diff options
Diffstat (limited to 'moon-abe/libbswabe-0.9/core.c')
-rw-r--r-- | moon-abe/libbswabe-0.9/core.c | 912 |
1 files changed, 0 insertions, 912 deletions
diff --git a/moon-abe/libbswabe-0.9/core.c b/moon-abe/libbswabe-0.9/core.c deleted file mode 100644 index 825882a7..00000000 --- a/moon-abe/libbswabe-0.9/core.c +++ /dev/null @@ -1,912 +0,0 @@ -#include <stdlib.h> -#include <string.h> -#ifndef BSWABE_DEBUG -#define NDEBUG -#endif -#include <assert.h> - -#include <openssl/sha.h> -#include <glib.h> -#include <pbc.h> - -#include "bswabe.h" -#include "private.h" - -#define TYPE_A_PARAMS \ -"type a\n" \ -"q 87807107996633125224377819847540498158068831994142082" \ -"1102865339926647563088022295707862517942266222142315585" \ -"8769582317459277713367317481324925129998224791\n" \ -"h 12016012264891146079388821366740534204802954401251311" \ -"822919615131047207289359704531102844802183906537786776\n" \ -"r 730750818665451621361119245571504901405976559617\n" \ -"exp2 159\n" \ -"exp1 107\n" \ -"sign1 1\n" \ -"sign0 1\n" - -char last_error[256]; - -char* -bswabe_error() -{ - return last_error; -} - -void -raise_error(char* fmt, ...) -{ - va_list args; - -#ifdef BSWABE_DEBUG - va_start(args, fmt); - vfprintf(stderr, fmt, args); - va_end(args); - exit(1); -#else - va_start(args, fmt); - vsnprintf(last_error, 256, fmt, args); - va_end(args); -#endif -} - -void -element_from_string( element_t h, char* s ) -{ - unsigned char* r; - - r = malloc(SHA_DIGEST_LENGTH); - SHA1((unsigned char*) s, strlen(s), r); - element_from_hash(h, r, SHA_DIGEST_LENGTH); - - free(r); -} - -void -bswabe_setup( bswabe_pub_t** pub, bswabe_msk_t** msk ) -{ - element_t alpha; - - /* initialize */ - - *pub = malloc(sizeof(bswabe_pub_t)); - *msk = malloc(sizeof(bswabe_msk_t)); - - (*pub)->pairing_desc = strdup(TYPE_A_PARAMS); - pairing_init_set_buf((*pub)->p, (*pub)->pairing_desc, strlen((*pub)->pairing_desc)); - - element_init_G1((*pub)->g, (*pub)->p); - element_init_G1((*pub)->h, (*pub)->p); - element_init_G2((*pub)->gp, (*pub)->p); - element_init_GT((*pub)->g_hat_alpha, (*pub)->p); - element_init_Zr(alpha, (*pub)->p); - element_init_Zr((*msk)->beta, (*pub)->p); - element_init_G2((*msk)->g_alpha, (*pub)->p); - - /* compute */ - - element_random(alpha); - element_random((*msk)->beta); - element_random((*pub)->g); - element_random((*pub)->gp); - - element_pow_zn((*msk)->g_alpha, (*pub)->gp, alpha); /* g_alpha = gp^a */ - element_pow_zn((*pub)->h, (*pub)->g, (*msk)->beta); /* h = g^b */ - pairing_apply((*pub)->g_hat_alpha, (*pub)->g, (*msk)->g_alpha, (*pub)->p); /* g_hat_aplha = e(g,g_aplha) = e(g,gp)^a */ -} - -bswabe_prv_t* bswabe_keygen( bswabe_pub_t* pub, - bswabe_msk_t* msk, - char** attributes ) -{ - bswabe_prv_t* prv; - element_t g_r; - element_t r; - element_t beta_inv; - - /* initialize */ - - prv = malloc(sizeof(bswabe_prv_t)); - - element_init_G2(prv->d, pub->p); - element_init_G2(g_r, pub->p); - element_init_Zr(r, pub->p); - element_init_Zr(beta_inv, pub->p); - - prv->comps = g_array_new(0, 1, sizeof(bswabe_prv_comp_t)); - - /* compute */ - - element_random(r); - element_pow_zn(g_r, pub->gp, r); /* g_r = gp^r */ - - element_mul(prv->d, msk->g_alpha, g_r); /* gp^r*gp^a = gp^(r+a) */ - element_invert(beta_inv, msk->beta); /* (1/b) */ - element_pow_zn(prv->d, prv->d, beta_inv); /* d = gp^((r+a) * 1/b) */ - - while( *attributes ) - { - bswabe_prv_comp_t c; - element_t h_rp; - element_t rp; - - c.attr = *(attributes++); - - element_init_G2(c.d, pub->p); - element_init_G1(c.dp, pub->p); - element_init_G2(h_rp, pub->p); - element_init_Zr(rp, pub->p); - - element_from_string(h_rp, c.attr); /* h_rp = H(attr) */ - element_random(rp); - - element_pow_zn(h_rp, h_rp, rp); /* h_rp = H(attr)^rp */ - - element_mul(c.d, g_r, h_rp); /* d = h_rp * gp^r = H(attr)^rp * gp^r */ - element_pow_zn(c.dp, pub->g, rp); /* dp = g^rp */ - element_clear(h_rp); - element_clear(rp); - - g_array_append_val(prv->comps, c); - } - - return prv; -} - -/* Generates a node of the policy tree with threshold k */ -bswabe_policy_t* -base_node( int k, char* s ) -{ - bswabe_policy_t* p; - - p = (bswabe_policy_t*) malloc(sizeof(bswabe_policy_t)); - p->k = k; - p->attr = s ? strdup(s) : 0; /* s if not empty, null otherwise */ - p->children = g_ptr_array_new(); - p->q = 0; - - return p; -} - -/* - TODO convert this to use a GScanner and handle quotes and / or - escapes to allow attributes with whitespace or = signs in them -*/ - -bswabe_policy_t* -parse_policy_postfix( char* s ) -{ - char** toks; - char** cur_toks; - char* tok; - GPtrArray* stack; /* pointers to bswabe_policy_t's */ - bswabe_policy_t* root; - - toks = g_strsplit(s, " ", 0); - cur_toks = toks; - stack = g_ptr_array_new(); - - while( *cur_toks ) - { - int i, k, n; - - tok = *(cur_toks++); - - if( !*tok ) - continue; - - if( sscanf(tok, "%dof%d", &k, &n) != 2 ) - /* push leaf token */ - g_ptr_array_add(stack, base_node(1, tok)); - else - { - bswabe_policy_t* node; - - /* parse "kofn" operator */ - - if( k < 1 ) - { - raise_error("error parsing \"%s\": trivially satisfied operator \"%s\"\n", s, tok); - return 0; - } - else if( k > n ) - { - raise_error("error parsing \"%s\": unsatisfiable operator \"%s\"\n", s, tok); - return 0; - } - else if( n == 1 ) - { - raise_error("error parsing \"%s\": identity operator \"%s\"\n", s, tok); - return 0; - } - else if( n > stack->len ) - { - raise_error("error parsing \"%s\": stack underflow at \"%s\"\n", s, tok); - return 0; - } - - /* pop n things and fill in children */ - node = base_node(k, 0); - g_ptr_array_set_size(node->children, n); - for( i = n - 1; i >= 0; i-- ) - node->children->pdata[i] = g_ptr_array_remove_index(stack, stack->len - 1); - - /* push result */ - g_ptr_array_add(stack, node); - } - } - - if( stack->len > 1 ) - { - raise_error("error parsing \"%s\": extra tokens left on stack\n", s); - return 0; - } - else if( stack->len < 1 ) - { - raise_error("error parsing \"%s\": empty policy\n", s); - return 0; - } - - root = g_ptr_array_index(stack, 0); - - g_strfreev(toks); - g_ptr_array_free(stack, 0); - - return root; -} - -/* Generates a degree *deg* polynomial with 0 coef equal to zero_val */ -bswabe_polynomial_t* -rand_poly( int deg, element_t zero_val ) -{ - int i; - bswabe_polynomial_t* q; - - q = (bswabe_polynomial_t*) malloc(sizeof(bswabe_polynomial_t)); - q->deg = deg; - q->coef = (element_t*) malloc(sizeof(element_t) * (deg + 1)); - - for( i = 0; i < q->deg + 1; i++ ) - element_init_same_as(q->coef[i], zero_val); - - element_set(q->coef[0], zero_val); - - for( i = 1; i < q->deg + 1; i++ ) - element_random(q->coef[i]); - - return q; -} - -void -eval_poly( element_t r, bswabe_polynomial_t* q, element_t x ) -{ - int i; - element_t s, t; - - element_init_same_as(s, r); - element_init_same_as(t, r); - - element_set0(r); - element_set1(t); - - for( i = 0; i < q->deg + 1; i++ ) - { - /* r += q->coef[i] * t */ - element_mul(s, q->coef[i], t); - element_add(r, r, s); - - /* t *= x */ - element_mul(t, t, x); - } - - element_clear(s); - element_clear(t); -} - -/* Recursive algorithm to fill the policy. Works on each node starting from the root: - - Fills the polynomial q of each node - - c & cp for leaves (i.e. children->len == 0) - - Recursively fills the children -*/ - -void -fill_policy( bswabe_policy_t* p, bswabe_pub_t* pub, element_t e ) -{ - int i; - element_t r; - element_t t; - element_t h; - - element_init_Zr(r, pub->p); - element_init_Zr(t, pub->p); - element_init_G2(h, pub->p); - - p->q = rand_poly(p->k - 1, e); - - if( p->children->len == 0 ) - { - element_init_G1(p->c, pub->p); - element_init_G2(p->cp, pub->p); - - element_from_string(h, p->attr); - element_pow_zn(p->c, pub->g, p->q->coef[0]); /* c = g^q(0) */ - element_pow_zn(p->cp, h, p->q->coef[0]); /* cp = H(attr)^q(0) */ - } - else - for( i = 0; i < p->children->len; i++ ) - { - element_set_si(r, i + 1); - eval_poly(t, p->q, r); - fill_policy(g_ptr_array_index(p->children, i), pub, t); - } - - element_clear(r); - element_clear(t); - element_clear(h); -} - -bswabe_cph_t* -bswabe_enc( bswabe_pub_t* pub, element_t m, char* policy ) -{ - bswabe_cph_t* cph; - element_t s; - - /* initialize */ - - cph = malloc(sizeof(bswabe_cph_t)); - - element_init_Zr(s, pub->p); - element_init_GT(m, pub->p); - element_init_GT(cph->cs, pub->p); - element_init_G1(cph->c, pub->p); - cph->policy = policy; - cph->p = parse_policy_postfix(policy); /* Assign the policy */ - /* compute */ - - element_random(m); - element_random(s); - element_pow_zn(cph->cs, pub->g_hat_alpha, s); /* g_hat_aplha = e(g,g_aplha) = e(g,gp)^a */ - /* cs = e(g,gp)^(as) */ - element_mul(cph->cs, cph->cs, m); /* cs = me(g,gp)^(as) */ - - element_pow_zn(cph->c, pub->h, s); /* c = h^s */ - - fill_policy(cph->p, pub, s); /* The zero_val of the root polynomial is s (qr(0) = s) */ - return cph; -} - -/* Recursively verify if the ciphertext policy is satisfied by the private key */ - -void -check_sat( bswabe_policy_t* p, bswabe_prv_t* prv ) -{ - int i, l; - - p->satisfiable = 0; - if( p->children->len == 0 ) /* If leave */ - { - for( i = 0; i < prv->comps->len; i++ ) - if( !strcmp(g_array_index(prv->comps, bswabe_prv_comp_t, i).attr, - p->attr) ) - { - p->satisfiable = 1; - p->attri = i; - break; - } - } - else - { - for( i = 0; i < p->children->len; i++ ) /* Recursively applies to the children */ - check_sat(g_ptr_array_index(p->children, i), prv); - - l = 0; - for( i = 0; i < p->children->len; i++ ) /* Checks how many children nodes are satisfied */ - if( ((bswabe_policy_t*) g_ptr_array_index(p->children, i))->satisfiable ) - l++; - - if( l >= p->k ) /* k is the threshold value */ - p->satisfiable = 1; - } -} - -/* Picks a set of k children that satisfy the policy */ -void -pick_sat_naive( bswabe_policy_t* p, bswabe_prv_t* prv ) -{ - int i, k, l; - - assert(p->satisfiable == 1); - - if( p->children->len == 0 ) - return; - - p->satl = g_array_new(0, 0, sizeof(int)); - - l = 0; - for( i = 0; i < p->children->len && l < p->k; i++ ) - if( ((bswabe_policy_t*) g_ptr_array_index(p->children, i))->satisfiable ) - { - pick_sat_naive(g_ptr_array_index(p->children, i), prv); - l++; - k = i + 1; - g_array_append_val(p->satl, k); - } -} - -/* TODO there should be a better way of doing this */ -bswabe_policy_t* cur_comp_pol; -int -cmp_int( const void* a, const void* b ) -{ - int k, l; - - k = ((bswabe_policy_t*) g_ptr_array_index(cur_comp_pol->children, *((int*)a)))->min_leaves; - l = ((bswabe_policy_t*) g_ptr_array_index(cur_comp_pol->children, *((int*)b)))->min_leaves; - - return - k < l ? -1 : - k == l ? 0 : 1; -} - -void -pick_sat_min_leaves( bswabe_policy_t* p, bswabe_prv_t* prv ) -{ - int i, k, l; - int* c; - - assert(p->satisfiable == 1); - - if( p->children->len == 0 ) - p->min_leaves = 1; - else - { - for( i = 0; i < p->children->len; i++ ) - if( ((bswabe_policy_t*) g_ptr_array_index(p->children, i))->satisfiable ) - pick_sat_min_leaves(g_ptr_array_index(p->children, i), prv); - - c = alloca(sizeof(int) * p->children->len); - for( i = 0; i < p->children->len; i++ ) - c[i] = i; - - cur_comp_pol = p; - qsort(c, p->children->len, sizeof(int), cmp_int); - - p->satl = g_array_new(0, 0, sizeof(int)); - p->min_leaves = 0; - l = 0; - - for( i = 0; i < p->children->len && l < p->k; i++ ) - if( ((bswabe_policy_t*) g_ptr_array_index(p->children, c[i]))->satisfiable ) - { - l++; - p->min_leaves += ((bswabe_policy_t*) g_ptr_array_index(p->children, c[i]))->min_leaves; - k = c[i] + 1; - g_array_append_val(p->satl, k); - } - assert(l == p->k); - } -} - -void -lagrange_coef( element_t r, GArray* s, int i ) -{ - int j, k; - element_t t; - - element_init_same_as(t, r); - - element_set1(r); - for( k = 0; k < s->len; k++ ) - { - j = g_array_index(s, int, k); - if( j == i ) - continue; - element_set_si(t, - j); - element_mul(r, r, t); /* num_muls++; */ - element_set_si(t, i - j); - element_invert(t, t); - element_mul(r, r, t); /* num_muls++; */ - } - - element_clear(t); -} - -void -dec_leaf_naive( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - bswabe_prv_comp_t* c; - element_t s; - - c = &(g_array_index(prv->comps, bswabe_prv_comp_t, p->attri)); - - element_init_GT(s, pub->p); - - pairing_apply(r, p->c, c->d, pub->p); /* num_pairings++; */ - pairing_apply(s, p->cp, c->dp, pub->p); /* num_pairings++; */ - element_invert(s, s); - element_mul(r, r, s); /* num_muls++; */ - - element_clear(s); -} - -void dec_node_naive( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ); - -void -dec_internal_naive( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - int i; - element_t s; - element_t t; - - element_init_GT(s, pub->p); - element_init_Zr(t, pub->p); - - element_set1(r); - for( i = 0; i < p->satl->len; i++ ) - { - dec_node_naive - (s, g_ptr_array_index - (p->children, g_array_index(p->satl, int, i) - 1), prv, pub); - lagrange_coef(t, p->satl, g_array_index(p->satl, int, i)); - element_pow_zn(s, s, t); /* num_exps++; */ - element_mul(r, r, s); /* num_muls++; */ - } - - element_clear(s); - element_clear(t); -} - -void -dec_node_naive( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - assert(p->satisfiable); - if( p->children->len == 0 ) - dec_leaf_naive(r, p, prv, pub); - else - dec_internal_naive(r, p, prv, pub); -} - -void -dec_naive( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - dec_node_naive(r, p, prv, pub); -} - -void -dec_leaf_merge( element_t exp, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - bswabe_prv_comp_t* c; - element_t s; - - c = &(g_array_index(prv->comps, bswabe_prv_comp_t, p->attri)); - - if( !c->used ) - { - c->used = 1; - element_init_G1(c->z, pub->p); - element_init_G1(c->zp, pub->p); - element_set1(c->z); - element_set1(c->zp); - } - - element_init_G1(s, pub->p); - - element_pow_zn(s, p->c, exp); /* num_exps++; */ - element_mul(c->z, c->z, s); /* num_muls++; */ - - element_pow_zn(s, p->cp, exp); /* num_exps++; */ - element_mul(c->zp, c->zp, s); /* num_muls++; */ - - element_clear(s); -} - -void dec_node_merge( element_t exp, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ); - -void -dec_internal_merge( element_t exp, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - int i; - element_t t; - element_t expnew; - - element_init_Zr(t, pub->p); - element_init_Zr(expnew, pub->p); - - for( i = 0; i < p->satl->len; i++ ) - { - lagrange_coef(t, p->satl, g_array_index(p->satl, int, i)); - element_mul(expnew, exp, t); /* num_muls++; */ - dec_node_merge(expnew, g_ptr_array_index - (p->children, g_array_index(p->satl, int, i) - 1), prv, pub); - } - - element_clear(t); - element_clear(expnew); -} - -void -dec_node_merge( element_t exp, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - assert(p->satisfiable); - if( p->children->len == 0 ) - dec_leaf_merge(exp, p, prv, pub); - else - dec_internal_merge(exp, p, prv, pub); -} - -void -dec_merge( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - int i; - element_t one; - element_t s; - - /* first mark all attributes as unused */ - for( i = 0; i < prv->comps->len; i++ ) - g_array_index(prv->comps, bswabe_prv_comp_t, i).used = 0; - - /* now fill in the z's and zp's */ - element_init_Zr(one, pub->p); - element_set1(one); - dec_node_merge(one, p, prv, pub); - element_clear(one); - - /* now do all the pairings and multiply everything together */ - element_set1(r); - element_init_GT(s, pub->p); - for( i = 0; i < prv->comps->len; i++ ) - if( g_array_index(prv->comps, bswabe_prv_comp_t, i).used ) - { - bswabe_prv_comp_t* c = &(g_array_index(prv->comps, bswabe_prv_comp_t, i)); - - pairing_apply(s, c->z, c->d, pub->p); /* num_pairings++; */ - element_mul(r, r, s); /* num_muls++; */ - - pairing_apply(s, c->zp, c->dp, pub->p); /* num_pairings++; */ - element_invert(s, s); - element_mul(r, r, s); /* num_muls++; */ - } - element_clear(s); -} - -void -dec_leaf_flatten( element_t r, element_t exp, - bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - bswabe_prv_comp_t* c; - element_t s; - element_t t; - - c = &(g_array_index(prv->comps, bswabe_prv_comp_t, p->attri)); - - element_init_GT(s, pub->p); - element_init_GT(t, pub->p); - - pairing_apply(s, p->c, c->d, pub->p); /* num_pairings++; */ - pairing_apply(t, p->cp, c->dp, pub->p); /* num_pairings++; */ - element_invert(t, t); - element_mul(s, s, t); /* num_muls++; */ - element_pow_zn(s, s, exp); /* num_exps++; */ - - element_mul(r, r, s); /* num_muls++; */ - - element_clear(s); - element_clear(t); -} - -void dec_node_flatten( element_t r, element_t exp, - bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ); - -void -dec_internal_flatten( element_t r, element_t exp, - bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - int i; - element_t t; - element_t expnew; - - element_init_Zr(t, pub->p); - element_init_Zr(expnew, pub->p); - - for( i = 0; i < p->satl->len; i++ ) - { - lagrange_coef(t, p->satl, g_array_index(p->satl, int, i)); - element_mul(expnew, exp, t); /* num_muls++; */ - dec_node_flatten(r, expnew, g_ptr_array_index - (p->children, g_array_index(p->satl, int, i) - 1), prv, pub); - } - - element_clear(t); - element_clear(expnew); -} - -void -dec_node_flatten( element_t r, element_t exp, - bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - assert(p->satisfiable); - if( p->children->len == 0 ) - dec_leaf_flatten(r, exp, p, prv, pub); - else - dec_internal_flatten(r, exp, p, prv, pub); -} - -void -dec_flatten( element_t r, bswabe_policy_t* p, bswabe_prv_t* prv, bswabe_pub_t* pub ) -{ - element_t one; - - element_init_Zr(one, pub->p); - - element_set1(one); - element_set1(r); - - dec_node_flatten(r, one, p, prv, pub); - - element_clear(one); -} - -int -bswabe_dec( bswabe_pub_t* pub, bswabe_prv_t* prv, bswabe_cph_t* cph, element_t m ) -{ - element_t t; - - element_init_GT(m, pub->p); - element_init_GT(t, pub->p); - - check_sat(cph->p, prv); - if( !cph->p->satisfiable ) - { - raise_error("cannot decrypt, attributes in key do not satisfy policy\n"); - return 0; - } - -/* if( no_opt_sat ) */ -/* pick_sat_naive(cph->p, prv); */ -/* else */ - pick_sat_min_leaves(cph->p, prv); - -/* if( dec_strategy == DEC_NAIVE ) */ -/* dec_naive(t, cph->p, prv, pub); */ -/* else if( dec_strategy == DEC_FLATTEN ) */ - dec_flatten(t, cph->p, prv, pub); -/* else */ -/* dec_merge(t, cph->p, prv, pub); */ - - element_mul(m, cph->cs, t); /* num_muls++; */ - - pairing_apply(t, cph->c, prv->d, pub->p); /* num_pairings++; */ - element_invert(t, t); - element_mul(m, m, t); /* num_muls++; */ - - return 1; -} - -// Returns the policy of a ciphertext -char* bswabe_policyList( bswabe_cph_t* cph) - { - return cph->policy; - } - -char** bswabe_attrList( bswabe_prv_t* prv) - { - int i; - char** attrList; - attrList = malloc(sizeof(char*)*(prv->comps->len+1)); - - for( i = 0; i < prv->comps->len; i++ ) - attrList[i]= g_array_index(prv->comps, bswabe_prv_comp_t, i).attr; - - attrList[prv->comps->len] = 0; - return attrList; - } - -/* Generate an encrypted keyword using the public key and a clear keyword */ -peks_sew_t peks_enc( bswabe_pub_t* pub, char* w ) -{ - peks_sew_t sew; - element_t hr; /* h^r */ - element_t hw; /* H_1(W) */ - element_t r; - - /* initialize */ - - element_init_Zr(r, pub->p); - element_init_G1(hr, pub->p); - element_init_G1(hw, pub->p); - element_init_GT(sew.B, pub->p); - element_init_G1(sew.A, pub->p); - - /* compute */ - - element_random(r); - element_pow_zn(hr, pub->h, r); /* h^r */ - element_pow_zn(sew.A, pub->g, r); /* A = g^r */ - element_from_string(hw, w); /* H_1(W) */ - - pairing_apply(sew.B, hw, hr, pub->p); /* B = e( H_1(W), h^r ) */ - -// element_clear(r); -// element_clear(hr); -// element_clear(hw); - return sew; -} - -/* Generates an encrypted index using the public key and a clear index. - Each keyword of the clear index should be on a different line */ -peks_ind_t* peks_enc_ind( bswabe_pub_t* pub, char* ind_file ) -{ - peks_ind_t* ind; - - FILE* f; - - /* initialize */ - - ind = malloc(sizeof(peks_ind_t)); - - ind->comps = g_array_new(0, 1, sizeof(peks_sew_t)); - - f = fopen(ind_file, "r"); - - char line[256]; - - /* compute */ - while (fgets(line, sizeof(line), f)) - { - peks_sew_t sew; - sew = peks_enc(pub, line); - g_array_append_val(ind->comps, sew); - } - - return ind; -} - -/* Generates a trapdoor using private key and a word */ -peks_trap_t* peks_trap( bswabe_pub_t* pub, bswabe_msk_t* msk, char* w ) -{ - peks_trap_t* trap; - element_t hw; /* H_1(W) */ - - /* initialize */ - - trap = malloc(sizeof(peks_trap_t)); - element_init_G1(hw, pub->p); - element_init_G1(trap->T, pub->p); - - /* compute */ - - element_from_string(hw, w); /* H_1(W) */ - element_pow_zn(trap->T, hw, msk->beta); - - return trap; -} - -/* Tests if the encrypted word match with the trapdoor */ -int peks_test( bswabe_pub_t* pub, peks_sew_t sew, peks_trap_t* trap ) -{ - element_t test; - - /* initialize */ - - element_init_GT(test, pub->p); - - /* compute */ - - pairing_apply(test, trap->T, sew.A, pub->p); /* test = e( T_W, A ) */ - - return element_cmp(test, sew.B); -} - -/* Tests if the encrypted index match with the trapdoor */ -int peks_test_ind( bswabe_pub_t* pub, peks_ind_t* ind, peks_trap_t* trap ) -{ - int i; - /* compute */ - for( i = 0; i < ind->comps->len; i++ ) - { - if( !peks_test(pub, g_array_index(ind->comps, peks_sew_t, i), trap)) - return 0; - } - - return 1; -} |