summaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/ecc/singular.c
diff options
context:
space:
mode:
authorRuan HE <ruan.he@orange.com>2015-09-04 07:35:06 +0000
committerGerrit Code Review <gerrit@172.30.200.206>2015-09-04 07:35:06 +0000
commitca6aa8198d2335f8c326c3dd4d26bf5899064214 (patch)
tree6274a2d971fc0cac0896efe8583927d0190e3d20 /moon-abe/pbc-0.5.14/ecc/singular.c
parent92fd2dbfb672d7b2b1cdfd5dd5cf89f7716b3e12 (diff)
parent3baeb11a8fbcfcdbc31976d421f17b85503b3ecd (diff)
Merge "init attribute-based encryption"
Diffstat (limited to 'moon-abe/pbc-0.5.14/ecc/singular.c')
-rw-r--r--moon-abe/pbc-0.5.14/ecc/singular.c447
1 files changed, 447 insertions, 0 deletions
diff --git a/moon-abe/pbc-0.5.14/ecc/singular.c b/moon-abe/pbc-0.5.14/ecc/singular.c
new file mode 100644
index 00000000..95f00410
--- /dev/null
+++ b/moon-abe/pbc-0.5.14/ecc/singular.c
@@ -0,0 +1,447 @@
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdint.h> // for intptr_t
+#include <stdlib.h>
+#include <gmp.h>
+#include "pbc_utils.h"
+#include "pbc_field.h"
+#include "pbc_curve.h"
+#include "pbc_param.h"
+#include "pbc_pairing.h"
+#include "pbc_fp.h"
+#include "pbc_memory.h"
+
+//TODO: Store as integer mod ring instead and convert at last minute?
+struct point_s {
+ int inf_flag;
+ element_t x;
+ element_t y;
+};
+typedef struct point_s *point_ptr;
+typedef struct point_s point_t[1];
+
+static void sn_init(element_ptr e) {
+ field_ptr f = e->field->data;
+ e->data = pbc_malloc(sizeof(point_t));
+ point_ptr p = e->data;
+ element_init(p->x, f);
+ element_init(p->y, f);
+ p->inf_flag = 1;
+}
+
+static void sn_clear(element_ptr e) {
+ point_ptr p = e->data;
+ element_clear(p->x);
+ element_clear(p->y);
+ pbc_free(e->data);
+}
+
+static void sn_set0(element_ptr x) {
+ point_ptr p = x->data;
+ p->inf_flag = 1;
+}
+
+static int sn_is0(element_ptr x) {
+ point_ptr p = x->data;
+ return p->inf_flag;
+}
+
+//singular with node: y^2 = x^3 + x^2
+static void sn_random(element_t a) {
+ point_ptr p = a->data;
+ element_t t;
+
+ element_init(t, p->x->field);
+ p->inf_flag = 0;
+ do {
+ element_random(p->x);
+ if (element_is0(p->x)) continue;
+ element_square(t, p->x);
+ element_add(t, t, p->x);
+ element_mul(t, t, p->x);
+ } while (!element_is_sqr(t));
+ element_sqrt(p->y, t);
+
+ element_clear(t);
+}
+
+static inline void sn_double_no_check(point_ptr r, point_ptr p) {
+ element_t lambda, e0, e1;
+
+ element_init(lambda, p->x->field);
+ element_init(e0, p->x->field);
+ element_init(e1, p->x->field);
+ //same point: double them
+
+ //lambda = (3x^2 + 2x) / 2y
+ element_mul_si(lambda, p->x, 3);
+ element_set_si(e0, 2);
+ element_add(lambda, lambda, e0);
+ element_mul(lambda, lambda, p->x);
+ element_add(e0, p->y, p->y);
+ element_invert(e0, e0);
+ element_mul(lambda, lambda, e0);
+ //x1 = lambda^2 - 2x - 1
+ element_add(e1, p->x, p->x);
+ element_square(e0, lambda);
+ element_sub(e0, e0, e1);
+ element_set_si(e1, 1);
+ element_sub(e0, e0, e1);
+ //y1 = (x - x1)lambda - y
+ element_sub(e1, p->x, e0);
+ element_mul(e1, e1, lambda);
+ element_sub(e1, e1, p->y);
+
+ element_set(r->x, e0);
+ element_set(r->y, e1);
+ r->inf_flag = 0;
+
+ element_clear(lambda);
+ element_clear(e0);
+ element_clear(e1);
+ return;
+}
+
+static void sn_double(element_t c, element_t a) {
+ point_ptr r = c->data;
+ point_ptr p = a->data;
+ if (p->inf_flag) {
+ r->inf_flag = 1;
+ return;
+ }
+ if (element_is0(p->y)) {
+ r->inf_flag = 1;
+ return;
+ }
+ sn_double_no_check(r, p);
+}
+
+static void sn_set(element_ptr c, element_ptr a) {
+ point_ptr r = c->data, p = a->data;
+ if (p->inf_flag) {
+ r->inf_flag = 1;
+ return;
+ }
+ r->inf_flag = 0;
+ element_set(r->x, p->x);
+ element_set(r->y, p->y);
+}
+
+static void sn_add(element_t c, element_t a, element_t b) {
+ point_ptr r = c->data;
+ point_ptr p = a->data;
+ point_ptr q = b->data;
+ if (p->inf_flag) {
+ sn_set(c, b);
+ return;
+ }
+ if (q->inf_flag) {
+ sn_set(c, a);
+ return;
+ }
+ if (!element_cmp(p->x, q->x)) {
+ if (!element_cmp(p->y, q->y)) {
+ if (element_is0(p->y)) {
+ r->inf_flag = 1;
+ return;
+ } else {
+ sn_double_no_check(r, p);
+ return;
+ }
+ }
+ //points are inverses of each other
+ r->inf_flag = 1;
+ return;
+ } else {
+ element_t lambda, e0, e1;
+
+ element_init(lambda, p->x->field);
+ element_init(e0, p->x->field);
+ element_init(e1, p->x->field);
+
+ //lambda = (y2-y1)/(x2-x1)
+ element_sub(e0, q->x, p->x);
+ element_invert(e0, e0);
+ element_sub(lambda, q->y, p->y);
+ element_mul(lambda, lambda, e0);
+ //x3 = lambda^2 - x1 - x2 - 1
+ element_square(e0, lambda);
+ element_sub(e0, e0, p->x);
+ element_sub(e0, e0, q->x);
+ element_set1(e1);
+ element_sub(e0, e0, e1);
+ //y3 = (x1-x3)lambda - y1
+ element_sub(e1, p->x, e0);
+ element_mul(e1, e1, lambda);
+ element_sub(e1, e1, p->y);
+
+ element_set(r->x, e0);
+ element_set(r->y, e1);
+ r->inf_flag = 0;
+
+ element_clear(lambda);
+ element_clear(e0);
+ element_clear(e1);
+ }
+}
+
+static void sn_invert(element_ptr c, element_ptr a) {
+ point_ptr r = c->data, p = a->data;
+
+ if (p->inf_flag) {
+ r->inf_flag = 1;
+ return;
+ }
+ r->inf_flag = 0;
+ element_set(r->x, p->x);
+ element_neg(r->y, p->y);
+}
+
+static void sn_field_clear(field_ptr c) {
+ UNUSED_VAR(c);
+}
+
+/* TODO: Write a test program that uses these functions.
+
+// Nonsingular points on sn curves map to finite field elements via
+// (x, y) --> (y + x)/(y - x)
+// The reverse map is
+// a --> (4a/(a-1)^2, 4a(a+1)/(a-1)^3)
+
+void sn_point_to_field(element_t out, point_ptr P) {
+ element_t e0, e1;
+ if (P->inf_flag) {
+ element_set1(out);
+ return;
+ }
+ element_init(e0, out->field);
+ element_init(e1, out->field);
+ element_add(e0, P->y, P->x);
+ element_sub(e1, P->y, P->x);
+ element_invert(e1, e1);
+ element_mul(out, e0, e1);
+ element_clear(e0);
+ element_clear(e1);
+}
+
+static void sn_field_to_point(point_ptr P, element_t in) {
+ element_t e0, e1, e2;
+
+ if (element_is1(in)) {
+ P->inf_flag = 1;
+ return;
+ }
+ element_init(e0, in->field);
+ element_init(e1, in->field);
+ element_init(e2, in->field);
+
+ element_set1(e1);
+ element_sub(e0, in, e1);
+ element_invert(e0, e0);
+
+ element_mul_si(e2, in, 4);
+
+ element_add(P->y, in, e1);
+
+ element_mul(e1, e0, e0);
+ element_mul(P->x, e1, e2);
+ element_mul(P->y, P->y, e2);
+ element_mul(P->y, P->y, e0);
+ element_mul(P->y, P->y, e1);
+ P->inf_flag = 0;
+
+ element_clear(e0);
+ element_clear(e1);
+ element_clear(e2);
+}
+*/
+
+static size_t sn_out_str(FILE *stream, int base, element_ptr a) {
+ point_ptr p = a->data;
+ size_t result, status;
+ if (p->inf_flag) {
+ if (EOF == fputc('O', stream)) return 0;
+ return 1;
+ }
+ result = element_out_str(stream, base, p->x);
+ if (!result) return 0;
+ if (EOF == fputc(' ', stream)) return 0;
+ status = element_out_str(stream, base, p->y);
+ if (!status) return 0;
+ return result + status + 1;
+}
+
+void naive_generic_pow_mpz(element_ptr x, element_ptr a, mpz_ptr n);
+void field_init_curve_singular_with_node(field_t c, field_t field) {
+ mpz_set(c->order, field->order);
+ c->data = (void *) field;
+ c->init = sn_init;
+ c->clear = sn_clear;
+ c->random = sn_random;
+ //c->from_x = cc_from_x;
+ //c->from_hash = cc_from_hash;
+ c->set = sn_set;
+ c->invert = c->neg = sn_invert;
+ c->square = c->doub = sn_double;
+ c->mul = c->add = sn_add;
+ c->set1 = c->set0 = sn_set0;
+ c->is1 = c->is0 = sn_is0;
+ c->mul_mpz = element_pow_mpz;
+ c->out_str = sn_out_str;
+ c->field_clear = sn_field_clear;
+}
+
+//TODO: the following code is useless as the Tate pairing is degenerate on singular curves
+static void sn_miller(element_t res, mpz_t q, element_t P,
+ element_ptr Qx, element_ptr Qy) {
+ //collate divisions
+ int m;
+ element_t v, vd;
+ element_t Z;
+ element_t a, b, c;
+ element_t e0, e1;
+ element_ptr Zx;
+ element_ptr Zy;
+ const element_ptr Px = curve_x_coord(P);
+ const element_ptr Py = curve_y_coord(P);
+
+ #define do_vertical(e) \
+ element_sub(e0, Qx, Zx); \
+ element_mul(e, e, e0);
+
+ //a = -slope_tangent(Z.x, Z.y);
+ //b = 1;
+ //c = -(Z.y + a * Z.x);
+ //but we multiply by 2*Z.y to avoid division
+ //a = -Zx * (Zx + Zx + Zx + 2)
+ //b = 2 * Zy
+ //c = -(2 Zy^2 + a Zx);
+ #define do_tangent(e) \
+ element_double(e0, Zx); \
+ element_add(a, Zx, e0); \
+ element_set_si(e0, 2); \
+ element_add(a, a, e0); \
+ element_mul(a, a, Zx); \
+ element_neg(a, a); \
+ element_add(b, Zy, Zy); \
+ element_mul(e0, b, Zy); \
+ element_mul(c, a, Zx); \
+ element_add(c, c, e0); \
+ element_neg(c, c); \
+ element_mul(e0, a, Qx); \
+ element_mul(e1, b, Qy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0);
+
+ //a = -(B.y - A.y) / (B.x - A.x);
+ //b = 1;
+ //c = -(A.y + a * A.x);
+ //but we'll multiply by B.x - A.x to avoid division
+ #define do_line(e) \
+ element_sub(b, Px, Zx); \
+ element_sub(a, Zy, Py); \
+ element_mul(e0, b, Zy); \
+ element_mul(c, a, Zx); \
+ element_add(c, c, e0); \
+ element_neg(c, c); \
+ element_mul(e0, a, Qx); \
+ element_mul(e1, b, Qy); \
+ element_add(e0, e0, e1); \
+ element_add(e0, e0, c); \
+ element_mul(e, e, e0);
+
+ element_init(a, Px->field);
+ element_init(b, Px->field);
+ element_init(c, Px->field);
+ element_init(e0, res->field);
+ element_init(e1, res->field);
+
+ element_init(v, res->field);
+ element_init(vd, res->field);
+ element_init(Z, P->field);
+
+ element_set(Z, P);
+ Zx = curve_x_coord(Z);
+ Zy = curve_y_coord(Z);
+
+ element_set1(v);
+ element_set1(vd);
+ m = mpz_sizeinbase(q, 2) - 2;
+
+ while(m >= 0) {
+ element_mul(v, v, v);
+ element_mul(vd, vd, vd);
+ do_tangent(v);
+ element_double(Z, Z);
+ do_vertical(vd);
+ if (mpz_tstbit(q, m)) {
+ do_line(v);
+ element_add(Z, Z, P);
+ do_vertical(vd);
+ }
+ m--;
+ }
+ #undef do_tangent
+ #undef do_vertical
+ #undef do_line
+
+ element_invert(vd, vd);
+ element_mul(res, v, vd);
+
+ element_clear(v);
+ element_clear(vd);
+ element_clear(Z);
+ element_clear(a);
+ element_clear(b);
+ element_clear(c);
+ element_clear(e0);
+ element_clear(e1);
+}
+
+struct sn_pairing_data_s {
+ field_t Fq, Eq;
+};
+typedef struct sn_pairing_data_s sn_pairing_data_t[1];
+typedef struct sn_pairing_data_s *sn_pairing_data_ptr;
+
+static void sn_pairing(element_ptr out, element_ptr in1, element_ptr in2,
+ pairing_t pairing) {
+ sn_pairing_data_ptr p = pairing->data;
+ element_ptr Q = in2;
+ element_t e0;
+ element_t R, QR;
+ element_init(R, p->Eq);
+ element_init(QR, p->Eq);
+ element_random(R);
+ element_init(e0, out->field);
+ element_add(QR, Q, R);
+ sn_miller(out, pairing->r, in1, curve_x_coord(QR), curve_y_coord(QR));
+ sn_miller(e0, pairing->r, in1, curve_x_coord(R), curve_y_coord(R));
+ element_invert(e0, e0);
+ element_mul(out, out, e0);
+ //element_pow_mpz(out, out, p->tateexp);
+ element_clear(R);
+ element_clear(QR);
+}
+
+void pairing_init_singular_with_node(pairing_t pairing, mpz_t q) {
+ sn_pairing_data_ptr p;
+
+ mpz_init(pairing->r);
+ mpz_sub_ui(pairing->r, q, 1);
+ field_init_fp(pairing->Zr, pairing->r);
+ pairing->map = sn_pairing;
+
+ p = pairing->data = pbc_malloc(sizeof(sn_pairing_data_t));
+ field_init_fp(p->Fq, q);
+ field_init_curve_singular_with_node(p->Eq, p->Fq);
+
+ //mpz_init(p->tateexp);
+ //mpz_sub_ui(p->tateexp, p->Fq->order, 1);
+ //mpz_divexact(p->tateexp, p->tateexp, pairing->r);
+
+ pairing->G2 = pairing->G1 = p->Eq;
+
+ pairing_GT_init(pairing, p->Fq);
+}