diff options
Diffstat (limited to 'moon-abe/pbc-0.5.14/include/pbc_field.h')
-rw-r--r-- | moon-abe/pbc-0.5.14/include/pbc_field.h | 694 |
1 files changed, 0 insertions, 694 deletions
diff --git a/moon-abe/pbc-0.5.14/include/pbc_field.h b/moon-abe/pbc-0.5.14/include/pbc_field.h deleted file mode 100644 index 5bcb8c83..00000000 --- a/moon-abe/pbc-0.5.14/include/pbc_field.h +++ /dev/null @@ -1,694 +0,0 @@ -/* - * field_t: represents fields, rings and groups. - * element_t: represents an element of a field_t. - */ - -// Requires: -// * stdarg.h -// * stdio.h -// * gmp.h -// * utils.h -#ifndef __PBC_FIELD_H__ -#define __PBC_FIELD_H__ - -struct field_s; - -struct element_s { - struct field_s *field; - void *data; -}; -typedef struct element_s *element_ptr; -typedef struct element_s element_t[1]; - -struct element_pp_s { - struct field_s *field; - void *data; -}; -typedef struct element_pp_s element_pp_t[1]; -typedef struct element_pp_s *element_pp_ptr; - -void pbc_assert(int expr, char *msg, const char *func); -void pbc_assert_match2(element_ptr a, element_ptr b, const char *func); -void pbc_assert_match3(element_ptr a, element_ptr b, element_ptr c, - const char *func); - -struct multiz_s; -typedef struct multiz_s *multiz; - -struct pairing_s; -struct field_s { - void (*field_clear)(struct field_s *f); - void (*init)(element_ptr); - void (*clear)(element_ptr); - - void (*set_mpz)(element_ptr, mpz_ptr); - void (*set_multiz)(element_ptr, multiz); - void (*set)(element_ptr, element_ptr); - void (*set0)(element_ptr); - void (*set1)(element_ptr); - int (*set_str)(element_ptr e, const char *s, int base); - size_t(*out_str)(FILE *stream, int base, element_ptr); - void (*add)(element_ptr, element_ptr, element_ptr); - void (*sub)(element_ptr, element_ptr, element_ptr); - void (*mul)(element_ptr, element_ptr, element_ptr); - - int (*is_sqr)(element_ptr); - void (*sqrt)(element_ptr, element_ptr); - - // Defaults exist for these functions. - int (*item_count)(element_ptr); - element_ptr (*item)(element_ptr, int); - element_ptr (*get_x)(element_ptr); - element_ptr (*get_y)(element_ptr); - void (*set_si)(element_ptr, signed long int); - void (*add_ui)(element_ptr, element_ptr, unsigned long int); - void (*mul_mpz)(element_ptr, element_ptr, mpz_ptr); - void (*mul_si)(element_ptr, element_ptr, signed long int); - void (*div)(element_ptr, element_ptr, element_ptr); - void (*doub)(element_ptr, element_ptr); // Can't call it "double"! - void (*multi_doub)(element_ptr*, element_ptr*, int n); - void (*multi_add)(element_ptr*, element_ptr*, element_ptr*, int n); - void (*halve)(element_ptr, element_ptr); - void (*square)(element_ptr, element_ptr); - - void (*cubic) (element_ptr, element_ptr); - void (*pow_mpz)(element_ptr, element_ptr, mpz_ptr); - void (*invert)(element_ptr, element_ptr); - void (*neg)(element_ptr, element_ptr); - void (*random)(element_ptr); - void (*from_hash)(element_ptr, void *data, int len); - int (*is1)(element_ptr); - int (*is0)(element_ptr); - int (*sign)(element_ptr); // satisfies sign(x) = -sign(-x) - int (*cmp)(element_ptr, element_ptr); - int (*to_bytes)(unsigned char *data, element_ptr); - int (*from_bytes)(element_ptr, unsigned char *data); - int (*length_in_bytes)(element_ptr); - int fixed_length_in_bytes; // length of an element in bytes; -1 for variable - int (*snprint)(char *s, size_t n, element_ptr e); - void (*to_mpz)(mpz_ptr, element_ptr); - void (*out_info)(FILE *, struct field_s *); - void (*pp_init)(element_pp_t p, element_t in); - void (*pp_clear)(element_pp_t p); - void (*pp_pow)(element_t out, mpz_ptr power, element_pp_t p); - - struct pairing_s *pairing; - - mpz_t order; // 0 for infinite order - element_ptr nqr; // nonquadratic residue - - char *name; - void *data; -}; -typedef struct field_s *field_ptr; -typedef struct field_s field_t[1]; - -typedef void (*fieldmap) (element_t dst, element_t src); - -void field_out_info(FILE* out, field_ptr f); - -/*@manual internal -Initialize 'e' to be an element of the algebraic structure 'f' -and set it to be the zero element. -*/ -static inline void element_init(element_t e, field_ptr f) { - e->field = f; - f->init(e); -} - -element_ptr element_new(field_ptr f); -void element_free(element_ptr e); - -/*@manual einit -Initialize 'e' to be an element of the algebraic structure that 'e2' -lies in. -*/ -static inline void element_init_same_as(element_t e, element_t e2) { - element_init(e, e2->field); -} - -/*@manual einit -Free the space occupied by 'e'. Call this when -the variable 'e' is no longer needed. -*/ -static inline void element_clear(element_t e) { - e->field->clear(e); -} - -/*@manual eio -Output 'e' on 'stream' in base 'base'. The base must be between -2 and 36. -*/ -static inline size_t element_out_str(FILE * stream, int base, element_t e) { - return e->field->out_str(stream, base, e); -} - -/*@manual eio -*/ -int element_printf(const char *format, ...); - -/*@manual eio -*/ -int element_fprintf(FILE * stream, const char *format, ...); - -/*@manual eio -*/ -int element_snprintf(char *buf, size_t size, const char *fmt, ...); - -/*@manual eio -Same as printf family -except also has the 'B' conversion specifier for types -of *element_t*, and 'Y', 'Z' conversion specifiers for -+mpz_t+. For example if 'e' is of type -+element_t+ then - - element_printf("%B\n", e); - -will print the value of 'e' in a human-readable form on standard output. -*/ -int element_vsnprintf(char *buf, size_t size, const char *fmt, va_list ap); - -/*@manual eio -Convert an element to a human-friendly string. -Behaves as *snprintf* but only on one element at a time. -*/ -static inline int element_snprint(char *s, size_t n, element_t e) { - return e->field->snprint(s, n, e); -} - -static inline void element_set_multiz(element_t e, multiz m) { - e->field->set_multiz(e, m); -} - -/*@manual eio -Set the element 'e' from 's', a null-terminated C string in base 'base'. -Whitespace is ignored. Points have the form "['x,y']" or "'O'", -while polynomials have the form "['a0,...,an']". -Returns number of characters read (unlike GMP's mpz_set_str). -A return code of zero means PBC could not find a well-formed string -describing an element. -*/ -static inline int element_set_str(element_t e, const char *s, int base) { - return e->field->set_str(e, s, base); -} - -/*@manual eassign -Set 'e' to zero. -*/ -static inline void element_set0(element_t e) { - e->field->set0(e); -} - -/*@manual eassign -Set 'e' to one. -*/ -static inline void element_set1(element_t e) { - e->field->set1(e); -} - -/*@manual eassign -Set 'e' to 'i'. -*/ -static inline void element_set_si(element_t e, signed long int i) { - e->field->set_si(e, i); -} - -/*@manual eassign -Set 'e' to 'z'. -*/ -static inline void element_set_mpz(element_t e, mpz_t z) { - e->field->set_mpz(e, z); -} - -/*@manual eassign -Set 'e' to 'a'. -*/ -static inline void element_set(element_t e, element_t a) { - PBC_ASSERT_MATCH2(e, a); - e->field->set(e, a); -} - -static inline void element_add_ui(element_t n, element_t a, - unsigned long int b) { - n->field->add_ui(n, a, b); -} - -/*@manual econvert -Converts 'e' to a GMP integer 'z' -if such an operation makes sense -*/ -static inline void element_to_mpz(mpz_t z, element_t e) { - e->field->to_mpz(z, e); -} - -static inline long element_to_si(element_t e) { - mpz_t z; - mpz_init(z); - e->field->to_mpz(z, e); - long res = mpz_get_si(z); - mpz_clear(z); - return res; -} - -/*@manual econvert -Generate an element 'e' deterministically from -the 'len' bytes stored in the buffer 'data'. -*/ -static inline void element_from_hash(element_t e, void *data, int len) { - e->field->from_hash(e, data, len); -} - -/*@manual earith -Set 'n' to 'a' + 'b'. -*/ -static inline void element_add(element_t n, element_t a, element_t b) { - PBC_ASSERT_MATCH3(n, a, b); - n->field->add(n, a, b); -} - -/*@manual earith -Set 'n' to 'a' - 'b'. -*/ -static inline void element_sub(element_t n, element_t a, element_t b) { - PBC_ASSERT_MATCH3(n, a, b); - n->field->sub(n, a, b); -} - -/*@manual earith -Set 'n' = 'a' 'b'. -*/ -static inline void element_mul(element_t n, element_t a, element_t b) { - PBC_ASSERT_MATCH3(n, a, b); - n->field->mul(n, a, b); -} - -static inline void element_cubic(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->cubic(n, a); -} - -/*@manual earith -*/ -static inline void element_mul_mpz(element_t n, element_t a, mpz_t z) { - PBC_ASSERT_MATCH2(n, a); - n->field->mul_mpz(n, a, z); -} - -/*@manual earith -Set 'n' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a'#'s#. -*/ -static inline void element_mul_si(element_t n, element_t a, - signed long int z) { - PBC_ASSERT_MATCH2(n, a); - n->field->mul_si(n, a, z); -} - -/*@manual earith -'z' must be an element of a integer mod ring (i.e. *Z*~n~ for some n). -Set 'c' = 'a' 'z', that is 'a' + 'a' + ... + 'a' -where there are 'z' 'a''s. -*/ -static inline void element_mul_zn(element_t c, element_t a, element_t z) { - mpz_t z0; - PBC_ASSERT_MATCH2(c, a); - //TODO: check z->field is Zn - mpz_init(z0); - element_to_mpz(z0, z); - element_mul_mpz(c, a, z0); - mpz_clear(z0); -} - -/*@manual earith -Set 'n' = 'a' / 'b'. -*/ -static inline void element_div(element_t n, element_t a, element_t b) { - PBC_ASSERT_MATCH3(n, a, b); - n->field->div(n, a, b); -} - -/*@manual earith -Set 'n' = 'a' + 'a'. -*/ -static inline void element_double(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->doub(n, a); -} - -// Set n_i = a_i + a_i for all i at one time. -// Uses multi_doub(), which only elliptic curves have at the moment. -void element_multi_double(element_t n[], element_t a[], int m); - -// Set n_i =a_i + b_i for all i at one time. -// Uses multi_add(), which only elliptic curves have at the moment. -void element_multi_add(element_t n[], element_t a[],element_t b[], int m); - -/*@manual earith -Set 'n' = 'a/2' -*/ -static inline void element_halve(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->halve(n, a); -} - -/*@manual earith -Set 'n' = 'a'^2^ -*/ -static inline void element_square(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->square(n, a); -} - -/*@manual epow -Set 'x' = 'a'^'n'^, that is -'a' times 'a' times ... times 'a' where there are 'n' 'a'#'s#. -*/ -static inline void element_pow_mpz(element_t x, element_t a, mpz_t n) { - PBC_ASSERT_MATCH2(x, a); - x->field->pow_mpz(x, a, n); -} - -/*@manual epow -Set 'x' = 'a'^'n'^, where 'n' is an element of a ring *Z*~N~ -for some 'N' (typically the order of the algebraic structure 'x' lies in). -*/ -static inline void element_pow_zn(element_t x, element_t a, element_t n) { - mpz_t z; - PBC_ASSERT_MATCH2(x, a); - mpz_init(z); - element_to_mpz(z, n); - element_pow_mpz(x, a, z); - mpz_clear(z); -} - -/*@manual earith -Set 'n' = -'a'. -*/ -static inline void element_neg(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->neg(n, a); -} - -/*@manual earith -Set 'n' to the inverse of 'a'. -*/ -static inline void element_invert(element_t n, element_t a) { - PBC_ASSERT_MATCH2(n, a); - n->field->invert(n, a); -} - -/*@manual erandom -If the 'e' lies in a finite algebraic structure, -assigns a uniformly random element to 'e'. -*/ -static inline void element_random(element_t e) { - e->field->random(e); -} - -/*@manual ecmp -Returns true if 'n' is 1. -*/ -static inline int element_is1(element_t n) { - return n->field->is1(n); -} - -/*@manual ecmp -Returns true if 'n' is 0. -*/ -static inline int element_is0(element_t n) { - return n->field->is0(n); -} - -/*@manual ecmp -Returns 0 if 'a' and 'b' are the same, nonzero otherwise. -*/ -static inline int element_cmp(element_t a, element_t b) { - PBC_ASSERT_MATCH2(a, b); - return a->field->cmp(a, b); -} - -/*@manual ecmp -Returns nonzero if 'a' is a perfect square (quadratic residue), -zero otherwise. -*/ -static inline int element_is_sqr(element_t a) { - return a->field->is_sqr(a); -} - -/*@manual ecmp -*/ -static inline int element_sgn(element_t a) { - return a->field->sign(a); -} - -/*@manual ecmp -If 'a' is zero, returns 0. For nozero 'a' the behaviour depends on -the algebraic structure, but has the property that -element_sgn('a') = -element_sgn(-'a') -and -element_sgn('a') = 0 implies 'a' = 0 with overwhelming probability. -*/ -static inline int element_sign(element_t a) { - return a->field->sign(a); -} - -static inline void element_sqrt(element_t a, element_t b) { - PBC_ASSERT_MATCH2(a, b); - a->field->sqrt(a, b); -} - -/*@manual etrade -Returns the length in bytes the element 'e' will take to represent -*/ -static inline int element_length_in_bytes(element_t e) { - if (e->field->fixed_length_in_bytes < 0) { - return e->field->length_in_bytes(e); - } else { - return e->field->fixed_length_in_bytes; - } -} - -/*@manual etrade -Converts 'e' to byte, writing the result in the buffer 'data'. -The number of bytes it will write can be determined from calling -*element_length_in_bytes()*. Returns number of bytes written. -*/ -static inline int element_to_bytes(unsigned char *data, element_t e) { - return e->field->to_bytes(data, e); -} - -/*@manual etrade -Reads 'e' from the buffer 'data', and returns the number of bytes read. -*/ -static inline int element_from_bytes(element_t e, unsigned char *data) { - return e->field->from_bytes(e, data); -} - -/*@manual epow -Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, and is generally faster than -performing two separate exponentiations. -*/ -void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2, - mpz_t n2); -/*@manual epow -Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, -but 'n1', 'n2' must be elements of a ring *Z*~n~ for some integer n. -*/ -static inline void element_pow2_zn(element_t x, element_t a1, element_t n1, - element_t a2, element_t n2) { - mpz_t z1, z2; - mpz_init(z1); - mpz_init(z2); - element_to_mpz(z1, n1); - element_to_mpz(z2, n2); - element_pow2_mpz(x, a1, z1, a2, z2); - mpz_clear(z1); - mpz_clear(z2); -} - -/*@manual epow -Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^, -generally faster than performing three separate exponentiations. -*/ -void element_pow3_mpz(element_t x, element_t a1, mpz_t n1, - element_t a2, mpz_t n2, element_t a3, mpz_t n3); - -/*@manual epow -Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^, -but 'n1', 'n2', 'n3' must be elements of a ring *Z*~n~ for some integer n. -*/ -static inline void element_pow3_zn(element_t x, element_t a1, element_t n1, - element_t a2, element_t n2, - element_t a3, element_t n3) { - mpz_t z1, z2, z3; - mpz_init(z1); - mpz_init(z2); - mpz_init(z3); - element_to_mpz(z1, n1); - element_to_mpz(z2, n2); - element_to_mpz(z3, n3); - element_pow3_mpz(x, a1, z1, a2, z2, a3, z3); - mpz_clear(z1); - mpz_clear(z2); - mpz_clear(z3); -} - -void field_clear(field_ptr f); - -element_ptr field_get_nqr(field_ptr f); -void field_set_nqr(field_ptr f, element_t nqr); -void field_gen_nqr(field_ptr f); - -void field_init(field_ptr f); - -static inline int mpz_is0(mpz_t z) { - return !mpz_sgn(z); - //return !mpz_cmp_ui(z, 0); -} - -/*@manual etrade -Assumes 'e' is a point on an elliptic curve. -Writes the x-coordinate of 'e' to the buffer 'data' -*/ -int element_to_bytes_x_only(unsigned char *data, element_t e); -/*@manual etrade -Assumes 'e' is a point on an elliptic curve. -Sets 'e' to a point with -x-coordinate represented by the buffer 'data'. This is not unique. -For each 'x'-coordinate, there exist two different points, at least -for the elliptic curves in PBC. (They are inverses of each other.) -*/ -int element_from_bytes_x_only(element_t e, unsigned char *data); -/*@manual etrade -Assumes 'e' is a point on an elliptic curve. -Returns the length in bytes needed to hold the x-coordinate of 'e'. -*/ -int element_length_in_bytes_x_only(element_t e); - -/*@manual etrade -If possible, outputs a compressed form of the element 'e' to -the buffer of bytes 'data'. -Currently only implemented for points on an elliptic curve. -*/ -int element_to_bytes_compressed(unsigned char *data, element_t e); - -/*@manual etrade -Sets element 'e' to the element in compressed form in the buffer of bytes -'data'. -Currently only implemented for points on an elliptic curve. -*/ -int element_from_bytes_compressed(element_t e, unsigned char *data); - -/*@manual etrade -Returns the number of bytes needed to hold 'e' in compressed form. -Currently only implemented for points on an elliptic curve. -*/ -int element_length_in_bytes_compressed(element_t e); - -/*@manual epow -Prepare to exponentiate an element 'in', and store preprocessing information -in 'p'. -*/ -static inline void element_pp_init(element_pp_t p, element_t in) { - p->field = in->field; - in->field->pp_init(p, in); -} - -/*@manual epow -Clear 'p'. Should be called after 'p' is no longer needed. -*/ -static inline void element_pp_clear(element_pp_t p) { - p->field->pp_clear(p); -} - -/*@manual epow -Raise 'in' to 'power' and store the result in 'out', where 'in' -is a previously preprocessed element, that is, the second argument -passed to a previous *element_pp_init* call. -*/ -static inline void element_pp_pow(element_t out, mpz_ptr power, - element_pp_t p) { - p->field->pp_pow(out, power, p); -} - -/*@manual epow -Same except 'power' is an element of *Z*~n~ for some integer n. -*/ -static inline void element_pp_pow_zn(element_t out, element_t power, - element_pp_t p) { - mpz_t z; - mpz_init(z); - element_to_mpz(z, power); - element_pp_pow(out, z, p); - mpz_clear(z); -} - -void pbc_mpz_out_raw_n(unsigned char *data, int n, mpz_t z); -void pbc_mpz_from_hash(mpz_t z, mpz_t limit, - unsigned char *data, unsigned int len); - -/*@manual etrade -For points, returns the number of coordinates. -For polynomials, returns the number of coefficients. -Otherwise returns zero. -*/ -static inline int element_item_count(element_t e) { - return e->field->item_count(e); -} - -/*@manual etrade -For points, returns 'n'#th# coordinate. -For polynomials, returns coefficient of 'x^n^'. -Otherwise returns NULL. -The element the return value points to may be modified. -*/ -static inline element_ptr element_item(element_t e, int i) { - // TODO: Document the following: - // For polynomials, never zero the leading coefficient, e.g. never write: - // element_set0(element_item(f, poly_degree(f))); - // Use poly_set_coeff0() to zero the leading coefficient. - return e->field->item(e, i); -} - -// Returns the field containing the items. -// Returns NULL if there are no items. -static inline field_ptr element_item_field(element_t e) { - if (!element_item_count(e)) return NULL; - return element_item(e, 0)->field; -} - -/*@manual etrade -Equivalent to `element_item(a, 0)`. -*/ -static inline element_ptr element_x(element_ptr a) { - return a->field->get_x(a); -} -/*@manual etrade -Equivalent to `element_item(a, 1)`. -*/ -static inline element_ptr element_y(element_ptr a) { - return a->field->get_y(a); -} - -/*@manual epow -Computes 'x' such that 'g^x^ = h' by brute force, where -'x' lies in a field where `element_set_mpz()` makes sense. -*/ -void element_dlog_brute_force(element_t x, element_t g, element_t h); - -/*@manual epow -Computes 'x' such that 'g^x^ = h' using Pollard rho method, where -'x' lies in a field where `element_set_mpz()` makes sense. -*/ -void element_dlog_pollard_rho(element_t x, element_t g, element_t h); - -// Trial division up to a given limit. If limit == NULL, then there is no limit. -// Call the callback for each factor found, abort and return 1 if the callback -// returns nonzero, otherwise return 0. -int pbc_trial_divide(int (*fun)(mpz_t factor, - unsigned int multiplicity, - void *scope_ptr), - void *scope_ptr, - mpz_t n, - mpz_ptr limit); - -#endif // __PBC_FIELD_H__ |