aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/include/pbc_field.h
diff options
context:
space:
mode:
Diffstat (limited to 'moon-abe/pbc-0.5.14/include/pbc_field.h')
-rw-r--r--moon-abe/pbc-0.5.14/include/pbc_field.h694
1 files changed, 0 insertions, 694 deletions
diff --git a/moon-abe/pbc-0.5.14/include/pbc_field.h b/moon-abe/pbc-0.5.14/include/pbc_field.h
deleted file mode 100644
index 5bcb8c83..00000000
--- a/moon-abe/pbc-0.5.14/include/pbc_field.h
+++ /dev/null
@@ -1,694 +0,0 @@
-/*
- * field_t: represents fields, rings and groups.
- * element_t: represents an element of a field_t.
- */
-
-// Requires:
-// * stdarg.h
-// * stdio.h
-// * gmp.h
-// * utils.h
-#ifndef __PBC_FIELD_H__
-#define __PBC_FIELD_H__
-
-struct field_s;
-
-struct element_s {
- struct field_s *field;
- void *data;
-};
-typedef struct element_s *element_ptr;
-typedef struct element_s element_t[1];
-
-struct element_pp_s {
- struct field_s *field;
- void *data;
-};
-typedef struct element_pp_s element_pp_t[1];
-typedef struct element_pp_s *element_pp_ptr;
-
-void pbc_assert(int expr, char *msg, const char *func);
-void pbc_assert_match2(element_ptr a, element_ptr b, const char *func);
-void pbc_assert_match3(element_ptr a, element_ptr b, element_ptr c,
- const char *func);
-
-struct multiz_s;
-typedef struct multiz_s *multiz;
-
-struct pairing_s;
-struct field_s {
- void (*field_clear)(struct field_s *f);
- void (*init)(element_ptr);
- void (*clear)(element_ptr);
-
- void (*set_mpz)(element_ptr, mpz_ptr);
- void (*set_multiz)(element_ptr, multiz);
- void (*set)(element_ptr, element_ptr);
- void (*set0)(element_ptr);
- void (*set1)(element_ptr);
- int (*set_str)(element_ptr e, const char *s, int base);
- size_t(*out_str)(FILE *stream, int base, element_ptr);
- void (*add)(element_ptr, element_ptr, element_ptr);
- void (*sub)(element_ptr, element_ptr, element_ptr);
- void (*mul)(element_ptr, element_ptr, element_ptr);
-
- int (*is_sqr)(element_ptr);
- void (*sqrt)(element_ptr, element_ptr);
-
- // Defaults exist for these functions.
- int (*item_count)(element_ptr);
- element_ptr (*item)(element_ptr, int);
- element_ptr (*get_x)(element_ptr);
- element_ptr (*get_y)(element_ptr);
- void (*set_si)(element_ptr, signed long int);
- void (*add_ui)(element_ptr, element_ptr, unsigned long int);
- void (*mul_mpz)(element_ptr, element_ptr, mpz_ptr);
- void (*mul_si)(element_ptr, element_ptr, signed long int);
- void (*div)(element_ptr, element_ptr, element_ptr);
- void (*doub)(element_ptr, element_ptr); // Can't call it "double"!
- void (*multi_doub)(element_ptr*, element_ptr*, int n);
- void (*multi_add)(element_ptr*, element_ptr*, element_ptr*, int n);
- void (*halve)(element_ptr, element_ptr);
- void (*square)(element_ptr, element_ptr);
-
- void (*cubic) (element_ptr, element_ptr);
- void (*pow_mpz)(element_ptr, element_ptr, mpz_ptr);
- void (*invert)(element_ptr, element_ptr);
- void (*neg)(element_ptr, element_ptr);
- void (*random)(element_ptr);
- void (*from_hash)(element_ptr, void *data, int len);
- int (*is1)(element_ptr);
- int (*is0)(element_ptr);
- int (*sign)(element_ptr); // satisfies sign(x) = -sign(-x)
- int (*cmp)(element_ptr, element_ptr);
- int (*to_bytes)(unsigned char *data, element_ptr);
- int (*from_bytes)(element_ptr, unsigned char *data);
- int (*length_in_bytes)(element_ptr);
- int fixed_length_in_bytes; // length of an element in bytes; -1 for variable
- int (*snprint)(char *s, size_t n, element_ptr e);
- void (*to_mpz)(mpz_ptr, element_ptr);
- void (*out_info)(FILE *, struct field_s *);
- void (*pp_init)(element_pp_t p, element_t in);
- void (*pp_clear)(element_pp_t p);
- void (*pp_pow)(element_t out, mpz_ptr power, element_pp_t p);
-
- struct pairing_s *pairing;
-
- mpz_t order; // 0 for infinite order
- element_ptr nqr; // nonquadratic residue
-
- char *name;
- void *data;
-};
-typedef struct field_s *field_ptr;
-typedef struct field_s field_t[1];
-
-typedef void (*fieldmap) (element_t dst, element_t src);
-
-void field_out_info(FILE* out, field_ptr f);
-
-/*@manual internal
-Initialize 'e' to be an element of the algebraic structure 'f'
-and set it to be the zero element.
-*/
-static inline void element_init(element_t e, field_ptr f) {
- e->field = f;
- f->init(e);
-}
-
-element_ptr element_new(field_ptr f);
-void element_free(element_ptr e);
-
-/*@manual einit
-Initialize 'e' to be an element of the algebraic structure that 'e2'
-lies in.
-*/
-static inline void element_init_same_as(element_t e, element_t e2) {
- element_init(e, e2->field);
-}
-
-/*@manual einit
-Free the space occupied by 'e'. Call this when
-the variable 'e' is no longer needed.
-*/
-static inline void element_clear(element_t e) {
- e->field->clear(e);
-}
-
-/*@manual eio
-Output 'e' on 'stream' in base 'base'. The base must be between
-2 and 36.
-*/
-static inline size_t element_out_str(FILE * stream, int base, element_t e) {
- return e->field->out_str(stream, base, e);
-}
-
-/*@manual eio
-*/
-int element_printf(const char *format, ...);
-
-/*@manual eio
-*/
-int element_fprintf(FILE * stream, const char *format, ...);
-
-/*@manual eio
-*/
-int element_snprintf(char *buf, size_t size, const char *fmt, ...);
-
-/*@manual eio
-Same as printf family
-except also has the 'B' conversion specifier for types
-of *element_t*, and 'Y', 'Z' conversion specifiers for
-+mpz_t+. For example if 'e' is of type
-+element_t+ then
-
- element_printf("%B\n", e);
-
-will print the value of 'e' in a human-readable form on standard output.
-*/
-int element_vsnprintf(char *buf, size_t size, const char *fmt, va_list ap);
-
-/*@manual eio
-Convert an element to a human-friendly string.
-Behaves as *snprintf* but only on one element at a time.
-*/
-static inline int element_snprint(char *s, size_t n, element_t e) {
- return e->field->snprint(s, n, e);
-}
-
-static inline void element_set_multiz(element_t e, multiz m) {
- e->field->set_multiz(e, m);
-}
-
-/*@manual eio
-Set the element 'e' from 's', a null-terminated C string in base 'base'.
-Whitespace is ignored. Points have the form "['x,y']" or "'O'",
-while polynomials have the form "['a0,...,an']".
-Returns number of characters read (unlike GMP's mpz_set_str).
-A return code of zero means PBC could not find a well-formed string
-describing an element.
-*/
-static inline int element_set_str(element_t e, const char *s, int base) {
- return e->field->set_str(e, s, base);
-}
-
-/*@manual eassign
-Set 'e' to zero.
-*/
-static inline void element_set0(element_t e) {
- e->field->set0(e);
-}
-
-/*@manual eassign
-Set 'e' to one.
-*/
-static inline void element_set1(element_t e) {
- e->field->set1(e);
-}
-
-/*@manual eassign
-Set 'e' to 'i'.
-*/
-static inline void element_set_si(element_t e, signed long int i) {
- e->field->set_si(e, i);
-}
-
-/*@manual eassign
-Set 'e' to 'z'.
-*/
-static inline void element_set_mpz(element_t e, mpz_t z) {
- e->field->set_mpz(e, z);
-}
-
-/*@manual eassign
-Set 'e' to 'a'.
-*/
-static inline void element_set(element_t e, element_t a) {
- PBC_ASSERT_MATCH2(e, a);
- e->field->set(e, a);
-}
-
-static inline void element_add_ui(element_t n, element_t a,
- unsigned long int b) {
- n->field->add_ui(n, a, b);
-}
-
-/*@manual econvert
-Converts 'e' to a GMP integer 'z'
-if such an operation makes sense
-*/
-static inline void element_to_mpz(mpz_t z, element_t e) {
- e->field->to_mpz(z, e);
-}
-
-static inline long element_to_si(element_t e) {
- mpz_t z;
- mpz_init(z);
- e->field->to_mpz(z, e);
- long res = mpz_get_si(z);
- mpz_clear(z);
- return res;
-}
-
-/*@manual econvert
-Generate an element 'e' deterministically from
-the 'len' bytes stored in the buffer 'data'.
-*/
-static inline void element_from_hash(element_t e, void *data, int len) {
- e->field->from_hash(e, data, len);
-}
-
-/*@manual earith
-Set 'n' to 'a' + 'b'.
-*/
-static inline void element_add(element_t n, element_t a, element_t b) {
- PBC_ASSERT_MATCH3(n, a, b);
- n->field->add(n, a, b);
-}
-
-/*@manual earith
-Set 'n' to 'a' - 'b'.
-*/
-static inline void element_sub(element_t n, element_t a, element_t b) {
- PBC_ASSERT_MATCH3(n, a, b);
- n->field->sub(n, a, b);
-}
-
-/*@manual earith
-Set 'n' = 'a' 'b'.
-*/
-static inline void element_mul(element_t n, element_t a, element_t b) {
- PBC_ASSERT_MATCH3(n, a, b);
- n->field->mul(n, a, b);
-}
-
-static inline void element_cubic(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->cubic(n, a);
-}
-
-/*@manual earith
-*/
-static inline void element_mul_mpz(element_t n, element_t a, mpz_t z) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->mul_mpz(n, a, z);
-}
-
-/*@manual earith
-Set 'n' = 'a' 'z', that is 'a' + 'a' + ... + 'a' where there are 'z' 'a'#'s#.
-*/
-static inline void element_mul_si(element_t n, element_t a,
- signed long int z) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->mul_si(n, a, z);
-}
-
-/*@manual earith
-'z' must be an element of a integer mod ring (i.e. *Z*~n~ for some n).
-Set 'c' = 'a' 'z', that is 'a' + 'a' + ... + 'a'
-where there are 'z' 'a''s.
-*/
-static inline void element_mul_zn(element_t c, element_t a, element_t z) {
- mpz_t z0;
- PBC_ASSERT_MATCH2(c, a);
- //TODO: check z->field is Zn
- mpz_init(z0);
- element_to_mpz(z0, z);
- element_mul_mpz(c, a, z0);
- mpz_clear(z0);
-}
-
-/*@manual earith
-Set 'n' = 'a' / 'b'.
-*/
-static inline void element_div(element_t n, element_t a, element_t b) {
- PBC_ASSERT_MATCH3(n, a, b);
- n->field->div(n, a, b);
-}
-
-/*@manual earith
-Set 'n' = 'a' + 'a'.
-*/
-static inline void element_double(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->doub(n, a);
-}
-
-// Set n_i = a_i + a_i for all i at one time.
-// Uses multi_doub(), which only elliptic curves have at the moment.
-void element_multi_double(element_t n[], element_t a[], int m);
-
-// Set n_i =a_i + b_i for all i at one time.
-// Uses multi_add(), which only elliptic curves have at the moment.
-void element_multi_add(element_t n[], element_t a[],element_t b[], int m);
-
-/*@manual earith
-Set 'n' = 'a/2'
-*/
-static inline void element_halve(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->halve(n, a);
-}
-
-/*@manual earith
-Set 'n' = 'a'^2^
-*/
-static inline void element_square(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->square(n, a);
-}
-
-/*@manual epow
-Set 'x' = 'a'^'n'^, that is
-'a' times 'a' times ... times 'a' where there are 'n' 'a'#'s#.
-*/
-static inline void element_pow_mpz(element_t x, element_t a, mpz_t n) {
- PBC_ASSERT_MATCH2(x, a);
- x->field->pow_mpz(x, a, n);
-}
-
-/*@manual epow
-Set 'x' = 'a'^'n'^, where 'n' is an element of a ring *Z*~N~
-for some 'N' (typically the order of the algebraic structure 'x' lies in).
-*/
-static inline void element_pow_zn(element_t x, element_t a, element_t n) {
- mpz_t z;
- PBC_ASSERT_MATCH2(x, a);
- mpz_init(z);
- element_to_mpz(z, n);
- element_pow_mpz(x, a, z);
- mpz_clear(z);
-}
-
-/*@manual earith
-Set 'n' = -'a'.
-*/
-static inline void element_neg(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->neg(n, a);
-}
-
-/*@manual earith
-Set 'n' to the inverse of 'a'.
-*/
-static inline void element_invert(element_t n, element_t a) {
- PBC_ASSERT_MATCH2(n, a);
- n->field->invert(n, a);
-}
-
-/*@manual erandom
-If the 'e' lies in a finite algebraic structure,
-assigns a uniformly random element to 'e'.
-*/
-static inline void element_random(element_t e) {
- e->field->random(e);
-}
-
-/*@manual ecmp
-Returns true if 'n' is 1.
-*/
-static inline int element_is1(element_t n) {
- return n->field->is1(n);
-}
-
-/*@manual ecmp
-Returns true if 'n' is 0.
-*/
-static inline int element_is0(element_t n) {
- return n->field->is0(n);
-}
-
-/*@manual ecmp
-Returns 0 if 'a' and 'b' are the same, nonzero otherwise.
-*/
-static inline int element_cmp(element_t a, element_t b) {
- PBC_ASSERT_MATCH2(a, b);
- return a->field->cmp(a, b);
-}
-
-/*@manual ecmp
-Returns nonzero if 'a' is a perfect square (quadratic residue),
-zero otherwise.
-*/
-static inline int element_is_sqr(element_t a) {
- return a->field->is_sqr(a);
-}
-
-/*@manual ecmp
-*/
-static inline int element_sgn(element_t a) {
- return a->field->sign(a);
-}
-
-/*@manual ecmp
-If 'a' is zero, returns 0. For nozero 'a' the behaviour depends on
-the algebraic structure, but has the property that
-element_sgn('a') = -element_sgn(-'a')
-and
-element_sgn('a') = 0 implies 'a' = 0 with overwhelming probability.
-*/
-static inline int element_sign(element_t a) {
- return a->field->sign(a);
-}
-
-static inline void element_sqrt(element_t a, element_t b) {
- PBC_ASSERT_MATCH2(a, b);
- a->field->sqrt(a, b);
-}
-
-/*@manual etrade
-Returns the length in bytes the element 'e' will take to represent
-*/
-static inline int element_length_in_bytes(element_t e) {
- if (e->field->fixed_length_in_bytes < 0) {
- return e->field->length_in_bytes(e);
- } else {
- return e->field->fixed_length_in_bytes;
- }
-}
-
-/*@manual etrade
-Converts 'e' to byte, writing the result in the buffer 'data'.
-The number of bytes it will write can be determined from calling
-*element_length_in_bytes()*. Returns number of bytes written.
-*/
-static inline int element_to_bytes(unsigned char *data, element_t e) {
- return e->field->to_bytes(data, e);
-}
-
-/*@manual etrade
-Reads 'e' from the buffer 'data', and returns the number of bytes read.
-*/
-static inline int element_from_bytes(element_t e, unsigned char *data) {
- return e->field->from_bytes(e, data);
-}
-
-/*@manual epow
-Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^, and is generally faster than
-performing two separate exponentiations.
-*/
-void element_pow2_mpz(element_t x, element_t a1, mpz_t n1, element_t a2,
- mpz_t n2);
-/*@manual epow
-Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^,
-but 'n1', 'n2' must be elements of a ring *Z*~n~ for some integer n.
-*/
-static inline void element_pow2_zn(element_t x, element_t a1, element_t n1,
- element_t a2, element_t n2) {
- mpz_t z1, z2;
- mpz_init(z1);
- mpz_init(z2);
- element_to_mpz(z1, n1);
- element_to_mpz(z2, n2);
- element_pow2_mpz(x, a1, z1, a2, z2);
- mpz_clear(z1);
- mpz_clear(z2);
-}
-
-/*@manual epow
-Sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
-generally faster than performing three separate exponentiations.
-*/
-void element_pow3_mpz(element_t x, element_t a1, mpz_t n1,
- element_t a2, mpz_t n2, element_t a3, mpz_t n3);
-
-/*@manual epow
-Also sets 'x' = 'a1'^'n1'^ 'a2'^'n2'^ 'a3'^'n3'^,
-but 'n1', 'n2', 'n3' must be elements of a ring *Z*~n~ for some integer n.
-*/
-static inline void element_pow3_zn(element_t x, element_t a1, element_t n1,
- element_t a2, element_t n2,
- element_t a3, element_t n3) {
- mpz_t z1, z2, z3;
- mpz_init(z1);
- mpz_init(z2);
- mpz_init(z3);
- element_to_mpz(z1, n1);
- element_to_mpz(z2, n2);
- element_to_mpz(z3, n3);
- element_pow3_mpz(x, a1, z1, a2, z2, a3, z3);
- mpz_clear(z1);
- mpz_clear(z2);
- mpz_clear(z3);
-}
-
-void field_clear(field_ptr f);
-
-element_ptr field_get_nqr(field_ptr f);
-void field_set_nqr(field_ptr f, element_t nqr);
-void field_gen_nqr(field_ptr f);
-
-void field_init(field_ptr f);
-
-static inline int mpz_is0(mpz_t z) {
- return !mpz_sgn(z);
- //return !mpz_cmp_ui(z, 0);
-}
-
-/*@manual etrade
-Assumes 'e' is a point on an elliptic curve.
-Writes the x-coordinate of 'e' to the buffer 'data'
-*/
-int element_to_bytes_x_only(unsigned char *data, element_t e);
-/*@manual etrade
-Assumes 'e' is a point on an elliptic curve.
-Sets 'e' to a point with
-x-coordinate represented by the buffer 'data'. This is not unique.
-For each 'x'-coordinate, there exist two different points, at least
-for the elliptic curves in PBC. (They are inverses of each other.)
-*/
-int element_from_bytes_x_only(element_t e, unsigned char *data);
-/*@manual etrade
-Assumes 'e' is a point on an elliptic curve.
-Returns the length in bytes needed to hold the x-coordinate of 'e'.
-*/
-int element_length_in_bytes_x_only(element_t e);
-
-/*@manual etrade
-If possible, outputs a compressed form of the element 'e' to
-the buffer of bytes 'data'.
-Currently only implemented for points on an elliptic curve.
-*/
-int element_to_bytes_compressed(unsigned char *data, element_t e);
-
-/*@manual etrade
-Sets element 'e' to the element in compressed form in the buffer of bytes
-'data'.
-Currently only implemented for points on an elliptic curve.
-*/
-int element_from_bytes_compressed(element_t e, unsigned char *data);
-
-/*@manual etrade
-Returns the number of bytes needed to hold 'e' in compressed form.
-Currently only implemented for points on an elliptic curve.
-*/
-int element_length_in_bytes_compressed(element_t e);
-
-/*@manual epow
-Prepare to exponentiate an element 'in', and store preprocessing information
-in 'p'.
-*/
-static inline void element_pp_init(element_pp_t p, element_t in) {
- p->field = in->field;
- in->field->pp_init(p, in);
-}
-
-/*@manual epow
-Clear 'p'. Should be called after 'p' is no longer needed.
-*/
-static inline void element_pp_clear(element_pp_t p) {
- p->field->pp_clear(p);
-}
-
-/*@manual epow
-Raise 'in' to 'power' and store the result in 'out', where 'in'
-is a previously preprocessed element, that is, the second argument
-passed to a previous *element_pp_init* call.
-*/
-static inline void element_pp_pow(element_t out, mpz_ptr power,
- element_pp_t p) {
- p->field->pp_pow(out, power, p);
-}
-
-/*@manual epow
-Same except 'power' is an element of *Z*~n~ for some integer n.
-*/
-static inline void element_pp_pow_zn(element_t out, element_t power,
- element_pp_t p) {
- mpz_t z;
- mpz_init(z);
- element_to_mpz(z, power);
- element_pp_pow(out, z, p);
- mpz_clear(z);
-}
-
-void pbc_mpz_out_raw_n(unsigned char *data, int n, mpz_t z);
-void pbc_mpz_from_hash(mpz_t z, mpz_t limit,
- unsigned char *data, unsigned int len);
-
-/*@manual etrade
-For points, returns the number of coordinates.
-For polynomials, returns the number of coefficients.
-Otherwise returns zero.
-*/
-static inline int element_item_count(element_t e) {
- return e->field->item_count(e);
-}
-
-/*@manual etrade
-For points, returns 'n'#th# coordinate.
-For polynomials, returns coefficient of 'x^n^'.
-Otherwise returns NULL.
-The element the return value points to may be modified.
-*/
-static inline element_ptr element_item(element_t e, int i) {
- // TODO: Document the following:
- // For polynomials, never zero the leading coefficient, e.g. never write:
- // element_set0(element_item(f, poly_degree(f)));
- // Use poly_set_coeff0() to zero the leading coefficient.
- return e->field->item(e, i);
-}
-
-// Returns the field containing the items.
-// Returns NULL if there are no items.
-static inline field_ptr element_item_field(element_t e) {
- if (!element_item_count(e)) return NULL;
- return element_item(e, 0)->field;
-}
-
-/*@manual etrade
-Equivalent to `element_item(a, 0)`.
-*/
-static inline element_ptr element_x(element_ptr a) {
- return a->field->get_x(a);
-}
-/*@manual etrade
-Equivalent to `element_item(a, 1)`.
-*/
-static inline element_ptr element_y(element_ptr a) {
- return a->field->get_y(a);
-}
-
-/*@manual epow
-Computes 'x' such that 'g^x^ = h' by brute force, where
-'x' lies in a field where `element_set_mpz()` makes sense.
-*/
-void element_dlog_brute_force(element_t x, element_t g, element_t h);
-
-/*@manual epow
-Computes 'x' such that 'g^x^ = h' using Pollard rho method, where
-'x' lies in a field where `element_set_mpz()` makes sense.
-*/
-void element_dlog_pollard_rho(element_t x, element_t g, element_t h);
-
-// Trial division up to a given limit. If limit == NULL, then there is no limit.
-// Call the callback for each factor found, abort and return 1 if the callback
-// returns nonzero, otherwise return 0.
-int pbc_trial_divide(int (*fun)(mpz_t factor,
- unsigned int multiplicity,
- void *scope_ptr),
- void *scope_ptr,
- mpz_t n,
- mpz_ptr limit);
-
-#endif // __PBC_FIELD_H__