aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/ecc/e_param.c
diff options
context:
space:
mode:
Diffstat (limited to 'moon-abe/pbc-0.5.14/ecc/e_param.c')
-rw-r--r--moon-abe/pbc-0.5.14/ecc/e_param.c1006
1 files changed, 1006 insertions, 0 deletions
diff --git a/moon-abe/pbc-0.5.14/ecc/e_param.c b/moon-abe/pbc-0.5.14/ecc/e_param.c
new file mode 100644
index 00000000..53f7217c
--- /dev/null
+++ b/moon-abe/pbc-0.5.14/ecc/e_param.c
@@ -0,0 +1,1006 @@
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdint.h> // for intptr_t
+#include <stdlib.h> //for rand, pbc_malloc, pbc_free
+#include <string.h> //for strcmp
+#include <gmp.h>
+#include "pbc_utils.h"
+#include "pbc_field.h"
+#include "pbc_fp.h"
+#include "pbc_param.h"
+#include "pbc_pairing.h"
+#include "pbc_curve.h"
+#include "pbc_random.h"
+#include "pbc_memory.h"
+#include "pbc_e_param.h"
+#include "ecc/param.h"
+
+struct e_param_s {
+ mpz_t q; // Curve is defined over F_q.
+ mpz_t r; // q = h r^2 + 1, r is prime.
+ mpz_t h; // h is 28 times some square.
+ mpz_t a, b; // Curve equation is Y^2 = X^3 + aX + b.
+ int exp2;
+ int exp1;
+ int sign1;
+ int sign0;
+};
+typedef struct e_param_s e_param_t[1];
+typedef struct e_param_s *e_param_ptr;
+
+struct e_pairing_data_s {
+ field_t Fq, Eq;
+ int exp2, exp1;
+ int sign1, sign0;
+ element_t R;
+};
+typedef struct e_pairing_data_s e_pairing_data_t[1];
+typedef struct e_pairing_data_s *e_pairing_data_ptr;
+
+static void e_clear(void *data) {
+ e_param_ptr ep = data;
+ mpz_clear(ep->q);
+ mpz_clear(ep->r);
+ mpz_clear(ep->h);
+ mpz_clear(ep->a);
+ mpz_clear(ep->b);
+ pbc_free(data);
+}
+
+static void e_out_str(FILE *stream, void *data) {
+ e_param_ptr p = data;
+ param_out_type(stream, "e");
+ param_out_mpz(stream, "q", p->q);
+ param_out_mpz(stream, "r", p->r);
+ param_out_mpz(stream, "h", p->h);
+ param_out_mpz(stream, "a", p->a);
+ param_out_mpz(stream, "b", p->b);
+ param_out_int(stream, "exp2", p->exp2);
+ param_out_int(stream, "exp1", p->exp1);
+ param_out_int(stream, "sign1", p->sign1);
+ param_out_int(stream, "sign0", p->sign0);
+}
+
+static void e_miller_proj(element_t res, element_t P,
+ element_ptr QR, element_ptr R,
+ e_pairing_data_ptr p) {
+ //collate divisions
+ int n;
+ element_t v, vd;
+ element_t v1, vd1;
+ element_t Z, Z1;
+ element_t a, b, c;
+ const element_ptr cca = curve_a_coeff(P);
+ element_t e0, e1;
+ const element_ptr e2 = a, e3 = b;
+ element_t z, z2;
+ int i;
+ element_ptr Zx, Zy;
+ const element_ptr Px = curve_x_coord(P);
+ const element_ptr numx = curve_x_coord(QR);
+ const element_ptr numy = curve_y_coord(QR);
+ const element_ptr denomx = curve_x_coord(R);
+ const element_ptr denomy = curve_y_coord(R);
+
+ //convert Z from weighted projective (Jacobian) to affine
+ //i.e. (X, Y, Z) --> (X/Z^2, Y/Z^3)
+ //also sets z to 1
+ #define to_affine() { \
+ element_invert(z, z); \
+ element_square(e0, z); \
+ element_mul(Zx, Zx, e0); \
+ element_mul(e0, e0, z); \
+ element_mul(Zy, Zy, e0); \
+ element_set1(z); \
+ element_set1(z2); \
+ }
+
+ #define proj_double() { \
+ const element_ptr x = Zx; \
+ const element_ptr y = Zy; \
+ /* e0 = 3x^2 + (cc->a) z^4 */ \
+ element_square(e0, x); \
+ /* element_mul_si(e0, e0, 3); */ \
+ element_double(e1, e0); \
+ element_add(e0, e0, e1); \
+ element_square(e1, z2); \
+ element_mul(e1, e1, cca); \
+ element_add(e0, e0, e1); \
+ \
+ /* z_out = 2 y z */ \
+ element_mul(z, y, z); \
+ /* element_mul_si(z, z, 2); */ \
+ element_double(z, z); \
+ element_square(z2, z); \
+ \
+ /* e1 = 4 x y^2 */ \
+ element_square(e2, y); \
+ element_mul(e1, x, e2); \
+ /* element_mul_si(e1, e1, 4); */ \
+ element_double(e1, e1); \
+ element_double(e1, e1); \
+ \
+ /* x_out = e0^2 - 2 e1 */ \
+ /* element_mul_si(e3, e1, 2); */ \
+ element_double(e3, e1); \
+ element_square(x, e0); \
+ element_sub(x, x, e3); \
+ \
+ /* e2 = 8y^4 */ \
+ element_square(e2, e2); \
+ /* element_mul_si(e2, e2, 8); */ \
+ element_double(e2, e2); \
+ element_double(e2, e2); \
+ element_double(e2, e2); \
+ \
+ /* y_out = e0(e1 - x_out) - e2 */ \
+ element_sub(e1, e1, x); \
+ element_mul(e0, e0, e1); \
+ element_sub(y, e0, e2); \
+ }
+
+ #define do_tangent(e, edenom) { \
+ /* a = -(3x^2 + cca z^4) */ \
+ /* b = 2 y z^3 */ \
+ /* c = -(2 y^2 + x a) */ \
+ /* a = z^2 a */ \
+ element_square(a, z2); \
+ element_mul(a, a, cca); \
+ element_square(b, Zx); \
+ /* element_mul_si(b, b, 3); */ \
+ element_double(e0, b); \
+ element_add(b, b, e0); \
+ element_add(a, a, b); \
+ element_neg(a, a); \
+ \
+ /* element_mul_si(e0, Zy, 2); */ \
+ element_double(e0, Zy); \
+ element_mul(b, e0, z2); \
+ element_mul(b, b, z); \
+ \
+ element_mul(c, Zx, a); \
+ element_mul(a, a, z2); \
+ element_mul(e0, e0, Zy); \
+ element_add(c, c, e0); \
+ element_neg(c, c); \
+ \
+ element_mul(e0, a, numx); \
+ element_mul(e1, b, numy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0); \
+ \
+ element_mul(e0, a, denomx); \
+ element_mul(e1, b, denomy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ #define do_vertical(e, edenom, Ax) { \
+ element_mul(e0, numx, z2); \
+ element_sub(e0, e0, Ax); \
+ element_mul(e, e, e0); \
+ \
+ element_mul(e0, denomx, z2); \
+ element_sub(e0, e0, Ax); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ #define do_line(e, edenom, A, B) { \
+ element_ptr Ax = curve_x_coord(A); \
+ element_ptr Ay = curve_y_coord(A); \
+ element_ptr Bx = curve_x_coord(B); \
+ element_ptr By = curve_y_coord(B); \
+ \
+ element_sub(b, Bx, Ax); \
+ element_sub(a, Ay, By); \
+ element_mul(c, Ax, By); \
+ element_mul(e0, Ay, Bx); \
+ element_sub(c, c, e0); \
+ \
+ element_mul(e0, a, numx); \
+ element_mul(e1, b, numy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0); \
+ \
+ element_mul(e0, a, denomx); \
+ element_mul(e1, b, denomy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ element_init(a, res->field);
+ element_init(b, res->field);
+ element_init(c, res->field);
+ element_init(e0, res->field);
+ element_init(e1, res->field);
+ element_init(z, res->field);
+ element_init(z2, res->field);
+ element_set1(z);
+ element_set1(z2);
+
+ element_init(v, res->field);
+ element_init(vd, res->field);
+ element_init(v1, res->field);
+ element_init(vd1, res->field);
+ element_init(Z, P->field);
+ element_init(Z1, P->field);
+
+ element_set(Z, P);
+ Zx = curve_x_coord(Z);
+ Zy = curve_y_coord(Z);
+
+ element_set1(v);
+ element_set1(vd);
+ element_set1(v1);
+ element_set1(vd1);
+
+ n = p->exp1;
+ for (i=0; i<n; i++) {
+ element_square(v, v);
+ element_square(vd, vd);
+ do_tangent(v, vd);
+ proj_double();
+ do_vertical(vd, v, Zx);
+ }
+ to_affine();
+ if (p->sign1 < 0) {
+ element_set(v1, vd);
+ element_set(vd1, v);
+ do_vertical(vd1, v1, Zx);
+ element_neg(Z1, Z);
+ } else {
+ element_set(v1, v);
+ element_set(vd1, vd);
+ element_set(Z1, Z);
+ }
+ n = p->exp2;
+ for (; i<n; i++) {
+ element_square(v, v);
+ element_square(vd, vd);
+ do_tangent(v, vd);
+ proj_double();
+ do_vertical(vd, v, Zx);
+ }
+ to_affine();
+ element_mul(v, v, v1);
+ element_mul(vd, vd, vd1);
+ do_line(v, vd, Z, Z1);
+ element_add(Z, Z, Z1);
+ do_vertical(vd, v, Zx);
+
+ if (p->sign0 > 0) {
+ do_vertical(v, vd, Px);
+ }
+
+ element_invert(vd, vd);
+ element_mul(res, v, vd);
+
+ element_clear(v);
+ element_clear(vd);
+ element_clear(v1);
+ element_clear(vd1);
+ element_clear(z);
+ element_clear(z2);
+ element_clear(Z);
+ element_clear(Z1);
+ element_clear(a);
+ element_clear(b);
+ element_clear(c);
+ element_clear(e0);
+ element_clear(e1);
+ #undef to_affine
+ #undef proj_double
+ #undef do_tangent
+ #undef do_vertical
+ #undef do_line
+}
+
+static void e_miller_affine(element_t res, element_t P,
+ element_ptr QR, element_ptr R,
+ e_pairing_data_ptr p) {
+ //collate divisions
+ int n;
+ element_t v, vd;
+ element_t v1, vd1;
+ element_t Z, Z1;
+ element_t a, b, c;
+ element_t e0, e1;
+ const element_ptr Px = curve_x_coord(P);
+ const element_ptr cca = curve_a_coeff(P);
+ element_ptr Zx, Zy;
+ int i;
+ const element_ptr numx = curve_x_coord(QR);
+ const element_ptr numy = curve_y_coord(QR);
+ const element_ptr denomx = curve_x_coord(R);
+ const element_ptr denomy = curve_y_coord(R);
+
+ #define do_vertical(e, edenom, Ax) { \
+ element_sub(e0, numx, Ax); \
+ element_mul(e, e, e0); \
+ \
+ element_sub(e0, denomx, Ax); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ #define do_tangent(e, edenom) { \
+ /* a = -slope_tangent(A.x, A.y); */ \
+ /* b = 1; */ \
+ /* c = -(A.y + a * A.x); */ \
+ /* but we multiply by 2*A.y to avoid division */ \
+ \
+ /* a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4; */ \
+ /* Common curves: a2 = 0 (and cc->a is a_4), so */ \
+ /* a = -(3 Ax^2 + cc->a) */ \
+ /* b = 2 * Ay */ \
+ /* c = -(2 Ay^2 + a Ax); */ \
+ \
+ element_square(a, Zx); \
+ element_mul_si(a, a, 3); \
+ element_add(a, a, cca); \
+ element_neg(a, a); \
+ \
+ element_add(b, Zy, Zy); \
+ \
+ element_mul(e0, b, Zy); \
+ element_mul(c, a, Zx); \
+ element_add(c, c, e0); \
+ element_neg(c, c); \
+ \
+ element_mul(e0, a, numx); \
+ element_mul(e1, b, numy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0); \
+ \
+ element_mul(e0, a, denomx); \
+ element_mul(e1, b, denomy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ #define do_line(e, edenom, A, B) { \
+ element_ptr Ax = curve_x_coord(A); \
+ element_ptr Ay = curve_y_coord(A); \
+ element_ptr Bx = curve_x_coord(B); \
+ element_ptr By = curve_y_coord(B); \
+ \
+ element_sub(b, Bx, Ax); \
+ element_sub(a, Ay, By); \
+ element_mul(c, Ax, By); \
+ element_mul(e0, Ay, Bx); \
+ element_sub(c, c, e0); \
+ \
+ element_mul(e0, a, numx); \
+ element_mul(e1, b, numy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0); \
+ \
+ element_mul(e0, a, denomx); \
+ element_mul(e1, b, denomy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(edenom, edenom, e0); \
+ }
+
+ element_init(a, res->field);
+ element_init(b, res->field);
+ element_init(c, res->field);
+ element_init(e0, res->field);
+ element_init(e1, res->field);
+
+ element_init(v, res->field);
+ element_init(vd, res->field);
+ element_init(v1, res->field);
+ element_init(vd1, res->field);
+ element_init(Z, P->field);
+ element_init(Z1, P->field);
+
+ element_set(Z, P);
+ Zx = curve_x_coord(Z);
+ Zy = curve_y_coord(Z);
+
+ element_set1(v);
+ element_set1(vd);
+ element_set1(v1);
+ element_set1(vd1);
+
+ n = p->exp1;
+ for (i=0; i<n; i++) {
+ element_square(v, v);
+ element_square(vd, vd);
+ do_tangent(v, vd);
+ element_double(Z, Z);
+ do_vertical(vd, v, Zx);
+ }
+ if (p->sign1 < 0) {
+ element_set(v1, vd);
+ element_set(vd1, v);
+ do_vertical(vd1, v1, Zx);
+ element_neg(Z1, Z);
+ } else {
+ element_set(v1, v);
+ element_set(vd1, vd);
+ element_set(Z1, Z);
+ }
+ n = p->exp2;
+ for (; i<n; i++) {
+ element_square(v, v);
+ element_square(vd, vd);
+ do_tangent(v, vd);
+ element_double(Z, Z);
+ do_vertical(vd, v, Zx);
+ }
+ element_mul(v, v, v1);
+ element_mul(vd, vd, vd1);
+ do_line(v, vd, Z, Z1);
+ element_add(Z, Z, Z1);
+ do_vertical(vd, v, Zx);
+
+ if (p->sign0 > 0) {
+ do_vertical(v, vd, Px);
+ }
+
+ element_invert(vd, vd);
+ element_mul(res, v, vd);
+
+ element_clear(v);
+ element_clear(vd);
+ element_clear(v1);
+ element_clear(vd1);
+ element_clear(Z);
+ element_clear(Z1);
+ element_clear(a);
+ element_clear(b);
+ element_clear(c);
+ element_clear(e0);
+ element_clear(e1);
+ #undef do_vertical
+ #undef do_tangent
+ #undef do_line
+}
+
+static void (*e_miller_fn)(element_t res, element_t P,
+ element_ptr QR, element_ptr R,
+ e_pairing_data_ptr p);
+
+static void e_pairing(element_ptr out, element_ptr in1, element_ptr in2,
+ pairing_t pairing) {
+ e_pairing_data_ptr p = pairing->data;
+ element_ptr Q = in2;
+ element_t QR;
+ element_init(QR, p->Eq);
+ element_add(QR, Q, p->R);
+ e_miller_fn(out, in1, QR, p->R, p);
+ element_pow_mpz(out, out, pairing->phikonr);
+ element_clear(QR);
+}
+
+// in1, in2 are from E(F_q), out from F_q^2.
+// Pairing via elliptic nets (see Stange).
+static void e_pairing_ellnet(element_ptr out, element_ptr in1, element_ptr in2,
+ pairing_t pairing) {
+ const element_ptr a = curve_a_coeff(in1);
+ const element_ptr b = curve_b_coeff(in1);
+
+ element_ptr x = curve_x_coord(in1);
+ element_ptr y = curve_y_coord(in1);
+
+ element_ptr x2 = curve_x_coord(in2);
+ element_ptr y2 = curve_y_coord(in2);
+
+ //notation: cmi means c_{k-i}, ci means c_{k+i}
+ element_t cm3, cm2, cm1, c0, c1, c2, c3, c4;
+ element_t dm1, d0, d1;
+ element_t A, B, C;
+
+ element_init_same_as(cm3, x);
+ element_init_same_as(cm2, x);
+ element_init_same_as(cm1, x);
+ element_init_same_as(c0, x);
+ element_init_same_as(c1, x);
+ element_init_same_as(c2, x);
+ element_init_same_as(c3, x);
+ element_init_same_as(c4, x);
+ element_init_same_as(C, x);
+
+ element_init_same_as(dm1, out);
+ element_init_same_as(d0, out);
+ element_init_same_as(d1, out);
+ element_init_same_as(A, x);
+ element_init_same_as(B, out);
+
+ // c1 = 2y
+ // cm3 = -2y
+ element_double(c1, y);
+ element_neg(cm3, c1);
+
+ //use c0, cm1, cm2, C, c4 as temp variables for now
+ //compute c3, c2
+ element_square(cm2, x);
+ element_square(C, cm2);
+ element_mul(cm1, b, x);
+ element_double(cm1, cm1);
+ element_square(c4, a);
+
+ element_mul(c2, cm1, cm2);
+ element_double(c2, c2);
+ element_mul(c0, a, C);
+ element_add(c2, c2, c0);
+ element_mul(c0, c4, cm2);
+ element_sub(c2, c2, c0);
+ element_double(c0, c2);
+ element_double(c0, c0);
+ element_add(c2, c2, c0);
+
+ element_mul(c0, cm1, a);
+ element_square(c3, b);
+ element_double(c3, c3);
+ element_double(c3, c3);
+ element_add(c0, c0, c3);
+ element_double(c0, c0);
+ element_mul(c3, a, c4);
+ element_add(c0, c0, c3);
+ element_sub(c2, c2, c0);
+ element_mul(c0, cm2, C);
+ element_add(c3, c0, c2);
+ element_mul(c3, c3, c1);
+ element_double(c3, c3);
+
+ element_mul(c0, a, cm2);
+ element_add(c0, c0, cm1);
+ element_double(c0, c0);
+ element_add(c0, c0, C);
+ element_double(c2, c0);
+ element_add(c0, c0, c2);
+ element_sub(c2, c0, c4);
+
+ // c0 = 1
+ // cm2 = -1
+ element_set1(c0);
+ element_neg(cm2, c0);
+
+ // c4 = c_5 = c_2^3 c_4 - c_3^3 = c1^3 c3 - c2^3
+ element_square(C, c1);
+ element_mul(c4, C, c1);
+ element_mul(c4, c4, c3);
+ element_square(C, c2);
+ element_mul(C, C, c2);
+ element_sub(c4, c4, C);
+
+ //compute A, B, d1 (which is d_2 since k = 1)
+ element_sub(A, x, x2);
+ element_double(C, x);
+ element_add(C, C, x2);
+ element_square(cm1, A);
+ element_mul(cm1, C, cm1);
+ element_add(d1, y, y2);
+ element_square(d1, d1);
+ element_sub(B, cm1, d1);
+ element_invert(B, B);
+ element_invert(A, A);
+
+ element_sub(d1, y, y2);
+ element_mul(d1, d1, A);
+ element_square(d1, d1);
+ element_sub(d1, C, d1);
+
+ // cm1 = 0
+ // C = (2y)^-1
+ element_set0(cm1);
+ element_invert(C, c1);
+
+ element_set1(dm1);
+ element_set1(d0);
+
+ element_t sm2, sm1;
+ element_t s0, s1, s2, s3;
+ element_t tm2, tm1;
+ element_t t0, t1, t2, t3;
+ element_t e0, e1;
+ element_t u, v;
+
+ element_init_same_as(sm2, x);
+ element_init_same_as(sm1, x);
+ element_init_same_as(s0, x);
+ element_init_same_as(s1, x);
+ element_init_same_as(s2, x);
+ element_init_same_as(s3, x);
+
+ element_init_same_as(tm2, x);
+ element_init_same_as(tm1, x);
+ element_init_same_as(t0, x);
+ element_init_same_as(t1, x);
+ element_init_same_as(t2, x);
+ element_init_same_as(t3, x);
+
+ element_init_same_as(e0, x);
+ element_init_same_as(e1, x);
+
+ element_init_same_as(u, d0);
+ element_init_same_as(v, d0);
+
+ int m = mpz_sizeinbase(pairing->r, 2) - 2;
+ for (;;) {
+ element_square(sm2, cm2);
+ element_square(sm1, cm1);
+ element_square(s0, c0);
+ element_square(s1, c1);
+ element_square(s2, c2);
+ element_square(s3, c3);
+
+ element_mul(tm2, cm3, cm1);
+ element_mul(tm1, cm2, c0);
+ element_mul(t0, cm1, c1);
+ element_mul(t1, c0, c2);
+ element_mul(t2, c1, c3);
+ element_mul(t3, c2, c4);
+
+ element_square(u, d0);
+ element_mul(v, dm1, d1);
+
+ if (mpz_tstbit(pairing->r, m)) {
+ //double-and-add
+ element_mul(e0, t0, sm2);
+ element_mul(e1, tm2, s0);
+ element_sub(cm3, e0, e1);
+ element_mul(cm3, cm3, C);
+
+ element_mul(e0, t0, sm1);
+ element_mul(e1, tm1, s0);
+ element_sub(cm2, e0, e1);
+
+ element_mul(e0, t1, sm1);
+ element_mul(e1, tm1, s1);
+ element_sub(cm1, e0, e1);
+ element_mul(cm1, cm1, C);
+
+ element_mul(e0, t1, s0);
+ element_mul(e1, t0, s1);
+ element_sub(c0, e0, e1);
+
+ element_mul(e0, t2, s0);
+ element_mul(e1, t0, s2);
+ element_sub(c1, e0, e1);
+ element_mul(c1, c1, C);
+
+ element_mul(e0, t2, s1);
+ element_mul(e1, t1, s2);
+ element_sub(c2, e0, e1);
+
+ element_mul(e0, t3, s1);
+ element_mul(e1, t1, s3);
+ element_sub(c3, e0, e1);
+ element_mul(c3, c3, C);
+
+ element_mul(e0, t3, s2);
+ element_mul(e1, t2, s3);
+ element_sub(c4, e0, e1);
+
+ element_mul(out, u, t0);
+ element_mul(dm1, v, s0);
+ element_sub(dm1, dm1, out);
+
+ element_mul(out, u, t1);
+ element_mul(d0, v, s1);
+ element_sub(d0, d0, out);
+ element_mul(d0, d0, A);
+
+ element_mul(out, u, t2);
+ element_mul(d1, v, s2);
+ element_sub(d1, d1, out);
+ element_mul(d1, d1, B);
+ } else {
+ //double
+ element_mul(e0, tm1, sm2);
+ element_mul(e1, tm2, sm1);
+ element_sub(cm3, e0, e1);
+
+ element_mul(e0, t0, sm2);
+ element_mul(e1, tm2, s0);
+ element_sub(cm2, e0, e1);
+ element_mul(cm2, cm2, C);
+
+ element_mul(e0, t0, sm1);
+ element_mul(e1, tm1, s0);
+ element_sub(cm1, e0, e1);
+
+ element_mul(e0, t1, sm1);
+ element_mul(e1, tm1, s1);
+ element_sub(c0, e0, e1);
+ element_mul(c0, c0, C);
+
+ element_mul(e0, t1, s0);
+ element_mul(e1, t0, s1);
+ element_sub(c1, e0, e1);
+
+ element_mul(e0, t2, s0);
+ element_mul(e1, t0, s2);
+ element_sub(c2, e0, e1);
+ element_mul(c2, c2, C);
+
+ element_mul(e0, t2, s1);
+ element_mul(e1, t1, s2);
+ element_sub(c3, e0, e1);
+
+ element_mul(e0, t3, s1);
+ element_mul(e1, t1, s3);
+ element_sub(c4, e0, e1);
+ element_mul(c4, c4, C);
+
+ element_mul(out, u, tm1);
+ element_mul(dm1, v, sm1);
+ element_sub(dm1, dm1, out);
+
+ element_mul(out, u, t0);
+ element_mul(d0, v, s0);
+ element_sub(d0, d0, out);
+
+ element_mul(out, u, t1);
+ element_mul(d1, v, s1);
+ element_sub(d1, d1, out);
+ element_mul(d1, d1, A);
+ }
+ if (!m) break;
+ m--;
+ }
+ element_invert(c1, c1);
+ element_mul(d1, d1, c1);
+
+ element_pow_mpz(out, d1, pairing->phikonr);
+
+ element_clear(dm1);
+ element_clear(d0);
+ element_clear(d1);
+
+ element_clear(cm3);
+ element_clear(cm2);
+ element_clear(cm1);
+ element_clear(c0);
+ element_clear(c1);
+ element_clear(c2);
+ element_clear(c3);
+ element_clear(c4);
+
+ element_clear(sm2);
+ element_clear(sm1);
+ element_clear(s0);
+ element_clear(s1);
+ element_clear(s2);
+ element_clear(s3);
+
+ element_clear(tm2);
+ element_clear(tm1);
+ element_clear(t0);
+ element_clear(t1);
+ element_clear(t2);
+ element_clear(t3);
+
+ element_clear(e0);
+ element_clear(e1);
+ element_clear(A);
+ element_clear(B);
+ element_clear(C);
+ element_clear(u);
+ element_clear(v);
+}
+
+static void phi_identity(element_ptr out, element_ptr in, pairing_ptr pairing) {
+ (void) pairing;
+ element_set(out, in);
+}
+
+static void e_pairing_option_set(pairing_t pairing, char *key, char *value) {
+ //TODO: this affects every type E pairing!
+ UNUSED_VAR(pairing);
+ if (!strcmp(key, "method")) {
+ if (!strcmp(value, "miller")) {
+ pairing->map = e_pairing;
+ e_miller_fn = e_miller_proj;
+ } else if (!strcmp(value, "miller-affine")) {
+ pairing->map = e_pairing;
+ e_miller_fn = e_miller_affine;
+ } else if (!strcmp(value, "shipsey-stange")) {
+ pairing->map = e_pairing_ellnet;
+ }
+ }
+}
+
+static void e_pairing_clear(pairing_t pairing) {
+ field_clear(pairing->GT);
+ e_pairing_data_ptr p = pairing->data;
+ field_clear(p->Fq);
+ field_clear(p->Eq);
+ element_clear(p->R);
+ pbc_free(p);
+
+ mpz_clear(pairing->phikonr);
+ mpz_clear(pairing->r);
+ field_clear(pairing->Zr);
+}
+
+static void e_finalpow(element_ptr e) {
+ element_pow_mpz(e->data, e->data, e->field->pairing->phikonr);
+}
+
+static void e_init_pairing(pairing_t pairing, void *data) {
+ e_param_ptr param = data;
+ e_pairing_data_ptr p;
+ element_t a, b;
+
+ mpz_init(pairing->r);
+ mpz_set(pairing->r, param->r);
+ field_init_fp(pairing->Zr, pairing->r);
+ pairing->map = e_pairing;
+ e_miller_fn = e_miller_proj;
+
+ p = pairing->data = pbc_malloc(sizeof(e_pairing_data_t));
+ p->exp2 = param->exp2;
+ p->exp1 = param->exp1;
+ p->sign1 = param->sign1;
+ p->sign0 = param->sign0;
+ field_init_fp(p->Fq, param->q);
+ element_init(a, p->Fq);
+ element_init(b, p->Fq);
+ element_set_mpz(a, param->a);
+ element_set_mpz(b, param->b);
+ field_init_curve_ab(p->Eq, a, b, pairing->r, param->h);
+
+ //k=1, hence phikonr = (p-1)/r
+ mpz_init(pairing->phikonr);
+ mpz_sub_ui(pairing->phikonr, p->Fq->order, 1);
+ mpz_divexact(pairing->phikonr, pairing->phikonr, pairing->r);
+
+ pairing->G2 = pairing->G1 = p->Eq;
+ pairing_GT_init(pairing, p->Fq);
+ pairing->finalpow = e_finalpow;
+ pairing->phi = phi_identity;
+ pairing->option_set = e_pairing_option_set;
+ pairing->clear_func = e_pairing_clear;
+
+ element_init(p->R, p->Eq);
+ curve_set_gen_no_cofac(p->R);
+
+ element_clear(a);
+ element_clear(b);
+}
+
+static void e_init(pbc_param_ptr p) {
+ static pbc_param_interface_t interface = {{
+ e_clear,
+ e_init_pairing,
+ e_out_str,
+ }};
+ p->api = interface;
+ e_param_ptr ep = p->data = pbc_malloc(sizeof(*ep));
+ mpz_init(ep->q);
+ mpz_init(ep->r);
+ mpz_init(ep->h);
+ mpz_init(ep->a);
+ mpz_init(ep->b);
+}
+
+// Public interface:
+
+int pbc_param_init_e(pbc_param_ptr par, struct symtab_s *tab) {
+ e_init(par);
+ e_param_ptr p = par->data;
+
+ int err = 0;
+ err += lookup_mpz(p->q, tab, "q");
+ err += lookup_mpz(p->r, tab, "r");
+ err += lookup_mpz(p->h, tab, "h");
+ err += lookup_mpz(p->a, tab, "a");
+ err += lookup_mpz(p->b, tab, "b");
+ err += lookup_int(&p->exp2, tab, "exp2");
+ err += lookup_int(&p->exp1, tab, "exp1");
+ err += lookup_int(&p->sign1, tab, "sign1");
+ err += lookup_int(&p->sign0, tab, "sign0");
+ return err;
+}
+
+void pbc_param_init_e_gen(pbc_param_t par, int rbits, int qbits) {
+ e_init(par);
+ e_param_ptr p = par->data;
+ //3 takes 2 bits to represent
+ int hbits = (qbits - 2) / 2 - rbits;
+ mpz_ptr q = p->q;
+ mpz_ptr r = p->r;
+ mpz_ptr h = p->h;
+ mpz_t n;
+ field_t Fq;
+ field_t cc;
+ element_t j;
+ int found = 0;
+
+ //won't find any curves is hbits is too low
+ if (hbits < 3) hbits = 3;
+
+ mpz_init(n);
+
+ do {
+ int i;
+ mpz_set_ui(r, 0);
+
+ if (rand() % 2) {
+ p->exp2 = rbits - 1;
+ p->sign1 = 1;
+ } else {
+ p->exp2 = rbits;
+ p->sign1 = -1;
+ }
+ mpz_setbit(r, p->exp2);
+
+ p->exp1 = (rand() % (p->exp2 - 1)) + 1;
+ //use q as a temp variable
+ mpz_set_ui(q, 0);
+ mpz_setbit(q, p->exp1);
+
+ if (p->sign1 > 0) {
+ mpz_add(r, r, q);
+ } else {
+ mpz_sub(r, r, q);
+ }
+
+ if (rand() % 2) {
+ p->sign0 = 1;
+ mpz_add_ui(r, r, 1);
+ } else {
+ p->sign0 = -1;
+ mpz_sub_ui(r, r, 1);
+ }
+ if (!mpz_probab_prime_p(r, 10)) continue;
+ for (i=0; i<10; i++) {
+ //use q as a temp variable
+ mpz_set_ui(q, 0);
+ mpz_setbit(q, hbits + 1);
+ pbc_mpz_random(h, q);
+ mpz_mul(h, h, h);
+ mpz_mul_ui(h, h, 3);
+ //finally q takes the value it should
+ mpz_mul(n, r, r);
+ mpz_mul(n, n, h);
+ mpz_add_ui(q, n, 1);
+ if (mpz_probab_prime_p(q, 10)) {
+ found = 1;
+ break;
+ }
+ }
+ } while (!found);
+ /*
+ do {
+ mpz_set_ui(r, 0);
+ mpz_setbit(r, rbits);
+ pbc_mpz_random(r, r);
+ mpz_nextprime(r, r);
+ mpz_mul(n, r, r);
+ mpz_mul_ui(n, n, 3);
+ mpz_add_ui(q, n, 1);
+ } while (!mpz_probab_prime_p(q, 10));
+ */
+
+ field_init_fp(Fq, q);
+ element_init(j, Fq);
+ element_set_si(j, 1);
+ field_init_curve_b(cc, j, n, NULL);
+ element_clear(j);
+ // We may need to twist it.
+ {
+ // Pick a random point P and twist the curve if P has the wrong order.
+ element_t P;
+ element_init(P, cc);
+ element_random(P);
+ element_mul_mpz(P, P, n);
+ if (!element_is0(P)) field_reinit_curve_twist(cc);
+ element_clear(P);
+ }
+ element_to_mpz(p->a, curve_field_a_coeff(cc));
+ element_to_mpz(p->b, curve_field_b_coeff(cc));
+
+ mpz_clear(n);
+}