summaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/include/pbc_field.h
blob: 5bcb8c839834d1bc9ce9bc5aa4241553f00233aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/*
 * field_t: represents fields, rings and groups.
 * element_t: represents an element of a field_t.
 */

// Requires:
// * stdarg.h
// * stdio.h
// * gmp.h
// * utils.h
#ifndef __PBC_FIELD_H__
#define __PBC_FIELD_H__

struct field_s;

struct element_s {
  struct field_s *field;
  void *data;
};
typedef struct element_s *element_ptr;
typedef struct element_s element_t[1];

struct element_pp_s {
  struct field_s *field;
  void *data;
};
typedef struct element_pp_s element_pp_t[1];
typedef struct element_pp_s *element_pp_ptr;

void pbc_assert(int expr, char *msg, const char *func);
void pbc_assert_match2(element_ptr a, element_ptr b, const char *func);
void pbc_assert_match3(element_ptr a, element_ptr b, element_ptr c,
                       const char *func);

struct multiz_s;
typedef struct multiz_s *multiz;

struct pairing_s;
struct field_s {
  void (*field_clear)(struct field_s *f);
  void (*init)(element_ptr);
  void (*clear)(element_ptr);

  void (*set_mpz)(element_ptr, mpz_ptr);
  void (*set_multiz)(element_ptr, multiz);
  void (*set)(element_ptr, element_ptr);
  void (*set0)(element_ptr);
  void (*set1)(element_ptr);
  int (*set_str)(element_ptr e, const char *s, int base);
  size_t(*out_str)(FILE *stream, int base, element_ptr);
  void (*add)(element_ptr, element_ptr, element_ptr);
  void (*sub)(element_ptr, element_ptr, element_ptr);
  void (*mul)(element_ptr, element_ptr, element_ptr);

  int (*is_sqr)(element_ptr);
  void (*sqrt)(element_ptr, element_ptr);

  // Defaults exist for these functions.
  int (*item_count)(element_ptr);
  element_ptr (*item)(element_ptr, int);
  element_ptr (*get_x)(element_ptr);
  element_ptr (*get_y)(element_ptr);
  void (*set_si)(element_ptr, signed long int);
  void (*add_ui)(element_ptr, element_ptr, unsigned long int);
  void (*mul_mpz)(element_ptr, element_ptr, mpz_ptr);
  void (*mul_si)(element_ptr, element_ptr, signed long int);
  void (*div)(element_ptr, element_ptr, element_ptr);
  void (*doub)(element_ptr, element_ptr);  // Can't call it "double"!
  void (*multi_doub)(element_ptr*, element_ptr*, int n);
  void (*multi_add)(element_ptr*, element_ptr*, element_ptr*, int n);
  void (*halve)(element_ptr, element_ptr);
  void (*square)(element_ptr, element_ptr);

  void (*cubic) (element_ptr, element_ptr);
  void (*pow_mpz)(element_ptr, element_ptr, mpz_ptr);
  void (*invert)(element_ptr, element_ptr);
  void (*neg)(element_ptr, element_ptr);
  void (*random)(element_ptr);
  void (*from_hash)(element_ptr, void *data, int len);
  int (*is1)(element_ptr);
  int (*is0)(element_ptr);
  int (*sign)(element_ptr);  // satisfies sign(x) = -sign(-x)
  int (*cmp)(element_ptr, element_ptr);
  int (*to_bytes)(unsigned char *data, element_ptr);
  int (*from_bytes)(element_ptr, unsigned char *data);
  int (*length_in_bytes)(element_ptr);
  int fixed_length_in_bytes;  // length of an element in bytes; -1 for variable
  int (*snprint)(char *s, size_t n, element_ptr e);
  void (*to_mpz)(mpz_ptr, element_ptr);
  void (*out_info)(FILE *, struct field_s *);
  void (*pp_init)(element_pp_t p, element_t in);
  void (*pp_clear)(element_pp_t p);
  void (*pp_pow)(element_t out, mpz_ptr power, element_pp_t p);

  struct pairing_s *pairing;

  mpz_t order;                // 0 for infinite order
  element_ptr nqr;            // nonquadratic residue

  char *name;
  void *data;
};
typedef struct field_s *field_ptr;
typedef struct field_s field_t[1];

typedef void (*fieldmap) (element_t dst, element_t src);

void field_out_info(FILE* out, field_ptr f);

/*@manual internal
Initialize 'e' to be an element of the algebraic structure 'f'
and set it to be the zero element.
*/
static inline void element_init(element_t e, field_ptr f) {
  e->field = f;
  f->init(e);
}

element_ptr element_new(field_ptr f);
void element_free(element_ptr e);

/*@manual einit
Initialize 'e' to be an element of the algebraic structure that 'e2'
lies in.
*/
static inline void element_init_same_as(element_t e, element_t e2) {
  element_init(e, e2->field);
}

/*@manual einit
Free the space occupied by 'e'. Call this when
the variable 'e' is no longer needed.
*/
static inline void element_clear(element_t e) {
  e->field->clear(e);
}

/*@manual eio
Output 'e' on 'stream' in base 'base'. The base must be between
2 and 36.
*/
static inline size_t element_out_str(FILE * stream, int base, element_t e) {
  return e->field->out_str(stream, base, e);
}

/*@manual eio
*/
int element_printf(const char *format, ...);

/*@manual eio
*/
int element_fprintf(FILE * stream, const char *format, ...);

/*@manual eio
*/
int element_snprintf(char *buf, size_t size, const char *fmt, ...);

/*@manual eio
Same as printf family
except also has the 'B' conversion specifier for types
of *element_t*, and 'Y', 'Z' conversion specifiers for
+mpz_t+. For example if 'e' is of type
+element_t+ then

  element_printf("%B\n", e);

will print the value of 'e' in a human-readable form on standard output.
*/
int element_vsnprintf(char *buf, size_t size, const char *fmt, va_list ap);

/*@manual eio
Convert an element to a human-friendly string.
Behaves as *snprintf* but only on one element at a time.
*/
static inline int element_snprint(char *s, size_t n, element_t e) {
  return e->field->snprint(s, n, e);
}

static inline void element_set_multiz(element_t e, multiz m) {
  e->field->set_multiz(e, m);
}

/*@manual eio
Set the element 'e' from 's', a null-terminated C string in base 'base'.
Whitespace is ignored. Points have the form "['x,y']" or "'O'",
while polynomials have the form "['a0,...,an']".
Returns number of characters read (unlike GMP's mpz_set_str).
A return code of zero means PBC could not find a well-formed string
describing an element.
*/
static inline int element_set_str(element_t e, const char *s, int base) {
  return e->field->set_str(e, s, base);
}

/*@manual eassign
Set 'e' to zero.
*/
static inline void element_set0(element_t e) {
  e->field->set0(e);
}

/*@manual eassign
Set 'e' to one.
*/
static inline void element_set1(element_t e) {
  e->field->set1(e);
}

/*@manual eassign
Set 'e' to 'i'.
*/
static inline void element_set_si(element_t e, signed long int i) {
  e->field->set_si(e, i);
}

/*@manual eassign
Set 'e' to 'z'.
*/
static inline void element_set_mpz(element_t e, mpz_t z) {
  e->field->set_mpz(e, z);
}

/*@manual eassign
Set 'e' to 'a'.
*/
static inline void element_set(element_t e, element_t a) {
  PBC_ASSERT_MATCH2(e, a);
  e->field->set(e, a);
}

static inline void element_add_ui(element_t n, element_t a,
                                  unsigned long int b) {
  n->field->add_ui(n, a, b);
}

/*@manual econvert
Converts 'e' to a GMP integer 'z'
if such an operation makes sense
*/
static inline void element_to_mpz(mpz_t z, element_t e) {
  e->field->to_mpz(z, e);
}

static inline long element_to_si(element_t e) {
  mpz_t z;
  mpz_init(z);
  e->field->to_mpz(z, e);
  long res = mpz_get_si(z);
  mpz_clear(z);
  return res;
}

/*@manual econvert
Generate an element 'e' deterministically from
the 'len' bytes stored in the buffer 'data'.
*/
static inline void element_from_hash(element_t e, void *data, int len) {
  e->field->from_hash(e, data, len);
}

/*@manual earith
Set 'n' to 'a' + 'b'.
*/
static inline void element_add(element_t n, element_t a, element_t b) {
  PBC_ASSERT_MATCH3(n, a, b);
  n->field->add(n, a, b);
}

/*@manual earith
Set 'n' to 'a' - 'b'.
*/
static inline void element_sub(element_t n, element_t a, element_t b) {
  PBC_ASSERT_MATCH3(n, a, b);
  n->field->sub(n, a, b);
}

/*@manual earith
Set 'n' = 'a' 'b'.
*/
static inline void element_mul(element_t n, element_t a, element_t b) {
  PBC_ASSERT_MATCH3(n, a, b);
  n->field->mul(n, a, b);
}

static inline void element_cubic(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->cubic(n, a);
}

/*@manual earith
*/
static inline void element_mul_mpz(element_t n, element_t a, mpz_t z) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->mul_mpz(n, a, z);
}

/*@manual earith
Set 'n' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a'#'s#.
*/
static inline void element_mul_si(element_t n, element_t a,
                                  signed long int z) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->mul_si(n, a, z);
}

/*@manual earith
'z' must be an element of a integer mod ring (i.e. *Z*~n~ for some n).
Set 'c' = 'a' 'z', that is 'a' + 'a' + ... + 'a'
where there are 'z' 'a''s.
*/
static inline void element_mul_zn(element_t c, element_t a, element_t z) {
  mpz_t z0;
  PBC_ASSERT_MATCH2(c, a);
  //TODO: check z->field is Zn
  mpz_init(z0);
  element_to_mpz(z0, z);
  element_mul_mpz(c, a, z0);
  mpz_clear(z0);
}

/*@manual earith
Set 'n' = 'a' / 'b'.
*/
static inline void element_div(element_t n, element_t a, element_t b) {
  PBC_ASSERT_MATCH3(n, a, b);
  n->field->div(n, a, b);
}

/*@manual earith
Set 'n' = 'a' + 'a'.
*/
static inline void element_double(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->doub(n, a);
}

// Set n_i = a_i + a_i for all i at one time.
// Uses multi_doub(), which only elliptic curves have at the moment.
void element_multi_double(element_t n[], element_t a[], int m);

// Set n_i =a_i + b_i for all i at one time.
// Uses multi_add(), which only elliptic curves have at the moment.
void element_multi_add(element_t n[], element_t a[],element_t b[], int m);

/*@manual earith
Set 'n' = 'a/2'
*/
static inline void element_halve(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->halve(n, a);
}

/*@manual earith
Set 'n' = 'a'^2^
*/
static inline void element_square(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->square(n, a);
}

/*@manual epow
Set 'x' = 'a'^'n'^, that is
'a' times 'a' times ... times 'a' where there are 'n' 'a'#'s#.
*/
static inline void element_pow_mpz(element_t x, element_t a, mpz_t n) {
  PBC_ASSERT_MATCH2(x, a);
  x->field->pow_mpz(x, a, n);
}

/*@manual epow
Set 'x' = 'a'^'n'^, where 'n' is an element of a ring *Z*~N~
for some 'N' (typically the order of the algebraic structure 'x' lies in).
*/
static inline void element_pow_zn(element_t x, element_t a, element_t n) {
  mpz_t z;
  PBC_ASSERT_MATCH2(x, a);
  mpz_init(z);
  element_to_mpz(z, n);
  element_pow_mpz(x, a, z);
  mpz_clear(z);
}

/*@manual earith
Set 'n' = -'a'.
*/
static inline void element_neg(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->neg(n, a);
}

/*@manual earith
Set 'n' to the inverse of 'a'.
*/
static inline void element_invert(element_t n, element_t a) {
  PBC_ASSERT_MATCH2(n, a);
  n->field->invert(n, a);
}

/*@manual erandom
If the 'e' lies in a finite algebraic structure,
assigns a uniformly random element to 'e'.
*/
static inline void element_random(element_t e) {
  e->field->random(e);
}

/*@manual ecmp
Returns true if 'n' is 1.
*/
static inline int element_is1(element_t n) {
  return n->field->is1(n);
}

/*@manual ecmp
Returns true if 'n' is 0.
*/
static inline int element_is0(element_t n) {
  return n->field->is0(n);
}

/*@manual ecmp
Returns 0 if 'a' and 'b' are the same, nonzero otherwise.
*/
static inline int element_cmp(element_t a, element_t b) {
  PBC_ASSERT_MATCH2(a, b);
  return a->field->cmp(a, b);
}

/*@manual ecmp
Returns nonzero if 'a' is a perfect square (quadratic residue),
zero otherwise.
*/
static inline int element_is_sqr(element_t a) {
  return a->field->is_sqr(a);
}

/*@manual ecmp
*/
static inline int element_sgn(element_t a) {
  return a->field->sign(a);
}

/*@manual ecmp
If 'a' is zero, returns 0. For nozero 'a' the behaviour depends on
the algebraic structure, but has the property that
element_sgn('a') = -element_sgn(-'a')
and
element_sgn('a') = 0 implies 'a' = 0 with overwhelming probability.
*/
static inline int element_sign(element_t a) {
  return a->field->sign(a);
}

static inline void element_sqrt(element_t a, element_t b) {
  PBC_ASSERT_MATCH2(a, b);
  a->field->sqrt(a, b);
}

/*@manual etrade
Returns the length in bytes the element 'e' will take to represent
*/
static inline int element_length_in_bytes(element_t e) {
  if (e->field->fixed_length_in_bytes < 0) {
    return e->field->length_in_bytes(e);
  } else {
    return e->field->fixed_length_in_bytes;
  }
}

/*@manual etrade
Converts 'e' to byte, writing the result in the buffer 'data'.
The number of bytes it will write can be determined from calling
*element_length_in_bytes()*. Returns number of bytes written.
*/
static inline int element_to_bytes(unsigned char *data, element_t e) {
  return e->field->to_bytes(data, e);
}

/*@manual etrade
Reads 'e' from the buffer 'data', and returns the number of bytes read.
*/
static inline int element_from_bytes(element_t e, unsigned char *data) {
  return e->field->from_bytes(e, data);
}

/*@manual epow
Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, and is generally faster than
performing two separate exponentiations.
*/
void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2,
                      mpz_t n2);
/*@manual epow
Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^,
but 'n1', 'n2' must be elements of a ring *Z*~n~ for some integer n.
*/
static inline void element_pow2_zn(element_t x, element_t a1, element_t n1,
                                   element_t a2, element_t n2) {
  mpz_t z1, z2;
  mpz_init(z1);
  mpz_init(z2);
  element_to_mpz(z1, n1);
  element_to_mpz(z2, n2);
  element_pow2_mpz(x, a1, z1, a2, z2);
  mpz_clear(z1);
  mpz_clear(z2);
}

/*@manual epow
Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
generally faster than performing three separate exponentiations.
*/
void element_pow3_mpz(element_t x, element_t a1, mpz_t n1,
                      element_t a2, mpz_t n2, element_t a3, mpz_t n3);

/*@manual epow
Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
but 'n1', 'n2', 'n3' must be elements of a ring *Z*~n~ for some integer n.
*/
static inline void element_pow3_zn(element_t x, element_t a1, element_t n1,
                                   element_t a2, element_t n2,
                                   element_t a3, element_t n3) {
  mpz_t z1, z2, z3;
  mpz_init(z1);
  mpz_init(z2);
  mpz_init(z3);
  element_to_mpz(z1, n1);
  element_to_mpz(z2, n2);
  element_to_mpz(z3, n3);
  element_pow3_mpz(x, a1, z1, a2, z2, a3, z3);
  mpz_clear(z1);
  mpz_clear(z2);
  mpz_clear(z3);
}

void field_clear(field_ptr f);

element_ptr field_get_nqr(field_ptr f);
void field_set_nqr(field_ptr f, element_t nqr);
void field_gen_nqr(field_ptr f);

void field_init(field_ptr f);

static inline int mpz_is0(mpz_t z) {
  return !mpz_sgn(z);
  //return !mpz_cmp_ui(z, 0);
}

/*@manual etrade
Assumes 'e' is a point on an elliptic curve.
Writes the x-coordinate of 'e' to the buffer 'data'
*/
int element_to_bytes_x_only(unsigned char *data, element_t e);
/*@manual etrade
Assumes 'e' is a point on an elliptic curve.
Sets 'e' to a point with
x-coordinate represented by the buffer 'data'. This is not unique.
For each 'x'-coordinate, there exist two different points, at least
for the elliptic curves in PBC. (They are inverses of each other.)
*/
int element_from_bytes_x_only(element_t e, unsigned char *data);
/*@manual etrade
Assumes 'e' is a point on an elliptic curve.
Returns the length in bytes needed to hold the x-coordinate of 'e'.
*/
int element_length_in_bytes_x_only(element_t e);

/*@manual etrade
If possible, outputs a compressed form of the element 'e' to
the buffer of bytes 'data'.
Currently only implemented for points on an elliptic curve.
*/
int element_to_bytes_compressed(unsigned char *data, element_t e);

/*@manual etrade
Sets element 'e' to the element in compressed form in the buffer of bytes
'data'.
Currently only implemented for points on an elliptic curve.
*/
int element_from_bytes_compressed(element_t e, unsigned char *data);

/*@manual etrade
Returns the number of bytes needed to hold 'e' in compressed form.
Currently only implemented for points on an elliptic curve.
*/
int element_length_in_bytes_compressed(element_t e);

/*@manual epow
Prepare to exponentiate an element 'in', and store preprocessing information
in 'p'.
*/
static inline void element_pp_init(element_pp_t p, element_t in) {
  p->field = in->field;
  in->field->pp_init(p, in);
}

/*@manual epow
Clear 'p'. Should be called after 'p' is no longer needed.
*/
static inline void element_pp_clear(element_pp_t p) {
  p->field->pp_clear(p);
}

/*@manual epow
Raise 'in' to 'power' and store the result in 'out', where 'in'
is a previously preprocessed element, that is, the second argument
passed to a previous *element_pp_init* call.
*/
static inline void element_pp_pow(element_t out, mpz_ptr power,
                                  element_pp_t p) {
  p->field->pp_pow(out, power, p);
}

/*@manual epow
Same except 'power' is an element of *Z*~n~ for some integer n.
*/
static inline void element_pp_pow_zn(element_t out, element_t power,
                                     element_pp_t p) {
  mpz_t z;
  mpz_init(z);
  element_to_mpz(z, power);
  element_pp_pow(out, z, p);
  mpz_clear(z);
}

void pbc_mpz_out_raw_n(unsigned char *data, int n, mpz_t z);
void pbc_mpz_from_hash(mpz_t z, mpz_t limit,
                       unsigned char *data, unsigned int len);

/*@manual etrade
For points, returns the number of coordinates.
For polynomials, returns the number of coefficients.
Otherwise returns zero.
*/
static inline int element_item_count(element_t e) {
  return e->field->item_count(e);
}

/*@manual etrade
For points, returns 'n'#th# coordinate.
For polynomials, returns coefficient of 'x^n^'.
Otherwise returns NULL.
The element the return value points to may be modified.
*/
static inline element_ptr element_item(element_t e, int i) {
  // TODO: Document the following:
  // For polynomials, never zero the leading coefficient, e.g. never write:
  //  element_set0(element_item(f, poly_degree(f)));
  // Use poly_set_coeff0() to zero the leading coefficient.
  return e->field->item(e, i);
}

// Returns the field containing the items.
// Returns NULL if there are no items.
static inline field_ptr element_item_field(element_t e) {
  if (!element_item_count(e)) return NULL;
  return element_item(e, 0)->field;
}

/*@manual etrade
Equivalent to `element_item(a, 0)`.
*/
static inline element_ptr element_x(element_ptr a) {
  return a->field->get_x(a);
}
/*@manual etrade
Equivalent to `element_item(a, 1)`.
*/
static inline element_ptr element_y(element_ptr a) {
  return a->field->get_y(a);
}

/*@manual epow
Computes 'x' such that 'g^x^ = h' by brute force, where
'x' lies in a field where `element_set_mpz()` makes sense.
*/
void element_dlog_brute_force(element_t x, element_t g, element_t h);

/*@manual epow
Computes 'x' such that 'g^x^ = h' using Pollard rho method, where
'x' lies in a field where `element_set_mpz()` makes sense.
*/
void element_dlog_pollard_rho(element_t x, element_t g, element_t h);

// Trial division up to a given limit. If limit == NULL, then there is no limit.
// Call the callback for each factor found, abort and return 1 if the callback
// returns nonzero, otherwise return 0.
int pbc_trial_divide(int (*fun)(mpz_t factor,
                                unsigned int multiplicity,
                                void *scope_ptr),
                     void *scope_ptr,
                     mpz_t n,
                     mpz_ptr limit);

#endif  // __PBC_FIELD_H__