summaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/doc/sigex.txt
diff options
context:
space:
mode:
authorWuKong <rebirthmonkey@gmail.com>2015-09-04 09:25:34 +0200
committerWuKong <rebirthmonkey@gmail.com>2015-09-04 09:25:34 +0200
commit3baeb11a8fbcfcdbc31976d421f17b85503b3ecd (patch)
tree04891d88c1127148f1b390b5a24414e85b270aee /moon-abe/pbc-0.5.14/doc/sigex.txt
parent67c5b73910f5fc437429c356978081b252a59480 (diff)
init attribute-based encryption
Change-Id: Iba1a3d722110abf747a0fba366f3ebc911d25b25
Diffstat (limited to 'moon-abe/pbc-0.5.14/doc/sigex.txt')
-rw-r--r--moon-abe/pbc-0.5.14/doc/sigex.txt155
1 files changed, 155 insertions, 0 deletions
diff --git a/moon-abe/pbc-0.5.14/doc/sigex.txt b/moon-abe/pbc-0.5.14/doc/sigex.txt
new file mode 100644
index 00000000..dcfc8d5e
--- /dev/null
+++ b/moon-abe/pbc-0.5.14/doc/sigex.txt
@@ -0,0 +1,155 @@
+== Tutorial ==
+
+This chapter walks through how one might implement the
+Boneh-Lynn-Shacham (BLS) signature scheme using the PBC library.
+It is based on the file `example/bls.c`.
+
+We have three groups 'G1', 'G2', 'GT' of prime order 'r', and a bilinear map
+'e' that takes an element from 'G1' and an element from 'G2', and outputs an
+element of 'GT'. We publish these along with the system parameter 'g', which is
+a randomly chosen element of 'G2'.
+
+Alice wishes to sign a message. She generates her public and private keys as
+follows. Her private key is a random element 'x' of 'Zr', and her corresponding
+public key is 'g'^'x'^.
+
+To sign a message, Alice hashes the message to some element
+'h' of 'G1', and then outputs the signature 'h'^'x'^.
+
+To verify a signature sigma, Bob checks that
+'e'('h','g'^'x'^) = 'e'(sigma, 'g').
+
+We now translate the above to C code using the PBC library.
+
+=== BLS signatures ===
+
+First we include `pbc/pbc.h`:
+
+ #include <pbc.h>
+
+Next we initialize a pairing:
+
+ pairing_t pairing;
+ char param[1024];
+ size_t count = fread(param, 1, 1024, stdin);
+ if (!count) pbc_die("input error");
+ pairing_init_set_buf(pairing, param, count);
+
+Later we give pairing parameters to our program on standard input. Any file in
+the `param` subdirectory will suffice, for example:
+
+ $ bls < param/a.param
+
+We shall need several +element_t+ variables to hold the system parameters, keys
+and other quantities. We declare them and initialize them,
+....
+element_t g, h;
+element_t public_key, secret_key;
+element_t sig;
+element_t temp1, temp2;
+
+element_init_G2(g, pairing);
+element_init_G2(public_key, pairing);
+element_init_G1(h, pairing);
+element_init_G1(sig, pairing);
+element_init_GT(temp1, pairing);
+element_init_GT(temp2, pairing);
+element_init_Zr(secret_key, pairing);
+....
+generate system parameters,
+
+ element_random(g);
+
+generate a private key,
+
+ element_random(secret_key);
+
+and the corresponding public key.
+
+ element_pow_zn(public_key, g, secret_key);
+
+When given a message to sign, we first compute its hash, using some standard
+hash algorithm. Many libraries can do this, and this operation does not
+involve pairings, so PBC does not provide functions for this step. For this
+example, and our message has already been hashed, possibly using another
+library.
+
+Say the message hash is "ABCDEF" (a 48-bit hash). We map these bytes to an
+element h of G1,
+
+ element_from_hash(h, "ABCDEF", 6);
+
+then sign it:
+
+ element_pow_zn(sig, h, secret_key);
+
+To verify this signature, we compare the
+outputs of the pairing applied to the signature and system parameter,
+and the pairing applied to the message hash and public key.
+If the pairing outputs match then the signature is valid.
+
+....
+pairing_apply(temp1, sig, g, pairing);
+pairing_apply(temp2, h, public_key, pairing);
+if (!element_cmp(temp1, temp2)) {
+ printf("signature verifies\n");
+} else {
+ printf("signature does not verify\n");
+}
+....
+
+=== Import/export ===
+
+To be useful, at some stage the signature must be converted
+to bytes for storage or transmission:
+
+ int n = pairing_length_in_bytes_compressed_G1(pairing);
+ // Alternatively:
+ // int n = element_length_in_bytes_compressed(sig);
+ unsigned char *data = malloc(n);
+ element_to_bytes_compressed(data, sig);
+
+On the other end, the signature must be decompressed:
+
+ element_from_bytes_compressed(sig, data);
+
+Eliding +_compressed+ in the above code
+will also work but the buffer 'data' will be roughly twice as large.
+
+We can save more space by using the 'x'-coordinate of the signature only
+
+ int n = pairing_length_in_bytes_x_only_G1(pairing);
+ // Alternative:
+ // int n = element_length_in_bytes_x_only(sig);
+ unsigned char *data = malloc(n);
+ element_to_bytes_compressed(data, sig);
+
+but then there is a complication during verification since two different
+points have the same 'x'-coordinate. One way to solve this problem is to
+guess one point and try to verify. If that fails, we try the other.
+It can be shown that the pairing outputs of the two points are inverses
+of each other, avoiding the need to compute a pairing the second time.
+(In fact, there are even better ways to handle this.)
+....
+int n = pairing_length_in_bytes_x_only_G1(pairing);
+//int n = element_length_in_bytes_x_only(sig);
+unsigned char *data = malloc(n);
+
+element_to_bytes_x_only(data, sig);
+
+element_from_bytes_x_only(sig, data)
+
+pairing_apply(temp1, sig, g, pairing);
+pairing_apply(temp2, h, public_key, pairing);
+
+if (!element_cmp(temp1, temp2)) {
+ printf("signature verifies on first guess\n");
+} else {
+ element_invert(temp1, temp1);
+ if (!element_cmp(temp1, temp2)) {
+ printf("signature verifies on second guess\n");
+ } else {
+ printf("signature does not verify\n");
+ }
+}
+....