blob: ad0c8b7b486ff6d7f6375d8833a9732adb2d445b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#!/usr/bin/env python
# Copyright 2021 Orange
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#
"""Define classes required to run any Behave test suites."""
from __future__ import division
import json
import logging
import os
from xtesting.core.behaveframework import BehaveFramework
__author__ = "François-Régis Menguy <francoisregis.menguy@orange.com>"
class BehaveDriver(BehaveFramework):
"""NFVbench custom BehaveDriver for Xtesting."""
# pylint: disable=too-many-instance-attributes
__logger = logging.getLogger('xtesting.core.behavedriver')
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.campaign_json_file = os.path.join(self.res_dir, 'campaign_result.json')
def extract_nfvbench_results(self):
with open(self.campaign_json_file) as stream_:
self.details['results'] = json.load(stream_)
def run(self, **kwargs):
"""Override existing Xtesting BehaveFramework core script run method
to extract NFVbench result and push them to DB
Here are the steps:
* run Xtesting behave method:
* create the output directories if required,
* run behave features with parameters
* get the behave results in output.json,
* get the nfvbench results in campaign_result.json
Args:
kwargs: Arbitrary keyword arguments.
Returns:
EX_OK if all suites ran well.
EX_RUN_ERROR otherwise.
"""
try:
super().run(**kwargs)
self.extract_nfvbench_results()
self.__logger.info("NFVbench results were successfully parsed")
except Exception: # pylint: disable=broad-except
self.__logger.exception("Cannot parse NFVbench results")
return self.EX_RUN_ERROR
return self.EX_OK
|