aboutsummaryrefslogtreecommitdiffstats
path: root/framework/src/ant/apache-ant-1.9.6/src/main/org/apache/tools/bzip2/BlockSort.java
blob: eb9066ee9830f7a02c1c5ca0ed1d9bce8cd0a6b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.apache.tools.bzip2;

import java.util.BitSet;

/**
 * Encapsulates the Burrows-Wheeler sorting algorithm needed by {@link
 * CBZip2OutputStream}.
 *
 * <p>This class is based on a Java port of Julian Seward's
 * blocksort.c in his libbzip2</p>
 *
 * <p>The Burrows-Wheeler transform is a reversible transform of the
 * original data that is supposed to group similar bytes close to
 * each other.  The idea is to sort all permutations of the input and
 * only keep the last byte of each permutation.  E.g. for "Commons
 * Compress" you'd get:</p>
 *
 * <pre>
 *  CompressCommons
 * Commons Compress
 * CompressCommons 
 * essCommons Compr
 * mmons CompressCo
 * mons CompressCom
 * mpressCommons Co
 * ns CompressCommo
 * ommons CompressC
 * ompressCommons C
 * ons CompressComm
 * pressCommons Com
 * ressCommons Comp
 * s CompressCommon
 * sCommons Compres
 * ssCommons Compre
 * </pre>
 *
 * <p>Which results in a new text "ss romooCCmmpnse", in adition the
 * index of the first line that contained the original text is kept -
 * in this case it is 1.  The idea is that in a long English text all
 * permutations that start with "he" are likely suffixes of a "the" and
 * thus they end in "t" leading to a larger block of "t"s that can
 * better be compressed by the subsequent Move-to-Front, run-length
 * und Huffman encoding steps.</p>
 *
 * <p>For more information see for example:</p>
 * <ul>
 *   <li><a
 *   href="http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf">Burrows,
 *   M. and Wheeler, D.: A Block-sorting Lossless Data Compression
 *   Algorithm</a></li>
 *   <li><a href="http://webglimpse.net/pubs/suffix.pdf">Manber, U. and
 *   Myers, G.: Suffix arrays: A new method for on-line string
 *   searches</a></li>
 *   <li><a
 *   href="http://www.cs.tufts.edu/~nr/comp150fp/archive/bob-sedgewick/fast-strings.pdf">Bentley,
 *   J.L. and Sedgewick, R.: Fast Algorithms for Sorting and Searching
 *   Strings</a></li>
 * </ul>
 *
 * @NotThreadSafe
 */
class BlockSort {

    /*
     * Some of the constructs used in the C code cannot be ported
     * literally to Java - for example macros, unsigned types.  Some
     * code has been hand-tuned to improve performance.  In order to
     * avoid memory pressure some structures are reused for several
     * blocks and some memory is even shared between sorting and the
     * MTF stage even though either algorithm uses it for its own
     * purpose.
     *
     * Comments preserved from the actual C code are prefixed with
     * "LBZ2:".
     */

    /*
     * 2012-05-20 Stefan Bodewig:
     *
     * This class seems to mix several revisions of libbzip2's code.
     * The mainSort function and those used by it look closer to the
     * 0.9.5 version but show some variations introduced later.  At
     * the same time the logic of Compress 1.4 to randomize the block
     * on bad input has been dropped after libbzip2 0.9.0 and replaced
     * by a fallback sorting algorithm.
     *
     * I've added the fallbackSort function of 1.0.6 and tried to
     * integrate it with the existing code without touching too much.
     * I've also removed the now unused randomization code.
     */

    /*
     * LBZ2: If you are ever unlucky/improbable enough to get a stack
     * overflow whilst sorting, increase the following constant and
     * try again. In practice I have never seen the stack go above 27
     * elems, so the following limit seems very generous.
     */
    private static final int QSORT_STACK_SIZE = 1000;

    private static final int FALLBACK_QSORT_STACK_SIZE = 100;

    private static final int STACK_SIZE =
        QSORT_STACK_SIZE < FALLBACK_QSORT_STACK_SIZE
        ? FALLBACK_QSORT_STACK_SIZE : QSORT_STACK_SIZE;

    /*
     * Used when sorting. If too many long comparisons happen, we stop sorting,
     * and use fallbackSort instead.
     */
    private int workDone;
    private int workLimit;
    private boolean firstAttempt;

    private final int[] stack_ll = new int[STACK_SIZE]; // 4000 byte
    private final int[] stack_hh = new int[STACK_SIZE]; // 4000 byte
    private final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte

    private final int[] mainSort_runningOrder = new int[256]; // 1024 byte
    private final int[] mainSort_copy = new int[256]; // 1024 byte
    private final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte

    private final int[] ftab = new int[65537]; // 262148 byte

    /**
     * Array instance identical to Data's sfmap, both are used only
     * temporarily and indepently, so we do not need to allocate
     * additional memory.
     */
    private final char[] quadrant;

    BlockSort(final CBZip2OutputStream.Data data) {
        this.quadrant = data.sfmap;
    }

    void blockSort(final CBZip2OutputStream.Data data, final int last) {
        this.workLimit = WORK_FACTOR * last;
        this.workDone = 0;
        this.firstAttempt = true;

        if (last + 1 < 10000) {
            fallbackSort(data, last);
        } else {
            mainSort(data, last);

            if (this.firstAttempt && (this.workDone > this.workLimit)) {
                fallbackSort(data, last);
            }
        }

        final int[] fmap = data.fmap;
        data.origPtr = -1;
        for (int i = 0; i <= last; i++) {
            if (fmap[i] == 0) {
                data.origPtr = i;
                break;
            }
        }

        // assert (data.origPtr != -1) : data.origPtr;
    }

    /**
     * Adapt fallbackSort to the expected interface of the rest of the
     * code, in particular deal with the fact that block starts at
     * offset 1 (in libbzip2 1.0.6 it starts at 0).
     */
    final void fallbackSort(final CBZip2OutputStream.Data data,
                            final int last) {
        data.block[0] = data.block[last + 1];
        fallbackSort(data.fmap, data.block, last + 1);
        for (int i = 0; i < last + 1; i++) {
            --data.fmap[i];
        }
        for (int i = 0; i < last + 1; i++) {
            if (data.fmap[i] == -1) {
                data.fmap[i] = last;
                break;
            }
        }
    }

/*---------------------------------------------*/

/*---------------------------------------------*/
/*--- LBZ2: Fallback O(N log(N)^2) sorting        ---*/
/*--- algorithm, for repetitive blocks      ---*/
/*---------------------------------------------*/

    /*
     * This is the fallback sorting algorithm libbzip2 1.0.6 uses for
     * repetitive or very short inputs.
     *
     * The idea is inspired by Manber-Myers string suffix sorting
     * algorithm.  First a bucket sort places each permutation of the
     * block into a bucket based on its first byte.  Permutations are
     * represented by pointers to their first character kept in
     * (partially) sorted order inside the array ftab.
     *
     * The next step visits all buckets in order and performs a
     * quicksort on all permutations of the bucket based on the index
     * of the bucket the second byte of the permutation belongs to,
     * thereby forming new buckets.  When arrived here the
     * permutations are sorted up to the second character and we have
     * buckets of permutations that are identical up to two
     * characters.
     *
     * Repeat the step of quicksorting each bucket, now based on the
     * bucket holding the sequence of the third and forth character
     * leading to four byte buckets.  Repeat this doubling of bucket
     * sizes until all buckets only contain single permutations or the
     * bucket size exceeds the block size.
     *
     * I.e.
     *
     * "abraba" form three buckets for the chars "a", "b", and "r" in
     * the first step with
     *
     * fmap = { 'a:' 5, 3, 0, 'b:' 4, 1, 'r', 2 }
     *
     * when looking at the bucket of "a"s the second characters are in
     * the buckets that start with fmap-index 0 (rolled over), 3 and 3
     * respectively, forming two new buckets "aa" and "ab", so we get
     *
     * fmap = { 'aa:' 5, 'ab:' 3, 0, 'ba:' 4, 'br': 1, 'ra:' 2 }
     *
     * since the last bucket only contained a single item it didn't
     * have to be sorted at all.
     *
     * There now is just one bucket with more than one permutation
     * that remains to be sorted.  For the permutation that starts
     * with index 3 the third and forth char are in bucket 'aa' at
     * index 0 and for the one starting at block index 0 they are in
     * bucket 'ra' with sort index 5.  The fully sorted order then becomes.
     *
     * fmap = { 5, 3, 0, 4, 1, 2 }
     * 
     */

    /**
     * @param fmap points to the index of the starting point of a
     *        permutation inside the block of data in the current
     *        partially sorted order
     * @param eclass points from the index of a character inside the
     *        block to the first index in fmap that contains the
     *        bucket of its suffix that is sorted in this step.
     * @param lo lower boundary of the fmap-interval to be sorted 
     * @param hi upper boundary of the fmap-interval to be sorted 
     */
    private void fallbackSimpleSort(int[] fmap, 
                                    int[] eclass, 
                                    int lo, 
                                    int hi) {
        if (lo == hi) {
            return;
        }

        int j;
        if (hi - lo > 3) {
            for (int i = hi - 4; i >= lo; i--) {
                int tmp = fmap[i];
                int ec_tmp = eclass[tmp];
                for (j = i + 4; j <= hi && ec_tmp > eclass[fmap[j]];
                     j += 4) {
                    fmap[j - 4] = fmap[j];
                }
                fmap[j - 4] = tmp;
            }
        }

        for (int i = hi - 1; i >= lo; i--) {
            int tmp = fmap[i];
            int ec_tmp = eclass[tmp];
            for (j = i + 1; j <= hi && ec_tmp > eclass[fmap[j]]; j++) {
                fmap[j - 1] = fmap[j];
            }
            fmap[j-1] = tmp;
        }
    }

    private static final int FALLBACK_QSORT_SMALL_THRESH = 10;

    /**
     * swaps two values in fmap
     */
    private void fswap(int[] fmap, int zz1, int zz2) {
        int zztmp = fmap[zz1];
        fmap[zz1] = fmap[zz2];
        fmap[zz2] = zztmp;
    }

    /**
     * swaps two intervals starting at yyp1 and yyp2 of length yyn inside fmap.
     */
    private void fvswap(int[] fmap, int yyp1, int yyp2, int yyn) {
        while (yyn > 0) {
            fswap(fmap, yyp1, yyp2);
            yyp1++; yyp2++; yyn--;
        }
    }

    private int fmin(int a, int b) {
        return a < b ? a : b;
    }

    private void fpush(int sp, int lz, int hz) {
        stack_ll[sp] = lz;
        stack_hh[sp] = hz;
    }

    private int[] fpop(int sp) {
        return new int[] { stack_ll[sp], stack_hh[sp] };
    }

    /**
     * @param fmap points to the index of the starting point of a
     *        permutation inside the block of data in the current
     *        partially sorted order
     * @param eclass points from the index of a character inside the
     *        block to the first index in fmap that contains the
     *        bucket of its suffix that is sorted in this step.
     * @param loSt lower boundary of the fmap-interval to be sorted 
     * @param hiSt upper boundary of the fmap-interval to be sorted 
     */
    private void fallbackQSort3(int[] fmap, 
                                int[] eclass, 
                                int loSt, 
                                int hiSt) {
        int lo, unLo, ltLo, hi, unHi, gtHi, n;

        long r = 0;
        int sp = 0;
        fpush(sp++, loSt, hiSt);

        while (sp > 0) {
            int[] s = fpop(--sp);
            lo = s[0]; hi = s[1];

            if (hi - lo < FALLBACK_QSORT_SMALL_THRESH) {
                fallbackSimpleSort(fmap, eclass, lo, hi);
                continue;
            }

            /* LBZ2: Random partitioning.  Median of 3 sometimes fails to
               avoid bad cases.  Median of 9 seems to help but 
               looks rather expensive.  This too seems to work but
               is cheaper.  Guidance for the magic constants 
               7621 and 32768 is taken from Sedgewick's algorithms
               book, chapter 35.
            */
            r = ((r * 7621) + 1) % 32768;
            long r3 = r % 3, med;
            if (r3 == 0) {
                med = eclass[fmap[lo]]; 
            } else if (r3 == 1) {
                med = eclass[fmap[(lo + hi) >>> 1]];
            } else {
                med = eclass[fmap[hi]];
            }

            unLo = ltLo = lo;
            unHi = gtHi = hi;

            // looks like the ternary partition attributed to Wegner
            // in the cited Sedgewick paper
            while (true) {
                while (true) {
                    if (unLo > unHi) {
                        break;
                    }
                    n = eclass[fmap[unLo]] - (int) med;
                    if (n == 0) { 
                        fswap(fmap, unLo, ltLo); 
                        ltLo++; unLo++; 
                        continue; 
                    }
                    if (n > 0) {
                        break;
                    }
                    unLo++;
                }
                while (true) {
                    if (unLo > unHi) {
                        break;
                    }
                    n = eclass[fmap[unHi]] - (int) med;
                    if (n == 0) {
                        fswap(fmap, unHi, gtHi); 
                        gtHi--; unHi--; 
                        continue; 
                    }
                    if (n < 0) {
                        break;
                    }
                    unHi--;
                }
                if (unLo > unHi) {
                    break;
                }
                fswap(fmap, unLo, unHi); unLo++; unHi--;
            }

            if (gtHi < ltLo) {
                continue;
            }

            n = fmin(ltLo - lo, unLo - ltLo);
            fvswap(fmap, lo, unLo - n, n);
            int m = fmin(hi - gtHi, gtHi - unHi);
            fvswap(fmap, unHi + 1, hi - m + 1, m);

            n = lo + unLo - ltLo - 1;
            m = hi - (gtHi - unHi) + 1;

            if (n - lo > hi - m) {
                fpush(sp++, lo, n);
                fpush(sp++, m, hi);
            } else {
                fpush(sp++, m, hi);
                fpush(sp++, lo, n);
            }
        }
    }


/*---------------------------------------------*/

    private int[] eclass;

    private int[] getEclass() {
        return eclass == null
            ? (eclass = new int[quadrant.length / 2]) : eclass;
    }

    /*
     * The C code uses an array of ints (each int holding 32 flags) to
     * represents the bucket-start flags (bhtab).  It also contains
     * optimizations to skip over 32 consecutively set or
     * consecutively unset bits on word boundaries at once.  For now
     * I've chosen to use the simpler but potentially slower code
     * using BitSet - also in the hope that using the BitSet#nextXXX
     * methods may be fast enough.
     */

    /**
     * @param fmap points to the index of the starting point of a
     *        permutation inside the block of data in the current
     *        partially sorted order
     * @param block the original data
     * @param nblock size of the block
     * @param off offset of first byte to sort in block
     */
    final void fallbackSort(int[] fmap, byte[] block, int nblock) {
        final int[] ftab = new int[257];
        int H, i, j, k, l, r, cc, cc1;
        int nNotDone;
        int nBhtab;
        final int[] eclass = getEclass();

        for (i = 0; i < nblock; i++) {
            eclass[i] = 0;
        }
        /*--
          LBZ2: Initial 1-char radix sort to generate
          initial fmap and initial BH bits.
          --*/
        for (i = 0; i < nblock; i++) {
            ftab[block[i] & 0xff]++;
        }
        for (i = 1; i < 257;    i++) {
            ftab[i] += ftab[i - 1];
        }

        for (i = 0; i < nblock; i++) {
            j = block[i] & 0xff;
            k = ftab[j] - 1;
            ftab[j] = k;
            fmap[k] = i;
        }

        nBhtab = 64 + nblock;
        BitSet bhtab = new BitSet(nBhtab);
        for (i = 0; i < 256; i++) {
            bhtab.set(ftab[i]);
        }

        /*--
          LBZ2: Inductively refine the buckets.  Kind-of an
          "exponential radix sort" (!), inspired by the
          Manber-Myers suffix array construction algorithm.
          --*/

        /*-- LBZ2: set sentinel bits for block-end detection --*/
        for (i = 0; i < 32; i++) { 
            bhtab.set(nblock + 2 * i);
            bhtab.clear(nblock + 2 * i + 1);
        }

        /*-- LBZ2: the log(N) loop --*/
        H = 1;
        while (true) {

            j = 0;
            for (i = 0; i < nblock; i++) {
                if (bhtab.get(i)) {
                    j = i;
                }
                k = fmap[i] - H;
                if (k < 0) {
                    k += nblock;
                }
                eclass[k] = j;
            }

            nNotDone = 0;
            r = -1;
            while (true) {

                /*-- LBZ2: find the next non-singleton bucket --*/
                k = r + 1;
                k = bhtab.nextClearBit(k);
                l = k - 1;
                if (l >= nblock) {
                    break;
                }
                k = bhtab.nextSetBit(k + 1);
                r = k - 1;
                if (r >= nblock) {
                    break;
                }

                /*-- LBZ2: now [l, r] bracket current bucket --*/
                if (r > l) {
                    nNotDone += (r - l + 1);
                    fallbackQSort3(fmap, eclass, l, r);

                    /*-- LBZ2: scan bucket and generate header bits-- */
                    cc = -1;
                    for (i = l; i <= r; i++) {
                        cc1 = eclass[fmap[i]];
                        if (cc != cc1) {
                            bhtab.set(i);
                            cc = cc1;
                        }
                    }
                }
            }

            H *= 2;
            if (H > nblock || nNotDone == 0) {
                break;
            }
        }
    }

/*---------------------------------------------*/

    /*
     * LBZ2: Knuth's increments seem to work better than Incerpi-Sedgewick here.
     * Possibly because the number of elems to sort is usually small, typically
     * &lt;= 20.
     */
    private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280,
                                        9841, 29524, 88573, 265720, 797161,
                                        2391484 };

    /**
     * This is the most hammered method of this class.
     *
     * <p>
     * This is the version using unrolled loops. Normally I never use such ones
     * in Java code. The unrolling has shown a noticeable performance improvement
     * on JRE 1.4.2 (Linux i586 / HotSpot Client). Of course it depends on the
     * JIT compiler of the vm.
     * </p>
     */
    private boolean mainSimpleSort(final CBZip2OutputStream.Data dataShadow,
                                   final int lo, final int hi, final int d,
                                   final int lastShadow) {
        final int bigN = hi - lo + 1;
        if (bigN < 2) {
            return this.firstAttempt && (this.workDone > this.workLimit);
        }

        int hp = 0;
        while (INCS[hp] < bigN) {
            hp++;
        }

        final int[] fmap = dataShadow.fmap;
        final char[] quadrant = this.quadrant;
        final byte[] block = dataShadow.block;
        final int lastPlus1 = lastShadow + 1;
        final boolean firstAttemptShadow = this.firstAttempt;
        final int workLimitShadow = this.workLimit;
        int workDoneShadow = this.workDone;

        // Following block contains unrolled code which could be shortened by
        // coding it in additional loops.

        HP: while (--hp >= 0) {
            final int h = INCS[hp];
            final int mj = lo + h - 1;

            for (int i = lo + h; i <= hi;) {
                // copy
                for (int k = 3; (i <= hi) && (--k >= 0); i++) {
                    final int v = fmap[i];
                    final int vd = v + d;
                    int j = i;

                    // for (int a;
                    // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd,
                    // block, quadrant, lastShadow);
                    // j -= h) {
                    // fmap[j] = a;
                    // }
                    //
                    // unrolled version:

                    // start inline mainGTU
                    boolean onceRunned = false;
                    int a = 0;

                    HAMMER: while (true) {
                        if (onceRunned) {
                            fmap[j] = a;
                            if ((j -= h) <= mj) {
                                break HAMMER;
                            }
                        } else {
                            onceRunned = true;
                        }

                        a = fmap[j - h];
                        int i1 = a + d;
                        int i2 = vd;

                        // following could be done in a loop, but
                        // unrolled it for performance:
                        if (block[i1 + 1] == block[i2 + 1]) {
                            if (block[i1 + 2] == block[i2 + 2]) {
                                if (block[i1 + 3] == block[i2 + 3]) {
                                    if (block[i1 + 4] == block[i2 + 4]) {
                                        if (block[i1 + 5] == block[i2 + 5]) {
                                            if (block[(i1 += 6)] == block[(i2 += 6)]) {
                                                int x = lastShadow;
                                                X: while (x > 0) {
                                                    x -= 4;

                                                    if (block[i1 + 1] == block[i2 + 1]) {
                                                        if (quadrant[i1] == quadrant[i2]) {
                                                            if (block[i1 + 2] == block[i2 + 2]) {
                                                                if (quadrant[i1 + 1] == quadrant[i2 + 1]) {
                                                                    if (block[i1 + 3] == block[i2 + 3]) {
                                                                        if (quadrant[i1 + 2] == quadrant[i2 + 2]) {
                                                                            if (block[i1 + 4] == block[i2 + 4]) {
                                                                                if (quadrant[i1 + 3] == quadrant[i2 + 3]) {
                                                                                    if ((i1 += 4) >= lastPlus1) {
                                                                                        i1 -= lastPlus1;
                                                                                    }
                                                                                    if ((i2 += 4) >= lastPlus1) {
                                                                                        i2 -= lastPlus1;
                                                                                    }
                                                                                    workDoneShadow++;
                                                                                    continue X;
                                                                                } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) {
                                                                                    continue HAMMER;
                                                                                } else {
                                                                                    break HAMMER;
                                                                                }
                                                                            } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
                                                                                continue HAMMER;
                                                                            } else {
                                                                                break HAMMER;
                                                                            }
                                                                        } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) {
                                                                            continue HAMMER;
                                                                        } else {
                                                                            break HAMMER;
                                                                        }
                                                                    } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
                                                                        continue HAMMER;
                                                                    } else {
                                                                        break HAMMER;
                                                                    }
                                                                } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) {
                                                                    continue HAMMER;
                                                                } else {
                                                                    break HAMMER;
                                                                }
                                                            } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
                                                                continue HAMMER;
                                                            } else {
                                                                break HAMMER;
                                                            }
                                                        } else if ((quadrant[i1] > quadrant[i2])) {
                                                            continue HAMMER;
                                                        } else {
                                                            break HAMMER;
                                                        }
                                                    } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
                                                        continue HAMMER;
                                                    } else {
                                                        break HAMMER;
                                                    }

                                                }
                                                break HAMMER;
                                            } // while x > 0
                                            else {
                                                if ((block[i1] & 0xff) > (block[i2] & 0xff)) {
                                                    continue HAMMER;
                                                } else {
                                                    break HAMMER;
                                                }
                                            }
                                        } else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) {
                                            continue HAMMER;
                                        } else {
                                            break HAMMER;
                                        }
                                    } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) {
                                        continue HAMMER;
                                    } else {
                                        break HAMMER;
                                    }
                                } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) {
                                    continue HAMMER;
                                } else {
                                    break HAMMER;
                                }
                            } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) {
                                continue HAMMER;
                            } else {
                                break HAMMER;
                            }
                        } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) {
                            continue HAMMER;
                        } else {
                            break HAMMER;
                        }

                    } // HAMMER
                    // end inline mainGTU

                    fmap[j] = v;
                }

                if (firstAttemptShadow && (i <= hi)
                    && (workDoneShadow > workLimitShadow)) {
                    break HP;
                }
            }
        }

        this.workDone = workDoneShadow;
        return firstAttemptShadow && (workDoneShadow > workLimitShadow);
    }

/*--
   LBZ2: The following is an implementation of
   an elegant 3-way quicksort for strings,
   described in a paper "Fast Algorithms for
   Sorting and Searching Strings", by Robert
   Sedgewick and Jon L. Bentley.
--*/

    private static void vswap(int[] fmap, int p1, int p2, int n) {
        n += p1;
        while (p1 < n) {
            int t = fmap[p1];
            fmap[p1++] = fmap[p2];
            fmap[p2++] = t;
        }
    }

    private static byte med3(byte a, byte b, byte c) {
        return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c
                                                        : a);
    }

    private static final int SMALL_THRESH = 20;
    private static final int DEPTH_THRESH = 10;
    private static final int WORK_FACTOR = 30;

    /**
     * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2
     */
    private void mainQSort3(final CBZip2OutputStream.Data dataShadow,
                            final int loSt, final int hiSt, final int dSt,
                            final int last) {
        final int[] stack_ll = this.stack_ll;
        final int[] stack_hh = this.stack_hh;
        final int[] stack_dd = this.stack_dd;
        final int[] fmap = dataShadow.fmap;
        final byte[] block = dataShadow.block;

        stack_ll[0] = loSt;
        stack_hh[0] = hiSt;
        stack_dd[0] = dSt;

        for (int sp = 1; --sp >= 0;) {
            final int lo = stack_ll[sp];
            final int hi = stack_hh[sp];
            final int d = stack_dd[sp];

            if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) {
                if (mainSimpleSort(dataShadow, lo, hi, d, last)) {
                    return;
                }
            } else {
                final int d1 = d + 1;
                final int med = med3(block[fmap[lo] + d1],
                                     block[fmap[hi] + d1], block[fmap[(lo + hi) >>> 1] + d1]) & 0xff;

                int unLo = lo;
                int unHi = hi;
                int ltLo = lo;
                int gtHi = hi;

                while (true) {
                    while (unLo <= unHi) {
                        final int n = (block[fmap[unLo] + d1] & 0xff)
                            - med;
                        if (n == 0) {
                            final int temp = fmap[unLo];
                            fmap[unLo++] = fmap[ltLo];
                            fmap[ltLo++] = temp;
                        } else if (n < 0) {
                            unLo++;
                        } else {
                            break;
                        }
                    }

                    while (unLo <= unHi) {
                        final int n = (block[fmap[unHi] + d1] & 0xff)
                            - med;
                        if (n == 0) {
                            final int temp = fmap[unHi];
                            fmap[unHi--] = fmap[gtHi];
                            fmap[gtHi--] = temp;
                        } else if (n > 0) {
                            unHi--;
                        } else {
                            break;
                        }
                    }

                    if (unLo <= unHi) {
                        final int temp = fmap[unLo];
                        fmap[unLo++] = fmap[unHi];
                        fmap[unHi--] = temp;
                    } else {
                        break;
                    }
                }

                if (gtHi < ltLo) {
                    stack_ll[sp] = lo;
                    stack_hh[sp] = hi;
                    stack_dd[sp] = d1;
                    sp++;
                } else {
                    int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo)
                        : (unLo - ltLo);
                    vswap(fmap, lo, unLo - n, n);
                    int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi)
                        : (gtHi - unHi);
                    vswap(fmap, unLo, hi - m + 1, m);

                    n = lo + unLo - ltLo - 1;
                    m = hi - (gtHi - unHi) + 1;

                    stack_ll[sp] = lo;
                    stack_hh[sp] = n;
                    stack_dd[sp] = d;
                    sp++;

                    stack_ll[sp] = n + 1;
                    stack_hh[sp] = m - 1;
                    stack_dd[sp] = d1;
                    sp++;

                    stack_ll[sp] = m;
                    stack_hh[sp] = hi;
                    stack_dd[sp] = d;
                    sp++;
                }
            }
        }
    }

    private static final int SETMASK = (1 << 21);
    private static final int CLEARMASK = (~SETMASK);

    final void mainSort(final CBZip2OutputStream.Data dataShadow,
                        final int lastShadow) {
        final int[] runningOrder = this.mainSort_runningOrder;
        final int[] copy = this.mainSort_copy;
        final boolean[] bigDone = this.mainSort_bigDone;
        final int[] ftab = this.ftab;
        final byte[] block = dataShadow.block;
        final int[] fmap = dataShadow.fmap;
        final char[] quadrant = this.quadrant;
        final int workLimitShadow = this.workLimit;
        final boolean firstAttemptShadow = this.firstAttempt;

        // LBZ2: Set up the 2-byte frequency table
        for (int i = 65537; --i >= 0;) {
            ftab[i] = 0;
        }

        /*
         * In the various block-sized structures, live data runs from 0 to
         * last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area
         * for block.
         */
        for (int i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++) {
            block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1];
        }
        for (int i = lastShadow + BZip2Constants.NUM_OVERSHOOT_BYTES +1; --i >= 0;) {
            quadrant[i] = 0;
        }
        block[0] = block[lastShadow + 1];

        // LBZ2: Complete the initial radix sort:

        int c1 = block[0] & 0xff;
        for (int i = 0; i <= lastShadow; i++) {
            final int c2 = block[i + 1] & 0xff;
            ftab[(c1 << 8) + c2]++;
            c1 = c2;
        }

        for (int i = 1; i <= 65536; i++) {
            ftab[i] += ftab[i - 1];
        }

        c1 = block[1] & 0xff;
        for (int i = 0; i < lastShadow; i++) {
            final int c2 = block[i + 2] & 0xff;
            fmap[--ftab[(c1 << 8) + c2]] = i;
            c1 = c2;
        }

        fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow;

        /*
         * LBZ2: Now ftab contains the first loc of every small bucket. Calculate the
         * running order, from smallest to largest big bucket.
         */
        for (int i = 256; --i >= 0;) {
            bigDone[i] = false;
            runningOrder[i] = i;
        }

        for (int h = 364; h != 1;) {
            h /= 3;
            for (int i = h; i <= 255; i++) {
                final int vv = runningOrder[i];
                final int a = ftab[(vv + 1) << 8] - ftab[vv << 8];
                final int b = h - 1;
                int j = i;
                for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j
                                                                                                                - h]) {
                    runningOrder[j] = ro;
                    j -= h;
                    if (j <= b) {
                        break;
                    }
                }
                runningOrder[j] = vv;
            }
        }

        /*
         * LBZ2: The main sorting loop.
         */
        for (int i = 0; i <= 255; i++) {
            /*
             * LBZ2: Process big buckets, starting with the least full.
             */
            final int ss = runningOrder[i];

            // Step 1:
            /*
             * LBZ2: Complete the big bucket [ss] by quicksorting any unsorted small
             * buckets [ss, j]. Hopefully previous pointer-scanning phases have
             * already completed many of the small buckets [ss, j], so we don't
             * have to sort them at all.
             */
            for (int j = 0; j <= 255; j++) {
                final int sb = (ss << 8) + j;
                final int ftab_sb = ftab[sb];
                if ((ftab_sb & SETMASK) != SETMASK) {
                    final int lo = ftab_sb & CLEARMASK;
                    final int hi = (ftab[sb + 1] & CLEARMASK) - 1;
                    if (hi > lo) {
                        mainQSort3(dataShadow, lo, hi, 2, lastShadow);
                        if (firstAttemptShadow
                            && (this.workDone > workLimitShadow)) {
                            return;
                        }
                    }
                    ftab[sb] = ftab_sb | SETMASK;
                }
            }

            // Step 2:
            // LBZ2: Now scan this big bucket so as to synthesise the
            // sorted order for small buckets [t, ss] for all t != ss.

            for (int j = 0; j <= 255; j++) {
                copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
            }

            for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) {
                final int fmap_j = fmap[j];
                c1 = block[fmap_j] & 0xff;
                if (!bigDone[c1]) {
                    fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1);
                    copy[c1]++;
                }
            }

            for (int j = 256; --j >= 0;) {
                ftab[(j << 8) + ss] |= SETMASK;
            }

            // Step 3:
            /*
             * LBZ2: The ss big bucket is now done. Record this fact, and update the
             * quadrant descriptors. Remember to update quadrants in the
             * overshoot area too, if necessary. The "if (i < 255)" test merely
             * skips this updating for the last bucket processed, since updating
             * for the last bucket is pointless.
             */
            bigDone[ss] = true;

            if (i < 255) {
                final int bbStart = ftab[ss << 8] & CLEARMASK;
                final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart;
                int shifts = 0;

                while ((bbSize >> shifts) > 65534) {
                    shifts++;
                }

                for (int j = 0; j < bbSize; j++) {
                    final int a2update = fmap[bbStart + j];
                    final char qVal = (char) (j >> shifts);
                    quadrant[a2update] = qVal;
                    if (a2update < BZip2Constants.NUM_OVERSHOOT_BYTES) {
                        quadrant[a2update + lastShadow + 1] = qVal;
                    }
                }
            }

        }
    }

}