aboutsummaryrefslogtreecommitdiffstats
path: root/moonv4/moon_interface/tests/apitests/plot_json.py
diff options
context:
space:
mode:
Diffstat (limited to 'moonv4/moon_interface/tests/apitests/plot_json.py')
-rw-r--r--moonv4/moon_interface/tests/apitests/plot_json.py837
1 files changed, 763 insertions, 74 deletions
diff --git a/moonv4/moon_interface/tests/apitests/plot_json.py b/moonv4/moon_interface/tests/apitests/plot_json.py
index 61ebb145..f67f1d27 100644
--- a/moonv4/moon_interface/tests/apitests/plot_json.py
+++ b/moonv4/moon_interface/tests/apitests/plot_json.py
@@ -1,8 +1,13 @@
+import os
import argparse
import logging
import json
+import glob
+import time
+import datetime
+import itertools
import plotly
-from plotly.graph_objs import Scatter, Layout
+from plotly.graph_objs import Scatter, Layout, Bar
import plotly.figure_factory as ff
@@ -10,83 +15,267 @@ logger = None
def init():
- global logger, HOST, PORT
+ global logger
+ commands = {
+ "graph": write_graph,
+ "digraph": write_distgraph,
+ "average": write_average_graph,
+ "latency": write_latency,
+ "request_average": write_request_average,
+ "throughput": write_throughput,
+ "global_throughput": write_global_throughput,
+ "parallel_throughput": write_parallel_throughput,
+ }
parser = argparse.ArgumentParser()
+ parser.add_argument("command",
+ help="Command to throw ({})".format(", ".join(commands.keys())))
+ parser.add_argument("input", nargs="+", help="files to use with the form \"file1.json,file2.json,...\"")
parser.add_argument("--verbose", "-v", action='store_true', help="verbose mode")
- parser.add_argument("--host",
- help="Set the name of the host to test (default: 172.18.0.11).",
- default="172.18.0.11")
- parser.add_argument("--port", "-p",
- help="Set the port of the host to test (default: 38001).",
- default="38001")
- parser.add_argument("--test-only", "-t", action='store_true', dest='testonly', help="Do not generate graphs")
+ parser.add_argument("--debug", "-d", action='store_true', help="debug mode")
parser.add_argument("--write", "-w", help="Write test data to a JSON file", default="/tmp/data.json")
- parser.add_argument("--input", "-i", help="Get data from a JSON input file")
- parser.add_argument("--legend", "-l", help="Set the legend (default: 'rbac,rbac+session')",
- default='rbac,rbac+session')
- parser.add_argument("--distgraph", "-d",
- help="Show a distribution graph instead of a linear graph",
- action='store_true')
- parser.add_argument("--request-per-second", help="Number of requests per seconds",
- type=int, dest="request_second", default=1)
- parser.add_argument("--limit", help="Limit request to LIMIT", type=int)
+ parser.add_argument("--legend", "-l", help="Set the legend (by default get from the file names)")
+ parser.add_argument("--titles", "-t",
+ help="Set the general title, x title and y title (ex: Title 1,Title X,Title Y)")
+ # parser.add_argument("--request-per-second", help="Number of requests per seconds",
+ # type=int, dest="request_second", default=1)
+ # parser.add_argument("--limit", help="Limit request to LIMIT", type=int)
parser.add_argument("--write-image", help="Write the graph to file IMAGE", dest="write_image")
parser.add_argument("--write-html", help="Write the graph to HTML file HTML", dest="write_html", default="data.html")
+ parser.add_argument("--plot-result",
+ help="Use specific data like Grant or Deny responses "
+ "('*' for all or 'Grant,Deny' to separate granted and denied responses)",
+ dest="plot_result",
+ default="*")
args = parser.parse_args()
- FORMAT = '%(asctime)-15s %(levelname)s %(message)s'
- logging.basicConfig(
- format=FORMAT,
- level=logging.INFO)
+ FORMAT = '%(levelname)s %(message)s'
+
+ if args.verbose:
+ logging.basicConfig(
+ format=FORMAT,
+ level=logging.INFO)
+ elif args.debug:
+ logging.basicConfig(
+ format=FORMAT,
+ level=logging.DEBUG)
+ else:
+ logging.basicConfig(
+ format=FORMAT,
+ level=logging.WARNING)
logger = logging.getLogger(__name__)
- HOST = args.host
- PORT = args.port
- return args
+ # args.input = args.input[0]
+ result_input = []
+ for _input in args.input:
+ if "*" in _input:
+ filenames = glob.glob(_input)
+ filenames.sort()
+ result_input.append(",".join(filenames))
+ else:
+ result_input.append(_input)
+ args.input = result_input
+
+ if not args.legend:
+ _legends = []
+ for data in args.input:
+ for filename in data.split(","):
+ _legends.append(os.path.basename(filename).replace(".json", ""))
+ args.legend = ",".join(_legends)
+ return args, commands
+
+
+def __get_legends(legend_str, default_length=10):
+ if "|" in legend_str:
+ secondary_legend = legend_str.split("|")[1].split(",")
+ else:
+ secondary_legend = ["average"] * default_length
+ _legends = legend_str.split("|")[0].split(",")
+ return _legends, secondary_legend
-def get_delta(time_data):
+
+def get_delta_v1(time_data, result=None):
time_delta = list()
+ x_data = list()
time_delta_sum1 = 0
+ cpt = 0
for key in time_data:
- time_delta.append(time_data[key]['delta'])
- time_delta_sum1 += time_data[key]['delta']
+ if not result or 'result' not in time_data[key] or time_data[key]['result'].lower() == result.lower() or result == "*":
+ time_delta.append(time_data[key]['delta'])
+ time_delta_sum1 += time_data[key]['delta']
+ if 'index' in time_data[key]:
+ print("in index {}".format(time_data[key]['index']))
+ x_data.append(time_data[key]['index'])
+ else:
+ x_data.append(cpt)
+ cpt += 1
time_delta_average1 = time_delta_sum1 / len(time_data.keys())
- return time_delta, time_delta_average1
+ return time_delta, time_delta_average1, x_data
+
+def get_delta_v2(time_data, result=None):
+ time_delta = list()
+ x_data = list()
+ time_delta_sum1 = 0
+ cpt = 0
+ for item in time_data:
+ if not result or 'result' not in item or item['result'].lower() == result.lower() or result == "*":
+ time_delta.append(item['delta'])
+ time_delta_sum1 += item['delta']
+ x_data.append(cpt)
+ cpt += 1
+ time_delta_average1 = time_delta_sum1 / len(time_data)
+ return time_delta, time_delta_average1, x_data
-def write_graph(legend=None, input=None, image_file=None, html_file=None):
+
+def get_delta(time_data, result=None):
+ if type(time_data) is dict:
+ return get_delta_v1(time_data, result=result)
+ if type(time_data) is list:
+ return get_delta_v2(time_data, result=result)
+ raise Exception("Time data has not a correct profile")
+
+
+def get_latency_v1(time_data, result=None):
+ time_delta = list()
+ time_delta_sum1 = 0
+ for key in time_data:
+ if not result or 'result' not in time_data[key] or time_data[key]['result'].lower() == result.lower() or result == "*":
+ time_delta.append(1/time_data[key]['delta'])
+ time_delta_sum1 += time_data[key]['delta']
+ logger.debug("Adding {} {}".format(1/time_data[key]['delta'], time_data[key]['delta']))
+ time_delta_average1 = time_delta_sum1 / len(time_data.keys())
+ return time_delta, 1/time_delta_average1
+
+
+def get_latency_v2(time_data, result=None):
+ time_delta = list()
+ time_delta_sum1 = 0
+ time_list = list()
+ for item in time_data:
+ if not result or 'result' not in item or item['result'].lower() == result.lower() or result == "*":
+ time_delta.append(1/item['delta'])
+ time_delta_sum1 += item['delta']
+ time_list.append(item['end'])
+ time_delta_average1 = time_delta_sum1 / len(time_data)
+ return time_delta, 1/time_delta_average1, time_list
+
+
+def get_latency(time_data, result=None):
+ if type(time_data) is dict:
+ return get_latency_v1(time_data, result=result)
+ if type(time_data) is list:
+ return get_latency_v2(time_data, result=result)
+ raise Exception("Time data has not a correct profile")
+
+
+def get_request_per_second_v1(time_data):
+ result = {}
+ _min = None
+ _max = 0
+ for key in time_data:
+ start = str(time_data[key]['start']).split(".")[0]
+ end = str(time_data[key]['end']).split(".")[0]
+ middle = str(int((int(end) + int(start)) / 2))
+ middle = end
+ if not _min:
+ _min = int(middle)
+ if int(middle) < _min:
+ _min = int(middle)
+ if int(middle) > _max:
+ _max = int(middle)
+ if middle not in result:
+ result[middle] = 1
+ else:
+ result[middle] += 1
+ for cpt in range(_min+1, _max):
+ if str(cpt) not in result:
+ result[str(cpt)] = 0
+ # result[str(cpt)] = (result[str(cpt - 1)] + result[str(cpt)]) / 2
+ # result[str(cpt - 1)] = result[str(cpt)]
+ return result
+
+
+def get_request_per_second_v2(time_data):
+ result = {}
+ _min = None
+ _max = 0
+ for item in time_data:
+ start = str(item['start']).split(".")[0]
+ end = str(item['end']).split(".")[0]
+ middle = str(int((int(end) + int(start)) / 2))
+ middle = end
+ if not _min:
+ _min = int(middle)
+ if int(middle) < _min:
+ _min = int(middle)
+ if int(middle) > _max:
+ _max = int(middle)
+ if middle not in result:
+ result[middle] = 1
+ else:
+ result[middle] += 1
+ for cpt in range(_min+1, _max):
+ if str(cpt) not in result:
+ result[str(cpt)] = 0
+ # result[str(cpt)] = (result[str(cpt - 1)] + result[str(cpt)]) / 2
+ # result[str(cpt - 1)] = result[str(cpt)]
+ return result
+
+
+def get_request_per_second(time_data):
+ if type(time_data) is dict:
+ return get_request_per_second_v1(time_data)
+ if type(time_data) is list:
+ return get_request_per_second_v2(time_data)
+ raise Exception("Time data has not a correct profile")
+
+
+def write_graph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
logger.info("Writing graph")
- legends = legend.split(",")
+ cpt_max = 0
+ logger.debug("legend={}".format(legend))
+ for data in input:
+ cpt_max += len(data.split(","))
+ legends, secondary_legend = __get_legends(legend, cpt_max)
+ logger.debug("legends={}".format(legends))
result_data = []
- for _input in input.split(","):
- current_legend = legends.pop(0)
- time_data2 = json.load(open(_input))
- time_delta2, time_delta_average2 = get_delta(time_data2)
- for key in time_data2.keys():
- if key in time_data2:
- time_delta2.append(time_data2[key]['delta'])
- else:
- time_delta2.append(None)
- data2 = Scatter(
- x=list(range(len(time_data2.keys()))),
- y=time_delta2,
- name=current_legend,
- line=dict(
- color='rgb(255, 192, 118)',
- shape='spline')
- )
- result_data.append(data2)
- data2_a = Scatter(
- x=list(range(len(time_data2.keys()))),
- y=[time_delta_average2 for x in range(len(time_data2.keys()))],
- name=current_legend + " average",
- line=dict(
- color='rgb(255, 152, 33)',
- shape='spline')
- )
- result_data.append(data2_a)
+ cpt_input = 0
+ for data in input:
+ for _input in data.split(","):
+ try:
+ current_legend = legends.pop(0)
+ except IndexError:
+ current_legend = ""
+ time_data = json.load(open(_input))
+ time_delta, time_delta_average2, x_data = get_delta(time_data)
+ for item in time_data:
+ if type(time_data) is dict:
+ time_delta.append(time_data[item]['delta'])
+ else:
+ time_delta.append(item['delta'])
+ data = Scatter(
+ x=x_data,
+ y=time_delta,
+ name=current_legend,
+ line=dict(
+ color="rgb({},{},{})".format(0, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max),
+ # shape='spline'
+ )
+ )
+ result_data.append(data)
+ data_a = Scatter(
+ x=list(range(len(time_data))),
+ y=[time_delta_average2 for x in range(len(time_data))],
+ name=current_legend + " average",
+ line=dict(
+ color="rgb({},{},{})".format(255, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max),
+ # shape='spline'
+ )
+ )
+ result_data.append(data_a)
+ cpt_input += 1
if image_file:
plotly.offline.plot(
@@ -119,44 +308,544 @@ def write_graph(legend=None, input=None, image_file=None, html_file=None):
return 0
-def write_distgraph(legend=None, input=None, image_file=None, html_file=None):
+def write_distgraph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
logger.info("Writing graph")
- legends = legend.split(",")
+ _legends, secondary_legend = __get_legends(legend, len(input))
result_data = []
+ legends = []
+ # FIXME: deals with multiple input
+ input = input[0]
for _input in input.split(","):
logger.info("Analysing input {}".format(_input))
- time_data2 = json.load(open(_input))
- time_delta2, time_delta_average2 = get_delta(time_data2)
- result_data.append(time_delta2)
+ current_legend = _legends.pop(0)
+ for result in plot_result.split(","):
+ time_data2 = json.load(open(_input))
+ time_delta2, time_delta_average2, x_data = get_delta(time_data2, result=result)
+ result_data.append(time_delta2)
+ if result == "*":
+ legends.append(current_legend)
+ else:
+ legends.append("{} ({})".format(current_legend, result))
# Create distplot with custom bin_size
if len(legends) < len(result_data):
for _cpt in range(len(result_data)-len(legends)):
legends.append("NC")
- fig = ff.create_distplot(result_data, legends, bin_size=.2)
+ fig = ff.create_distplot(result_data, legends, show_hist=False)
# Plot!
plotly.offline.plot(
fig,
- image="svg",
- image_filename=image_file,
- image_height=1000,
- image_width=1200,
+ # image="svg",
+ # image_filename=image_file,
+ # image_height=1000,
+ # image_width=1200,
filename=html_file
)
return 0
+def write_average_graph(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+
+ logger.info("Writing average graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ all_data = []
+ legends = []
+ legend_done = False
+ html_file = "latency_" + html_file
+
+ cpt_input = 0
+ cpt_max = len(input)
+ for data in input:
+ result_data = []
+ for _input in data.split(","):
+ logger.info("Analysing input {}".format(_input))
+ if not legend_done:
+ current_legend = _legends.pop(0)
+ for result in plot_result.split(","):
+ time_data2 = json.load(open(_input))
+ time_delta2, time_delta_average2 = get_delta(time_data2, result=result)
+ result_data.append(time_delta_average2)
+ if not legend_done and result == "*":
+ legends.append(current_legend)
+ elif not legend_done:
+ legends.append("{} ({})".format(current_legend, result))
+
+ if not legend_done:
+ if len(legends) < len(result_data):
+ for _cpt in range(len(result_data)-len(legends)):
+ legends.append("NC")
+
+ data = Scatter(
+ x=legends,
+ y=result_data,
+ name=secondary_legend.pop(0),
+ line=dict(
+ color="rgb({},{},{})".format(158, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max)
+ )
+ )
+ all_data.append(data)
+ legend_done = True
+ cpt_input += 1
+ if image_file:
+ plotly.offline.plot(
+ {
+ "data": all_data,
+ "layout": Layout(
+ title="Latency",
+ xaxis=dict(title='Request per second'),
+ yaxis=dict(title='Request latency'),
+ )
+ },
+ filename=html_file,
+ image="svg",
+ image_filename=image_file,
+ image_height=1000,
+ image_width=1200
+ )
+ else:
+ plotly.offline.plot(
+ {
+ "data": all_data,
+ "layout": Layout(
+ title="Latency",
+ xaxis=dict(title='Requests'),
+ yaxis=dict(title='Request latency'),
+ )
+ },
+ filename=html_file,
+ )
+ return 0
+
+
+def __get_titles(title):
+ if title:
+ titles = title.split(",")
+ try:
+ title_generic = titles[0]
+ except IndexError:
+ title_generic = ""
+ try:
+ title_x = titles[1]
+ except IndexError:
+ title_x = ""
+ try:
+ title_y = titles[2]
+ except IndexError:
+ title_y = ""
+ else:
+ title_generic = ""
+ title_x = ""
+ title_y = ""
+ return title_generic, title_x, title_y
+
+
+def __get_time_axis(data):
+ result_data = []
+ start_time = None
+ for item in data:
+ if not start_time:
+ start_time = item
+ item = item - start_time
+ millis = int(str(item).split('.')[-1][:6])
+ t = time.gmtime(int(item))
+ result_data.append(
+ datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, millis)
+ )
+ return result_data
+
+
+def write_latency(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+
+ logger.info("Writing latency graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ all_data = []
+ legends = []
+ legend_done = False
+ html_file = "latency_" + html_file
+ title_generic, title_x, title_y = __get_titles(title)
+ cpt_input = 0
+ cpt_max = len(input)
+ for data in input:
+ result_data = []
+ for _input in data.split(","):
+ logger.info("Analysing input {}".format(_input))
+ if not legend_done:
+ current_legend = _legends.pop(0)
+ for result in plot_result.split(","):
+ time_data2 = json.load(open(_input))
+ time_delta2, time_delta_average2, x_data = get_latency(time_data2, result=result)
+ result_data.append(time_delta_average2)
+ if not legend_done and result == "*":
+ legends.append(current_legend)
+ elif not legend_done:
+ legends.append("{} ({})".format(current_legend, result))
+
+ if not legend_done:
+ if len(legends) < len(result_data):
+ for _cpt in range(len(result_data)-len(legends)):
+ legends.append("NC")
+
+ data = Scatter(
+ x=legends,
+ y=result_data,
+ name=secondary_legend.pop(0),
+ line=dict(
+ color="rgb({},{},{})".format(158, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max)
+ )
+ )
+ all_data.append(data)
+ legend_done = True
+ cpt_input += 1
+ if image_file:
+ plotly.offline.plot(
+ {
+ "data": all_data,
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ )
+ },
+ filename=html_file,
+ image="svg",
+ image_filename=image_file,
+ image_height=1000,
+ image_width=1200
+ )
+ else:
+ plotly.offline.plot(
+ {
+ "data": all_data,
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ font=dict(
+ size=25
+ )
+ )
+ },
+ filename=html_file,
+ )
+ return 0
+
+
+def write_request_average(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+ logger.info("Writing average graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ result_data = []
+ html_file = "request_average_" + html_file
+
+ # FIXME: deals with multiple input
+ input = input[0]
+ for _input in input.split(","):
+ logger.info("Analysing input {}".format(_input))
+ current_legend = _legends.pop(0)
+ time_data = json.load(open(_input))
+ result = get_request_per_second(time_data)
+ time_keys = list(result.keys())
+ time_keys.sort()
+ time_value = list(map(lambda x: result[x], time_keys))
+ datetime_keys = list()
+ for _time in time_keys:
+ t = time.gmtime(int(_time))
+ datetime_keys.append(datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec))
+ data = Bar(
+ x=datetime_keys,
+ y=time_value,
+ name=current_legend,
+ )
+ result_data.append(data)
+ plotly.offline.plot(
+ {
+ "data": result_data,
+ "layout": Layout(
+ title="Request per second",
+ xaxis=dict(title='Time'),
+ yaxis=dict(title='Request number'),
+ )
+ },
+ filename=html_file,
+ )
+
+
+def write_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+ logger.info("Writing throughput graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ result_data = []
+ html_file = "request_throughput_" + html_file
+ title_generic, title_x, title_y = __get_titles(title)
+
+ cpt_input = 0
+ cpt_request = 0
+ cpt_max = 0
+ average_data_x = []
+ average_data_y = []
+ for _i in input:
+ cpt_max += len(_i.split(","))
+
+ for data in input:
+ for _input in data.split(","):
+ logger.info("Analysing input {}".format(_input))
+ current_legend = _legends.pop(0)
+ time_data = json.load(open(_input))
+ result = get_request_per_second(time_data)
+ time_keys = list(result.keys())
+ time_keys.sort()
+ time_value = list(map(lambda x: result[x], time_keys))
+ index_list = list(map(lambda x: cpt_request + x, range(len(time_keys))))
+ cpt_request += len(index_list)
+ import itertools
+ average_data_y.extend(
+ [list(itertools.accumulate(result.values()))[-1]/len(result.values())]*len(result.values())
+ )
+ average_data_x.extend(index_list)
+ data = Scatter(
+ x=index_list,
+ y=time_value,
+ name=current_legend,
+ line=dict(
+ color="rgb({},{},{})".format(0, cpt_input*255/cpt_max, cpt_input*255/cpt_max)
+ ),
+ mode="lines+markers"
+ )
+ result_data.append(data)
+ cpt_input += 1
+ data = Scatter(
+ x=average_data_x,
+ y=average_data_y,
+ name="Average",
+ line=dict(
+ color="rgb({},{},{})".format(255, 0, 0)
+ ),
+ mode="lines"
+ )
+ logger.debug(average_data_x)
+ logger.debug(average_data_y)
+ result_data.append(data)
+ plotly.offline.plot(
+ {
+ "data": result_data,
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ font=dict(
+ size=15
+ )
+ )
+ },
+ filename=html_file,
+ )
+
+
+def write_global_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+ logger.info("Writing global throughput graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ result_data = []
+ # html_file = "request_throughput_" + html_file
+ title_generic, title_x, title_y = __get_titles(title)
+
+ cpt_input = 0
+ cpt_global = 0
+ cpt_max = 0
+ average_data_x = []
+ final_time_data = None
+ average_data_y = []
+ continuous_data_x = []
+ continuous_data_y = []
+ for _i in input:
+ cpt_max += len(_i.split(","))
+
+ for data in input:
+ for _input in data.split(","):
+ logger.info("Analysing input {}".format(_input))
+ # current_legend = _legends.pop(0)
+ _time_data = json.load(open(_input))
+ result, average, time_data = get_latency(_time_data, plot_result)
+ if not final_time_data:
+ final_time_data = time_data
+ continuous_data_y.extend(result)
+ cpt_global += len(result)
+ _cpt = 0
+ for item in result:
+ if len(average_data_y) <= _cpt:
+ average_data_y.append([item, ])
+ average_data_x.append(_cpt)
+ else:
+ _list = average_data_y[_cpt]
+ _list.append(item)
+ average_data_y[_cpt] = _list
+ _cpt += 1
+ # time_keys = list(map(lambda x: x['url'], result))
+ # time_keys.sort()
+ # time_value = list(map(lambda x: result[x], time_keys))
+ # index_list = list(map(lambda x: cpt_request + x, range(len(time_keys))))
+ # cpt_request += len(index_list)
+ # average_data_y.extend(
+ # [list(itertools.accumulate(result.values()))[-1]/len(result.values())]*len(result.values())
+ # )
+ # average_data_x.extend(index_list)
+ cpt_input += 1
+ data_continuous = Scatter(
+ x=list(range(len(continuous_data_y))),
+ y=continuous_data_y,
+ name="continuous_data_y",
+ line=dict(
+ color="rgb({},{},{})".format(0, 0, 255)
+ ),
+ mode="lines"
+ )
+ for index, item in enumerate(average_data_y):
+ av = list(itertools.accumulate(item))[-1]/len(item)
+ average_data_y[index] = av
+
+ average_data = []
+ for cpt in range(len(time_data)):
+ average_data.append([average_data_y[cpt], time_data[cpt]])
+
+ sorted(average_data, key=lambda x: x[1])
+
+ average_data_x = []
+ start_time = None
+ for item in map(lambda x: x[1], average_data):
+ if not start_time:
+ start_time = item
+ item = item - start_time
+ millis = int(str(item).split('.')[-1][:6])
+ t = time.gmtime(int(item))
+ average_data_x.append(
+ datetime.datetime(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec, millis)
+ )
+
+ data_average = Scatter(
+ x=average_data_x,
+ y=list(map(lambda x: x[0], average_data)),
+ name="Average",
+ line=dict(
+ color="rgb({},{},{})".format(0, 0, 255)
+ ),
+ mode="lines"
+ )
+ plotly.offline.plot(
+ {
+ "data": [data_average, ],
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ font=dict(
+ size=15
+ )
+ )
+ },
+ filename="average_throughput_" + html_file,
+ )
+ plotly.offline.plot(
+ {
+ "data": [data_continuous, ],
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ font=dict(
+ size=15
+ )
+ )
+ },
+ filename="continuous_throughput_" + html_file,
+ )
+
+
+def write_parallel_throughput(legend=None, input=None, image_file=None, html_file=None, plot_result="", title=None):
+ logger.info("Writing global throughput graph")
+ _legends, secondary_legend = __get_legends(legend, len(input))
+ result_data = []
+ title_generic, title_x, title_y = __get_titles(title)
+
+ cpt_input = 0
+ cpt_global = 0
+ cpt_max = 0
+ overhead_data = []
+ MAX = 60
+ for _i in input:
+ cpt_max += len(_i.split(","))
+ for data in input:
+ for _input in data.split(","):
+ logger.info("Analysing input {}".format(_input))
+ current_legend = _legends.pop(0)
+ _time_data = json.load(open(_input))
+ result, average, time_data = get_latency(_time_data, plot_result)
+ result = result[:MAX]
+ cpt_global += len(result)
+ if not overhead_data:
+ for _data in result:
+ overhead_data.append(list())
+ for _index, _data in enumerate(result):
+ _item = overhead_data[_index]
+ _item.append(_data)
+ overhead_data[_index] = _item
+
+ data_continuous = Scatter(
+ x=__get_time_axis(time_data),
+ # x=list(range(len(result))),
+ y=result,
+ name=current_legend,
+ line=dict(
+ color="rgb({},{},{})".format(0, cpt_input * 255 / cpt_max, cpt_input * 255 / cpt_max)
+ ),
+ mode="lines"
+ )
+ cpt_input += 1
+ result_data.append(data_continuous)
+
+ for _index, _data in enumerate(overhead_data):
+ if len(_data) == 2:
+ _item = overhead_data[_index]
+ overhead_data[_index] = 1-_item[1]/_item[0]
+ data_overhead = Scatter(
+ x=__get_time_axis(time_data),
+ # x=list(range(len(result))),
+ y=overhead_data,
+ name="Overhead",
+ line=dict(
+ color="rgb({},{},{})".format(255, 0, 0)
+ ),
+ mode="lines"
+ )
+ # result_data.append(data_overhead)
+ plotly.offline.plot(
+ {
+ "data": result_data,
+ "layout": Layout(
+ title=title_generic,
+ xaxis=dict(title=title_x),
+ yaxis=dict(title=title_y),
+ font=dict(
+ size=20
+ )
+ )
+ },
+ filename="parallel_throughput_" + html_file,
+ )
+
+
def main():
- args = init()
- if args.distgraph:
- write_distgraph(legend=args.legend, input=args.input, image_file=args.write_image,
- html_file=args.write_html)
+ args, commands = init()
+ if args.command in commands:
+ commands[args.command](
+ legend=args.legend,
+ input=args.input,
+ image_file=args.write_image,
+ html_file=args.write_html,
+ plot_result=args.plot_result,
+ title=args.titles
+ )
else:
- write_graph(legend=args.legend, input=args.input, image_file=args.write_image,
- html_file=args.write_html)
+ logger.error("Unkwnon command: {}".format(args.command))
if __name__ == "__main__":