aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/guru/19.c
diff options
context:
space:
mode:
authorwukong <rebirthmonkey@gmail.com>2015-11-23 17:48:48 +0100
committerwukong <rebirthmonkey@gmail.com>2015-11-23 17:48:48 +0100
commitfca74d4bc3569506a6659880a89aa009dc11f552 (patch)
tree4cefd06af989608ea8ebd3bc6306889e2a1ad175 /moon-abe/pbc-0.5.14/guru/19.c
parent840ac3ebca7af381132bf7e93c1e4c0430d6b16a (diff)
moon-abe cleanup
Change-Id: Ie1259856db03f0b9e80de3e967ec6bd1f03191b3
Diffstat (limited to 'moon-abe/pbc-0.5.14/guru/19.c')
-rw-r--r--moon-abe/pbc-0.5.14/guru/19.c373
1 files changed, 0 insertions, 373 deletions
diff --git a/moon-abe/pbc-0.5.14/guru/19.c b/moon-abe/pbc-0.5.14/guru/19.c
deleted file mode 100644
index 5e225565..00000000
--- a/moon-abe/pbc-0.5.14/guru/19.c
+++ /dev/null
@@ -1,373 +0,0 @@
-/*
- * Toy example of a field where the Tate pairing can be used
- * but the Weil pairing cannot.
- *
- * Consider the curve E: y^2 = x^3 + x + 6 over F_19:
- * E(F_19) is a cyclic group of order 18.
- * Thus E[3] is not contained in F_19
- * (it turns out E[3] is contained in F_19^3).
- *
- * Hence the Weil pairing cannot be defined over F_19
- * However, F_19 contains the cube roots of unity
- * so we can compute the Tate pairing
- */
-
-/*
- * P = (12,13) generates a group of order 3:
- * <(12,13)> = {(12,13), (12,6), O}
- * e(P,P) = 7, so we have the isomorphism
- * <(12,13)> = <7> (in F_19^*)
- *
- * Similarly P = (4, 6) generates a group of order 9, and we find
- * <(4,6)> = <4>
- *
- * P = (0, 5) generates all of E(F_19)
- * Miller's algorithm will not allow us to calculate e(P, P) without
- * first extending F_19.
- * Instead of extending, we could manipulate rational functions since
- * 19 is small enough that an explicit expression of f_P can be found.
- */
-
-#include "pbc.h"
-#include "pbc_fp.h"
-#include "pbc_fieldquadratic.h"
-
-static void miller(element_t res, element_t P, element_ptr QR, element_ptr R, int n) {
- // Collate divisions.
- int m;
- element_t v, vd;
- element_t Z;
- element_t a, b, c;
- const element_ptr cca = curve_a_coeff(P);
- const element_ptr Px = curve_x_coord(P);
- const element_ptr Py = curve_y_coord(P);
- element_t e0, e1;
- mpz_t q;
- element_ptr Zx, Zy;
- const element_ptr numx = curve_x_coord(QR);
- const element_ptr numy = curve_y_coord(QR);
- const element_ptr denomx = curve_x_coord(R);
- const element_ptr denomy = curve_y_coord(R);
-
- void do_vertical(element_t e, element_t edenom)
- {
- element_sub(e0, numx, Zx);
- element_mul(e, e, e0);
-
- element_sub(e0, denomx, Zx);
- element_mul(edenom, edenom, e0);
- }
-
- void do_tangent(element_t e, element_t edenom)
- {
- //a = -slope_tangent(A.x, A.y);
- //b = 1;
- //c = -(A.y + a * A.x);
- //but we multiply by 2*A.y to avoid division
-
- //a = -Ax * (Ax + Ax + Ax + twicea_2) - a_4;
- //Common curves: a2 = 0 (and cc->a is a_4), so
- //a = -(3 Ax^2 + cc->a)
- //b = 2 * Ay
- //c = -(2 Ay^2 + a Ax);
-
- if (element_is0(Zy)) {
- do_vertical(e, edenom);
- return;
- }
- element_square(a, Zx);
- element_mul_si(a, a, 3);
- element_add(a, a, cca);
- element_neg(a, a);
-
- element_add(b, Zy, Zy);
-
- element_mul(e0, b, Zy);
- element_mul(c, a, Zx);
- element_add(c, c, e0);
- element_neg(c, c);
-
- element_mul(e0, a, numx);
- element_mul(e1, b, numy);
- element_add(e0, e0, e1);
- element_add(e0, e0, c);
- element_mul(e, e, e0);
-
- element_mul(e0, a, denomx);
- element_mul(e1, b, denomy);
- element_add(e0, e0, e1);
- element_add(e0, e0, c);
- element_mul(edenom, edenom, e0);
- }
-
- void do_line(element_ptr e, element_ptr edenom)
- {
- if (!element_cmp(Zx, Px)) {
- if (!element_cmp(Zy, Py)) {
- do_tangent(e, edenom);
- } else {
- do_vertical(e, edenom);
- }
- return;
- }
-
- element_sub(b, Px, Zx);
- element_sub(a, Zy, Py);
- element_mul(c, Zx, Py);
- element_mul(e0, Zy, Px);
- element_sub(c, c, e0);
-
- element_mul(e0, a, numx);
- element_mul(e1, b, numy);
- element_add(e0, e0, e1);
- element_add(e0, e0, c);
- element_mul(e, e, e0);
-
- element_mul(e0, a, denomx);
- element_mul(e1, b, denomy);
- element_add(e0, e0, e1);
- element_add(e0, e0, c);
- element_mul(edenom, edenom, e0);
- }
-
- element_init(a, res->field);
- element_init(b, res->field);
- element_init(c, res->field);
- element_init(e0, res->field);
- element_init(e1, res->field);
-
- element_init(v, res->field);
- element_init(vd, res->field);
- element_init(Z, P->field);
-
- element_set(Z, P);
- Zx = curve_x_coord(Z);
- Zy = curve_y_coord(Z);
-
- element_set1(v);
- element_set1(vd);
-
- mpz_init(q);
- mpz_set_ui(q, n);
- m = mpz_sizeinbase(q, 2) - 2;
-
- while(m >= 0) {
- element_square(v, v);
- element_square(vd, vd);
- do_tangent(v, vd);
- element_double(Z, Z);
- do_vertical(vd, v);
-
- if (mpz_tstbit(q, m)) {
- do_line(v, vd);
- element_add(Z, Z, P);
- if (m) {
- do_vertical(vd, v);
- }
- }
- m--;
- }
-
- mpz_clear(q);
-
- element_invert(vd, vd);
- element_mul(res, v, vd);
-
- element_clear(v);
- element_clear(vd);
- element_clear(Z);
- element_clear(a);
- element_clear(b);
- element_clear(c);
- element_clear(e0);
- element_clear(e1);
-}
-
-static void tate_3(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) {
- mpz_t six;
-
- mpz_init(six);
- mpz_set_ui(six, 6);
- element_t QR;
- element_t e0;
-
- element_init(QR, P->field);
- element_init(e0, out->field);
-
- element_add(QR, Q, R);
-
- //for subgroup size 3, -2P = P, hence
- //the tangent line at P has divisor 3(P) - 3(O)
-
- miller(out, P, QR, R, 3);
-
- element_pow_mpz(out, out, six);
- element_clear(QR);
- element_clear(e0);
- mpz_clear(six);
-}
-
-static void tate_9(element_ptr out, element_ptr P, element_ptr Q, element_ptr R) {
- element_t QR;
- element_init(QR, P->field);
-
- element_add(QR, Q, R);
-
- miller(out, P, QR, R, 9);
-
- element_square(out, out);
-
- element_clear(QR);
-}
-
-static void tate_18(element_ptr out, element_ptr P, element_ptr Q, element_ptr R, element_ptr S) {
- mpz_t pow;
- element_t PR;
- element_t QS;
- element_init(PR, P->field);
- element_init(QS, P->field);
- element_t outd;
-
- element_init(outd, out->field);
-
- mpz_init(pow);
- mpz_set_ui(pow, (19*19-1)/18);
-
- element_add(PR, P, R);
- element_add(QS, Q, S);
-
- if (element_is0(QS)) {
- element_t S2;
- element_init(S2, P->field);
- element_double(S2, S);
- miller(out, PR, S, S2, 18);
- miller(outd, R, S, S2, 18);
- element_clear(S2);
- } else {
- miller(out, PR, QS, S, 18);
- miller(outd, R, QS, S, 18);
- }
-
- element_clear(PR);
- element_clear(QS);
-
- element_invert(outd, outd);
- element_mul(out, out, outd);
- element_pow_mpz(out, out, pow);
-
- element_clear(outd);
- mpz_clear(pow);
-}
-
-int main(void) {
- field_t c;
- field_t Z19;
- element_t P, Q, R;
- mpz_t q, z;
- element_t a, b;
- int i;
-
- field_t Z19_2;
- field_t c2;
- element_t P2, Q2, R2;
- element_t a2;
-
- mpz_init(q);
- mpz_init(z);
-
- mpz_set_ui(q, 19);
-
- field_init_fp(Z19, q);
- element_init(a, Z19);
- element_init(b, Z19);
-
- element_set_si(a, 1);
- element_set_si(b, 6);
-
- mpz_set_ui(q, 18);
- field_init_curve_ab(c, a, b, q, NULL);
- element_init(P, c);
- element_init(Q, c);
- element_init(R, c);
-
- printf("Y^2 = X^3 + X + 6 over F_19\n");
- //(0,+/-5) is a generator
- element_set0(a);
- curve_from_x(R, a);
-
- for (i=1; i<19; i++) {
- mpz_set_si(z, i);
- element_mul_mpz(Q, R, z);
- element_printf("%dR = %B\n", i, Q);
- }
-
- mpz_set_ui(z, 6);
- element_mul_mpz(P, R, z);
- //P has order 3
- element_printf("P = %B\n", P);
-
- for (i=1; i<=3; i++) {
- mpz_set_si(z, i);
- element_mul_mpz(Q, R, z);
- tate_3(a, P, Q, R);
- element_printf("e_3(P,%dR) = %B\n", i, a);
- }
-
- element_double(P, R);
- //P has order 9
- element_printf("P = %B\n", P);
- for (i=1; i<=9; i++) {
- mpz_set_si(z, i);
- //we're supposed to use multiples of R
- //but 2R works just as well and it allows us
- //to use R as the offset every time
- element_mul_mpz(Q, P, z);
- tate_9(a, P, Q, R);
- element_printf("e_9(P,%dP) = %B\n", i, a);
- }
-
- //to do the pairing on all of E(F_19) we need to move to F_19^2
- //or compute the rational function explicitly
- printf("moving to F_19^2\n");
- field_init_fi(Z19_2, Z19);
-
- //don't need to tell it the real order
- field_init_curve_ab_map(c2, c, element_field_to_fi, Z19_2, q, NULL);
- element_init(P2, c2);
- element_init(Q2, c2);
- element_init(R2, c2);
-
- element_init(a2, Z19_2);
- element_set0(a2);
- curve_from_x(P2, a2);
-
- element_random(R2);
-
- element_printf("P = %B\n", P2);
-
- for (i=1; i<=18; i++) {
- mpz_set_si(z, i);
- element_mul_mpz(Q2, P2, z);
- tate_18(a2, P2, Q2, R2, P2);
- element_printf("e_18(P,%dP) = %B\n", i, a2);
- }
-
- element_clear(P2);
- element_clear(Q2);
- element_clear(R2);
- element_clear(a2);
- field_clear(c2);
- field_clear(Z19_2);
-
- field_clear(c);
- element_clear(a);
- element_clear(b);
- element_clear(P);
- element_clear(Q);
- element_clear(R);
- field_clear(Z19);
-
- mpz_clear(q);
- mpz_clear(z);
- return 0;
-}