org/info/rfc5905>.

   [RFC6201]  Asati, R., Pignataro, C., Calabria, F., and C. Olvera,
              "Device Reset Characterization", RFC 6201,
              DOI 10.17487/RFC6201, March 2011,
              <http://www.rfc-editor.org/info/rfc6201>.




Tahhan, et al.         Expires September 22, 2016              [Page 20]

Internet-Draft           Benchmarking vSwitches               March 2016


9.2.  Informative References

   [BrahRel]  "Brahmaputra, Second OPNFV Release https://www.opnfv.org/
              brahmaputra".

   [I-D.huang-bmwg-virtual-network-performance]
              Huang, L., Rong, G., Mandeville, B., and B. Hickman,
              "Benchmarking Methodology for Virtualization Network
              Performance", draft-huang-bmwg-virtual-network-
              performance-01 (work in progress), April 2015.

   [I-D.ietf-bmwg-virtual-net]
              Morton, A., "Considerations for Benchmarking Virtual
              Network Functions and Their Infrastructure", draft-ietf-
              bmwg-virtual-net-02 (work in progress), March 2016.

   [IFA003]   "https://docbox.etsi.org/ISG/NFV/Open/Drafts/
              IFA003_Acceleration_-_vSwitch_Spec/".

   [LTD]      "LTD Test Specification
              http://artifacts.opnfv.org/vswitchperf/docs/requirements/
              index.html".

   [LTDoverV]
              "LTD Test Spec Overview https://wiki.opnfv.org/wiki/
              vswitchperf_test_spec_review".

   [RFC1242]  Bradner, S., "Benchmarking Terminology for Network
              Interconnection Devices", RFC 1242, DOI 10.17487/RFC1242,
              July 1991, <http://www.rfc-editor.org/info/rfc1242>.

   [RFC5481]  Morton, A. and B. Claise, "Packet Delay Variation
              Applicability Statement", RFC 5481, DOI 10.17487/RFC5481,
              March 2009, <http://www.rfc-editor.org/info/rfc5481>.

   [RFC6049]  Morton, A. and E. Stephan, "Spatial Composition of
              Metrics", RFC 6049, DOI 10.17487/RFC6049, January 2011,
              <http://www.rfc-editor.org/info/rfc6049>.

   [RFC6248]  Morton, A., "RFC 4148 and the IP Performance Metrics
              (IPPM) Registry of Metrics Are Obsolete", RFC 6248,
              DOI 10.17487/RFC6248, April 2011,
              <http://www.rfc-editor.org/info/rfc6248>.

   [RFC6390]  Clark, A. and B. Claise, "Guidelines for Considering New
              Performance Metric Development", BCP 170, RFC 6390,
              DOI 10.17487/RFC6390, October 2011,
              <http://www.rfc-editor.org/info/rfc6390>.



Tahhan, et al.         Expires September 22, 2016              [Page 21]

Internet-Draft           Benchmarking vSwitches               March 2016


   [TestTopo]
              "Test Topologies https://wiki.opnfv.org/vsperf/
              test_methodology".

Authors' Addresses

   Maryam Tahhan
   Intel

   Email: maryam.tahhan@intel.com


   Billy O'Mahony
   Intel

   Email: billy.o.mahony@intel.com


   Al Morton
   AT&T Labs
   200 Laurel Avenue South
   Middletown,, NJ  07748
   USA

   Phone: +1 732 420 1571
   Fax:   +1 732 368 1192
   Email: acmorton@att.com
   URI:   http://home.comcast.net/~acmacm/























Tahhan, et al.         Expires September 22, 2016              [Page 22]