aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/guru/19.c
blob: 5e225565d465db01d230bb567bf3f11a585744fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * Toy example of a field where the Tate pairing can be used
 * but the Weil pairing cannot.
 *
 * Consider the curve E: y^2 = x^3 + x + 6 over F_19:
 * E(F_19) is a cyclic group of order 18.
 * Thus E[3] is not contained in F_19
 * (it turns out E[3] is contained in F_19^3).
 *
 * Hence the Weil pairing cannot be defined over F_19
 * However, F_19 contains the cube roots of unity
 * so we can compute the Tate pairing
 */

/*
 * P = (12,13) generates a group of order 3:
 * <(12,13)> = {(12,13), (12,6), O}
 * e(P,P) = 7, so we have the isomorphism
 * <(12,13)> = <7> (in F_19^*)
 *
 * Similarly P = (4, 6) generates a group of order 9, and we find
 * <(4,6)> = <4>
 *
 * P = (0, 5) generates all of E(F_19)
 * Miller's algorithm will not allow us to calculate e(P, P) without
 * first extending F_19.
 * Instead of extending, we could manipulate rational functions since
 * 19 is small enough that an explicit expression of f_P can be found.
 */

#include "pbc.h"
#include "pbc_fp.h"
#include "pbc_fieldquadratic.h"

static void miller(element_t res, element_t P, element_ptr QR, element_ptr R, int n) {
  // Collate divisions.
  int m;
  element_t v, vd;
  element_t Z;
  element_t a, b, c;
  const element_ptr cca = curve_a_coeff(P);
  const element_ptr Px = curve_x_coord(P);
  const element_ptr Py = curve_y_coord(P);
  element_t e0, e1;
  mpz_t q;
  element_ptr Zx, Zy;
  const element_ptr numx = curve_x_coord(QR);
  const element_ptr numy = curve_y_coord(QR);
  const element_ptr denomx = curve_x_coord(R);
  const element_ptr denomy = curve_y_coord(R);

  void do_vertical(element_t e, element_t edenom)
  {
    element_sub(e0, numx, Zx);
    element_mul(e, e, e0);

    element_sub(e0, denomx, Zx);
    element_mul(edenom, edenom, e0);
  }

  void do_tangent(element_t e, element_t edenom)
  {
    //a = -slope_tangent(A.x, A.y);
    //b = 1;
    //c = -(A.y + a * A.x);
    //but we multiply by 2*A.y to avoid division

    //a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4;
    //Common curves: a2 = 0 (and cc->a is a_4), so
    //a = -(3 Ax^2 + cc->a)
    //b = 2 * Ay
    //c = -(2 Ay^2 + a Ax);

    if (element_is0(Zy)) {
      do_vertical(e, edenom);
      return;
    }
    element_square(a, Zx);
    element_mul_si(a, a, 3);
    element_add(a, a, cca);
    element_neg(a, a);

    element_add(b, Zy, Zy);

    element_mul(e0, b, Zy);
    element_mul(c, a, Zx);
    element_add(c, c, e0);
    element_neg(c, c);

    element_mul(e0, a, numx);
    element_mul(e1, b, numy);
    element_add(e0, e0, e1);
    element_add(e0, e0, c);
    element_mul(e, e, e0);

    element_mul(e0, a, denomx);
    element_mul(e1, b, denomy);
    element_add(e0, e0, e1);
    element_add(e0, e0, c);
    element_mul(edenom, edenom, e0);
  }

  void do_line(element_ptr e, element_ptr edenom)
  {
    if (!element_cmp(Zx, Px)) {
      if (!element_cmp(Zy, Py)) {
        do_tangent(e, edenom);
      } else {
        do_vertical(e, edenom);
      }
      return;
    }

    element_sub(b, Px, Zx);
    element_sub(a, Zy, Py);
    element_mul(c, Zx, Py);
    element_mul(e0, Zy, Px);
    element_sub(c, c, e0);

    element_mul(e0, a, numx);
    element_mul(e1, b, numy);
    element_add(e0, e0, e1);
    element_add(e0, e0, c);
    element_mul(e, e, e0);

    element_mul(e0, a, denomx);
    element_mul(e1, b, denomy);
    element_add(e0, e0, e1);
    element_add(e0, e0, c);
    element_mul(edenom, edenom, e0);
  }

  element_init(a, res->field);
  element_init(b, res->field);
  element_init(c, res->field);
  element_init(e0, res->field);
  element_init(e1, res->field);

  element_init(v, res->field);
  element_init(vd, res->field);
  element_init(Z, P->field);

  element_set(Z, P);
  Zx = curve_x_coord(Z);
  Zy = curve_y_coord(Z);

  element_set1(v);
  element_set1(vd);

  mpz_init(q);
  mpz_set_ui(q, n);
  m = mpz_sizeinbase(q, 2) - 2;

  while(m >= 0) {
    element_square(v, v);
    element_square(vd, vd);
    do_tangent(v, vd);
    element_double(Z, Z);
    do_vertical(vd, v);

    if (mpz_tstbit(q, m)) {
      do_line(v, vd);
      element_add(Z, Z, P);
      if (m) {
        do_vertical(vd, v);
      }
    }
    m--;
  }

  mpz_clear(q);

  element_invert(vd, vd);
  element_mul(res, v, vd);

  element_clear(v);
  element_clear(vd);
  element_clear(Z);
  element_clear(a);
  element_clear(b);
  element_clear(c);
  element_clear(e0);
  element_clear(e1);
}

static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) {
  mpz_t six;

  mpz_init(six);
  mpz_set_ui(six, 6);
  element_t QR;
  element_t e0;

  element_init(QR, P->field);
  element_init(e0, out->field);

  element_add(QR, Q, R);

  //for subgroup size 3, -2P = P, hence
  //the tangent line at P has divisor 3(P) - 3(O)

  miller(out, P, QR, R, 3);

  element_pow_mpz(out, out, six);
  element_clear(QR);
  element_clear(e0);
  mpz_clear(six);
}

static void tate_9(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) {
  element_t QR;
  element_init(QR, P->field);

  element_add(QR, Q, R);

  miller(out, P, QR, R, 9);

  element_square(out, out);

  element_clear(QR);
}

static void tate_18(element_ptr out, element_ptr P, element_ptr Q, element_ptr R, element_ptr S) {
  mpz_t pow;
  element_t PR;
  element_t QS;
  element_init(PR, P->field);
  element_init(QS, P->field);
  element_t outd;

  element_init(outd, out->field);

  mpz_init(pow);
  mpz_set_ui(pow, (19*19-1)/18);

  element_add(PR, P, R);
  element_add(QS, Q, S);

  if (element_is0(QS)) {
    element_t S2;
    element_init(S2, P->field);
    element_double(S2, S);
    miller(out, PR, S, S2, 18);
    miller(outd, R, S, S2, 18);
    element_clear(S2);
  } else {
    miller(out, PR, QS, S, 18);
    miller(outd, R, QS, S, 18);
  }

  element_clear(PR);
  element_clear(QS);

  element_invert(outd, outd);
  element_mul(out, out, outd);
  element_pow_mpz(out, out, pow);

  element_clear(outd);
  mpz_clear(pow);
}

int main(void) {
  field_t c;
  field_t Z19;
  element_t P, Q, R;
  mpz_t q, z;
  element_t a, b;
  int i;

  field_t Z19_2;
  field_t c2;
  element_t P2, Q2, R2;
  element_t a2;

  mpz_init(q);
  mpz_init(z);

  mpz_set_ui(q, 19);

  field_init_fp(Z19, q);
  element_init(a, Z19);
  element_init(b, Z19);

  element_set_si(a, 1);
  element_set_si(b, 6);

  mpz_set_ui(q, 18);
  field_init_curve_ab(c, a, b, q, NULL);
  element_init(P, c);
  element_init(Q, c);
  element_init(R, c);

  printf("Y^2 = X^3 + X + 6 over F_19\n");
  //(0,+/-5) is a generator
  element_set0(a);
  curve_from_x(R, a);

  for (i=1; i<19; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q, R, z);
    element_printf("%dR = %B\n", i, Q);
  }

  mpz_set_ui(z, 6);
  element_mul_mpz(P, R, z);
  //P has order 3
  element_printf("P = %B\n", P);

  for (i=1; i<=3; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q, R, z);
    tate_3(a, P, Q, R);
    element_printf("e_3(P,%dR) = %B\n", i, a);
  }

  element_double(P, R);
  //P has order 9
  element_printf("P = %B\n", P);
  for (i=1; i<=9; i++) {
    mpz_set_si(z, i);
    //we're supposed to use multiples of R
    //but 2R works just as well and it allows us
    //to use R as the offset every time
    element_mul_mpz(Q, P, z);
    tate_9(a, P, Q, R);
    element_printf("e_9(P,%dP) = %B\n", i, a);
  }

  //to do the pairing on all of E(F_19) we need to move to F_19^2
  //or compute the rational function explicitly
  printf("moving to F_19^2\n");
  field_init_fi(Z19_2, Z19);

  //don't need to tell it the real order
  field_init_curve_ab_map(c2, c, element_field_to_fi, Z19_2, q, NULL);
  element_init(P2, c2);
  element_init(Q2, c2);
  element_init(R2, c2);

  element_init(a2, Z19_2);
  element_set0(a2);
  curve_from_x(P2, a2);

  element_random(R2);

  element_printf("P = %B\n", P2);

  for (i=1; i<=18; i++) {
    mpz_set_si(z, i);
    element_mul_mpz(Q2, P2, z);
    tate_18(a2, P2, Q2, R2, P2);
    element_printf("e_18(P,%dP) = %B\n", i, a2);
  }

  element_clear(P2);
  element_clear(Q2);
  element_clear(R2);
  element_clear(a2);
  field_clear(c2);
  field_clear(Z19_2);

  field_clear(c);
  element_clear(a);
  element_clear(b);
  element_clear(P);
  element_clear(Q);
  element_clear(R);
  field_clear(Z19);

  mpz_clear(q);
  mpz_clear(z);
  return 0;
}