aboutsummaryrefslogtreecommitdiffstats
path: root/moon-abe/pbc-0.5.14/arith/ternary_extension_field.c
diff options
context:
space:
mode:
authorwukong <rebirthmonkey@gmail.com>2015-11-23 17:48:48 +0100
committerwukong <rebirthmonkey@gmail.com>2015-11-23 17:48:48 +0100
commitfca74d4bc3569506a6659880a89aa009dc11f552 (patch)
tree4cefd06af989608ea8ebd3bc6306889e2a1ad175 /moon-abe/pbc-0.5.14/arith/ternary_extension_field.c
parent840ac3ebca7af381132bf7e93c1e4c0430d6b16a (diff)
moon-abe cleanup
Change-Id: Ie1259856db03f0b9e80de3e967ec6bd1f03191b3
Diffstat (limited to 'moon-abe/pbc-0.5.14/arith/ternary_extension_field.c')
-rw-r--r--moon-abe/pbc-0.5.14/arith/ternary_extension_field.c950
1 files changed, 0 insertions, 950 deletions
diff --git a/moon-abe/pbc-0.5.14/arith/ternary_extension_field.c b/moon-abe/pbc-0.5.14/arith/ternary_extension_field.c
deleted file mode 100644
index 3c79e3bd..00000000
--- a/moon-abe/pbc-0.5.14/arith/ternary_extension_field.c
+++ /dev/null
@@ -1,950 +0,0 @@
-/* $GF(3^m) = GF(3)[x]/(x^m + x^t + 2)$
- $GF(3^{2*m}) = GF(3^m)[x]/(x^2 + 1)$
- $GF(3^{3*m}) = GF(3^m)[x]/(x^3 - x -1)$
- $GF(3^{6*m}) = GF(3^{2*m})[x]/(x^3 - x -1)$
-
- The "gf3_*" functions are for $GF(3)$.
- The "gf3m_*" functions are for $GF(3^m)$.
- The "gf32m_*" functions are for $GF(3^{2*m})$.
- The "gf33m_*" functions are for $GF(3^{3*m})$ and $GF(3^{6*m})$.
-
- (gf3m field_t).data is a pointer of struct params
- (gf3m element_t).data is a pointer of unsigned long
- (gf32m element_t).data is gf32m_ptr
- (gf33m element_t).data is gf33m_ptr */
-
-#include <stdlib.h>
-#include <string.h>
-#include <stdarg.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <gmp.h>
-#include "pbc_utils.h"
-#include "pbc_memory.h"
-#include "pbc_field.h"
-
-typedef unsigned long gf3;
-
-typedef struct { /* private data of $GF(3^m)$ */
- unsigned int len; /* the number of native machine integers required to represent one GF(3^m) element */
- unsigned int m; /* the irreducible polynomial is $x^m + x^t + 2$ */
- unsigned int t; /* the irreducible polynomial is $x^m + x^t + 2$ */
- element_ptr p; /* $p$ is the irreducible polynomial. */
-} params;
-
-typedef struct {
- element_t _0, _1;
-} gf32m_s;
-
-typedef gf32m_s *gf32m_ptr;
-
-typedef struct {
- element_t _0, _1, _2;
-} gf33m_s;
-
-typedef gf33m_s *gf33m_ptr;
-
-#define W (sizeof(unsigned long)*8) /* number of GF(3) elements in one processor integer */
-#define PARAM(e) ((params *)e->field->data)
-#define LEN(e) (PARAM(e)->len)
-#define SIZE(e) (LEN(e) * 2 * sizeof(unsigned long))
-#define DATA1(e) ((unsigned long*)e->data)
-#define DATA2(e) ((unsigned long*)e->data + LEN(e))
-#define GF32M(e) ((gf32m_s *)e->data)
-#define GF33M(e) ((gf33m_s *)e->data)
-#define BASE(e) ((field_ptr)e->field->data)
-#define print(e) {printf(#e": "); element_out_str(stdout, 10, e); printf("\n");}
-
-static size_t gf3m_out_str(FILE *stream, int base, element_t e) {
- if (base != 10 && base != 16)
- pbc_die("only support base 10 and base 16");
- size_t size = 0;
- unsigned i;
- unsigned long *d = DATA1(e);
- for (i = 0; i < LEN(e) * 2; i++) {
- if (base == 16)
- size += fprintf(stream, "0x%lx,", d[i]);
- else
- size += fprintf(stream, "%lu,", d[i]);
- }
- return size;
-}
-
-/* $a <- 0$ */
-static void gf3m_zero(element_t a) {
- memset(a->data, 0, SIZE(a));
-}
-
-static void gf3m_init(element_t e) {
- e->data = pbc_malloc(SIZE(e));
- gf3m_zero(e);
-}
-
-static void gf3m_clear(element_t e) {
- pbc_free(e->data);
-}
-
-/* $e <- a$ */
-static void gf3m_assign(element_t e, element_t a) {
- memcpy(e->data, a->data, SIZE(a));
-}
-
-/* $a <- a/x$. $len$ is the number of elements in $a$ */
-static void shift_down(unsigned int len, unsigned long a[]) {
- unsigned long h = 0;
- const unsigned long x = 1ul << (W - 1);
- int i;
- for (i = len - 1; i >= 0; i--) {
- unsigned long l = a[i] & 1;
- a[i] >>= 1;
- if (h)
- a[i] |= x;
- h = l;
- }
-}
-
-/* $e <- e/x$ */
-static void gf3m_shift_down(element_t e) {
- shift_down(LEN(e), DATA1(e));
- shift_down(LEN(e), DATA2(e));
-}
-
-/* $a <- a*x$. $len$ is the number of elements in $a$ */
-static void shift_up(unsigned int len, unsigned long a[]) {
- unsigned long l = 0;
- const unsigned long x = 1ul << (W - 1), y = x - 1;
- unsigned i;
- for (i = 0; i < len; i++) {
- unsigned long h = a[i] & x;
- a[i] = ((a[i] & y) << 1) | l;
- l = h ? 1 : 0;
- }
-}
-
-/* $e <- e*x$ */
-static void gf3m_shift_up(element_t e) {
- shift_up(LEN(e), DATA1(e));
- shift_up(LEN(e), DATA2(e));
-}
-
-/* return the coefficient of $x^pos$ in $e$ */
-static unsigned gf3m_get(element_t e, unsigned pos) {
- unsigned long *a1 = DATA1(e), *a2 = DATA2(e);
- unsigned x = pos / W;
- unsigned long y = 1ul << (pos % W), v1 = a1[x] & y, v2 = a2[x] & y;
- return v1 ? 1 : (v2 ? 2 : 0);
-}
-
-/* set the coefficient of $x^pos$ as 1 */
-static void gf3m_set(element_t e, unsigned pos, unsigned value) {
- unsigned long *a = DATA1(e);
- /* assert value == 0, 1 or 2 */
- if (value == 2)
- a = DATA2(e);
- if (value)
- a[pos / W] |= 1ul << (pos % W);
-}
-
-/* $e <- a+b$ */
-static void gf3m_add(element_t e, element_t a, element_t b) {
- unsigned long *e1 = DATA1(e), *e2 = DATA2(e), *a1 = DATA1(a),
- *a2 = DATA2(a), *b1 = DATA1(b), *b2 = DATA2(b);
- unsigned i;
- for (i = 0; i < LEN(e); i++, e1++, e2++, a1++, a2++, b1++, b2++) {
- unsigned long t = (*a1 | *a2) & (*b1 | *b2), c1 = t ^ (*a1 | *b1), c2 =
- t ^ (*a2 | *b2);
- *e1 = c1;
- *e2 = c2;
- }
-}
-
-/* $e <- x-y$ */
-static void gf3m_sub(element_t e, element_t a, element_t b) {
- unsigned long *e1 = DATA1(e), *e2 = DATA2(e), *a1 = DATA1(a),
- *a2 = DATA2(a), *b1 = DATA2(b), *b2 = DATA1(b);
- unsigned i;
- for (i = 0; i < LEN(e); i++, e1++, e2++, a1++, a2++, b1++, b2++) {
- unsigned long t = (*a1 | *a2) & (*b1 | *b2), c1 = t ^ (*a1 | *b1), c2 =
- t ^ (*a2 | *b2);
- *e1 = c1;
- *e2 = c2;
- }
-}
-
-/* return 0 if $a == b$ in $GF(3^m)$, 1 otherwise. */
-static int gf3m_cmp(element_t a, element_t b) {
- unsigned long *pa = DATA1(a), *pb = DATA1(b);
- unsigned i;
- for (i = 0; i < LEN(a) * 2; i++, pa++, pb++)
- if (*pa != *pb)
- return 1;
- return 0;
-}
-
-/* $a <- 1$ */
-static void gf3m_one(element_t a) {
- gf3m_zero(a);
- *DATA1(a) = 1;
-}
-
-static int gf3m_is0(element_t e) {
- unsigned i;
- for (i = 0; i < LEN(e) * 2; i++)
- if (DATA1(e)[i])
- return 0;
- return 1;
-}
-
-static int gf3m_is1(element_t e) {
- unsigned i;
- if (DATA1(e)[0] != 1)
- return 0;
- for (i = 1; i < LEN(e) * 2; i++)
- if (DATA1(e)[i])
- return 0;
- return 1;
-}
-
-/* set $a$ to be a random element in $GF(3^m)$ */
-static void gf3m_random(element_t a) {
- /* TODO: use uniform distribution? */
- params *c = PARAM(a);
- unsigned rm = c->m % W;
- const unsigned long i1 = ~0ul;
- unsigned long i2 = (1ul << rm) - 1;
- unsigned long *a1 = DATA1(a), *a2 = DATA2(a);
- unsigned i;
- for (i = 0; i < c->len - 1; i++, a1++, a2++) { /* TODO: if $RAND_MAX < i1$ ? */
- *a1 = rand() & i1;
- *a2 = rand() & i1 & ~(*a1); /* assuring there is no bit that a1[x] & a2[x] == 1 */
- }
- unsigned long x = rm ? i2 : i1;
- *a1 = rand() & x;
- *a2 = rand() & x & ~(*a1);
-}
-
-static void swap(unsigned long *a, unsigned long *b) {
- *a ^= *b;
- *b ^= *a;
- *a ^= *b;
-}
-
-/* $y <- (-x)$ */
-static void gf3m_neg(element_t y, element_t x) {
- unsigned long *a1 = DATA1(x), *a2 = DATA2(x), *c1 = DATA1(y),
- *c2 = DATA2(y);
- if (a1 == c1) {
- unsigned i;
- for (i = 0; i < LEN(y); i++, a1++, a2++)
- swap(a1, a2);
- } else {
- memcpy(c1, a2, SIZE(y) / 2);
- memcpy(c2, a1, SIZE(y) / 2);
- }
-}
-
-/* doing reduction
- * The function returns the value of $a$ modulo $the irreducible trinomial$.
- * $degree$ equals the degree of $a$.
- * $2*len$ is the number of elements in $a$ */
-static void gf3m_reduct(element_t e, unsigned len, unsigned degree) {
- // the $len$ argument exists because sometimes $len != p->len$
- params *p = PARAM(e);
- unsigned old = p->len;
- p->len = len;
- element_t px;
- element_init(px, e->field);
- gf3m_set(px, degree, 1);
- gf3m_set(px, degree - p->m + p->t, 1);
- gf3m_set(px, degree - p->m, 2);
- while (degree >= p->m) {
- unsigned v = gf3m_get(e, degree);
- if (v == 1)
- gf3m_sub(e, e, px);
- else if (v == 2)
- gf3m_add(e, e, px);
- degree--;
- gf3m_shift_down(px);
- }
- element_clear(px);
- p->len = old;
-}
-
-/* doing multiplication of $n \in \{0,1,2\}$ and $a$ in $GF(3^m)$
- * The function sets $e <- n * a$. */
-static void gf3m_f1(element_t e, unsigned n, element_t a) {
- /* assert $e$ is not $a$ */
- if (n == 0)
- memset(DATA1(e), 0, SIZE(e));
- else if (n == 1)
- memcpy(DATA1(e), DATA1(a), SIZE(e));
- else {
- memcpy(DATA1(e), DATA2(a), SIZE(e) / 2);
- memcpy(DATA2(e), DATA1(a), SIZE(e) / 2);
- }
-}
-
-/* $e <- e*x mod p(x)$ */
-static void gf3m_f2(element_t e) {
- params *p = PARAM(e);
- gf3m_shift_up(e);
- unsigned v = gf3m_get(e, p->m);
- if (v == 1)
- gf3m_sub(e, e, p->p);
- else if (v == 2)
- gf3m_add(e, e, p->p);
-}
-
-/* doing multiplication in GF(3^m)
- * The function sets $e == a*b \in GF(3^m)$ */
-static void gf3m_mult(element_t e, element_ptr a, element_t b) {
- params *p = PARAM(a);
- element_t aa, t, c;
- element_init(aa, a->field);
- element_set(aa, a);
- a = aa; // clone $a$
- element_init(t, a->field);
- element_init(c, a->field);
- unsigned i;
- for (i = 0; i < p->m; i++) {
- unsigned v = gf3m_get(b, i);
- gf3m_f1(t, v, a); /* t == b[i]*a in GF(3^m) */
- gf3m_add(c, c, t); /* c += b[i]*a in GF(3^m) */
- gf3m_f2(a); /* a == a*x in GF(3^m) */
- }
- element_set(e, c);
- element_clear(t);
- element_clear(c);
- element_clear(aa);
-}
-
-/* $e <- x^3$ */
-static void gf3m_cubic(element_t e, element_t x) {
- /* TODO: faster algorithm */
- params *p = PARAM(x);
- unsigned old = p->len;
- unsigned len = (3 * p->m - 2 + W - 1) / W; /* length of $b1 */
- p->len = len;
- element_t a;
- element_init(a, x->field);
- unsigned i;
- for (i = 0; i < p->m; i++) {
- p->len = old;
- unsigned v = gf3m_get(x, i);
- p->len = len;
- gf3m_set(a, 3 * i, v);
- }
- gf3m_reduct(a, len, 3 * p->m - 3);
- p->len = old;
- memcpy(DATA1(e), DATA1(a), SIZE(e) / 2);
- memcpy(DATA2(e), DATA1(a) + len, SIZE(e) / 2);
- element_clear(a);
-}
-
-/* multiplication modulo 3 of two elements in GF(3)
- * for example, $mult(2,2) == 1$, and $mult(1,2) == 2$ */
-static unsigned gf3_mult(unsigned a, unsigned b) {
- static const unsigned l[] = { 0, 1, 2, 0, 1 };
- return l[a * b];
-}
-
-static void gf3m_swap(element_t a, element_t b) {
- unsigned long *p = DATA1(a);
- a->data = b->data;
- b->data = p;
-}
-
-/* computing the inversion of an element $a$ in GF(3^m), i.e., $e <- a^{-1}$
- The algorithm is by Tim Kerins, Emanuel Popovici and William Marnane
- in the paper of "Algorithms and Architectures for use in FPGA",
- Lecture Notes in Computer Science, 2004, Volume 3203/2004, 74-83.
- Note that $U$ must have an extra bit, i.e, (_m + W - 1) // W == (_m + W) // W */
-static void gf3m_invert(element_t e, element_t a) {
- struct field_s *f = a->field;
- params *p = PARAM(a);
- unsigned lenA = p->len;
- unsigned lenS = (3 * p->m + W - 1) / W;
- p->len = lenS;
- element_t S, R, t, U, V, t2;
- element_init(S, f);
- element_init(R, f);
- element_init(t, f);
- memcpy(DATA1(S), DATA1(p->p), lenA * sizeof(unsigned long)); /* S = p(x) */
- memcpy(DATA1(S) + lenS, DATA1(p->p) + lenA, lenA * sizeof(unsigned long));
- memcpy(DATA1(R), DATA1(a), lenA * sizeof(unsigned long)); /* R = _clone(a) */
- memcpy(DATA1(R) + lenS, DATA1(a) + lenA, lenA * sizeof(unsigned long));
- p->len = lenA;
- element_init(U, f);
- gf3m_one(U);
- element_init(V, f);
- element_init(t2, f);
- unsigned d = 0, i, r_m, s_m, q, x;
- for (i = 0; i < p->m * 2; i++) {
- p->len = lenS;
- r_m = gf3m_get(R, p->m), s_m = gf3m_get(S, p->m);
- if (r_m == 0) {
- gf3m_shift_up(R); /* R = xR */
- p->len = lenA;
- gf3m_f2(U); /* U = xU mod p */
- d++;
- } else {
- q = gf3_mult(r_m, s_m);
- gf3m_f1(t, q, R);
- gf3m_sub(S, S, t); /* S = S-qR */
- gf3m_shift_up(S); /* S = xS */
- p->len = lenA;
- gf3m_f1(t2, q, U);
- gf3m_sub(V, V, t2); /* V = V-qU */
- if (d == 0) {
- gf3m_swap(S, R);
- gf3m_swap(U, V);
- gf3m_f2(U); /* U = xU mod p*/
- d++;
- } else {
- x = gf3m_get(U, 0);
- if (x == 1) /* assuring x|U */
- gf3m_add(U, U, p->p);
- else if (x == 2)
- gf3m_sub(U, U, p->p);
- gf3m_shift_down(U); /* divide U by $x$ */
- d--;
- }
- }
- }
- p->len = lenS;
- r_m = gf3m_get(R, p->m); /* assume r_m is not zero */
- p->len = lenA;
- if (r_m == 2)
- gf3m_neg(U, U);
- memcpy(e->data, U->data, lenA * 2 * sizeof(unsigned long));
- element_clear(S);
- element_clear(R);
- element_clear(U);
- element_clear(V);
- element_clear(t);
- element_clear(t2);
-}
-
-static void gf3m_sqrt(element_t e, element_t a) {
- field_ptr f = e->field;
- mpz_t t;
- mpz_init(t); // t == (field_order + 1) / 4
- mpz_set(t, f->order);
- mpz_add_ui(t, t, 1);
- mpz_tdiv_q_2exp(t, t, 2);
- element_pow_mpz(e, a, t);
- mpz_clear(t);
-}
-
-int gf3m_to_bytes(unsigned char *d, element_ptr e) {
- unsigned long *a = DATA1(e), *b = DATA2(e);
- unsigned long i, j;
- for (i = 0; i < LEN(e); i++, a++, b++) {
- for (j = 0; j < sizeof(unsigned long) * 8; j += 8) {
- *(d++) = (unsigned char) ((*a) >> j);
- *(d++) = (unsigned char) ((*b) >> j);
- }
- }
- return SIZE(e);
-}
-
-int gf3m_from_bytes(element_ptr e, unsigned char *d) {
- unsigned long *a = DATA1(e), *b = DATA2(e);
- unsigned i;
- int j;
- for (i = 0; i < LEN(e); i++, a++, b++, d += sizeof(unsigned long) * 2) {
- *a = 0, *b = 0;
- j = 2 * sizeof(unsigned long) - 2;
- while (j >= 0) {
- *a <<= 8, *b <<= 8;
- *a += d[j];
- *b += d[j + 1];
- j -= 2;
- }
- }
- return SIZE(e);
-}
-
-static void field_clear_gf3m(field_t f) {
- params *p = f->data;
- gf3m_clear(p->p);
- pbc_free(p->p);
- pbc_free(p);
-}
-
-/* initialize the finite field as $GF(3^m)$, whose irreducible polynomial is with the degree of $m$ */
-void field_init_gf3m(field_t f, unsigned m, unsigned t) {
- params *p = pbc_malloc(sizeof(*p));
- p->len = (m + (W - 1) + 1) / W; /* extra one bit for $_p$ */
- p->m = m;
- p->t = t;
- p->p = pbc_malloc(sizeof(*(p->p)));
- p->p->field = f;
- p->p->data = pbc_malloc(2 * sizeof(unsigned long) * p->len);
- memset(p->p->data, 0, 2 * sizeof(unsigned long) * p->len);
- unsigned long *p1 = p->p->data, *p2 = p1 + p->len;
- p2[0] = 1; /* _p == x^m+x^t+2 */
- unsigned int p_t = p->t;
- p1[p_t / W] |= 1ul << (p_t % W);
- p1[m / W] |= 1ul << (m % W);
-
- field_init(f);
- f->field_clear = field_clear_gf3m;
- f->init = gf3m_init;
- f->clear = gf3m_clear;
- f->set = gf3m_assign;
- f->set0 = gf3m_zero;
- f->set1 = gf3m_one;
- f->is0 = gf3m_is0;
- f->is1 = gf3m_is1;
- f->add = gf3m_add;
- f->sub = gf3m_sub;
- f->mul = gf3m_mult;
- f->cubic = gf3m_cubic;
- f->invert = gf3m_invert;
- f->neg = gf3m_neg;
- f->random = gf3m_random;
- f->cmp = gf3m_cmp;
- f->sqrt = gf3m_sqrt;
- f->from_bytes = gf3m_from_bytes;
- f->to_bytes = gf3m_to_bytes;
- f->out_str = gf3m_out_str;
- f->fixed_length_in_bytes = 2 * sizeof(unsigned long) * p->len;
- f->data = p;
- f->name = "GF(3^m)";
-
- mpz_set_ui(f->order, 3);
- mpz_pow_ui(f->order, f->order, p->m);
-}
-
-static size_t gf32m_out_str(FILE *stream, int base, element_t e) {
- UNUSED_VAR(base);
- element_ptr e0 = GF32M(e)->_0, e1 = GF32M(e)->_1;
- size_t size = 0;
- size += element_out_str(stream, base, e0);
- size += element_out_str(stream, base, e1);
- return size;
-}
-
-static void gf32m_init(element_t e) {
- e->data = pbc_malloc(sizeof(gf32m_s));
- gf32m_ptr p = (gf32m_ptr) e->data;
- field_ptr base = BASE(e);
- element_init(p->_0, base);
- element_init(p->_1, base);
-}
-
-static void gf32m_clear(element_t e) {
- gf32m_ptr p = (gf32m_ptr) e->data;
- element_clear(p->_0);
- element_clear(p->_1);
- pbc_free(e->data);
-}
-
-static void gf32m_set0(element_t e) {
- element_ptr e0 = GF32M(e)->_0, e1 = GF32M(e)->_1;
- element_set0(e0);
- element_set0(e1);
-}
-
-static void gf32m_set1(element_t e) {
- element_ptr e0 = GF32M(e)->_0, e1 = GF32M(e)->_1;
- element_set1(e0);
- element_set0(e1);
-}
-
-static int gf32m_item_count(element_t e) {
- UNUSED_VAR(e);
- return 2;
-}
-
-static element_ptr gf32m_item(element_t a, int i) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1;
- return i == 0 ? a0 : a1;
-}
-
-static void gf32m_assign(element_t e, element_t a) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, e0 = GF32M(e)->_0, e1 =
- GF32M(e)->_1;
- element_set(e0, a0);
- element_set(e1, a1);
-}
-
-static void gf32m_random(element_t e) {
- element_ptr e0 = GF32M(e)->_0, e1 = GF32M(e)->_1;
- element_random(e0);
- element_random(e1);
-}
-
-/* return 0 if $a == b$, 1 otherwise */
-static int gf32m_cmp(element_t a, element_t b) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, b0 = GF32M(b)->_0, b1 =
- GF32M(b)->_1;
- return element_cmp(a0, b0) || element_cmp(a1, b1);
-}
-
-/* $c <- a+b$ */
-static void gf32m_add(element_t c, element_t a, element_t b) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, b0 = GF32M(b)->_0, b1 =
- GF32M(b)->_1, c0 = GF32M(c)->_0, c1 = GF32M(c)->_1;
- element_add(c0, a0, b0);
- element_add(c1, a1, b1);
-}
-
-/* $c <- a-b$ */
-static void gf32m_sub(element_t c, element_t a, element_t b) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, b0 = GF32M(b)->_0, b1 =
- GF32M(b)->_1, c0 = GF32M(c)->_0, c1 = GF32M(c)->_1;
- element_sub(c0, a0, b0);
- element_sub(c1, a1, b1);
-}
-
-/* $c <- (-a)$ */
-static void gf32m_neg(element_t c, element_t a) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, c0 = GF32M(c)->_0, c1 =
- GF32M(c)->_1;
- element_neg(c0, a0);
- element_neg(c1, a1);
-}
-
-/* $e<- a*b$ */
-static void gf32m_mult(element_t e, element_t a, element_t b) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, b0 = GF32M(b)->_0, b1 =
- GF32M(b)->_1, e0 = GF32M(e)->_0, e1 = GF32M(e)->_1;
- field_ptr base = BASE(a);
- element_t a0b0, a1b1, t0, t1, c1;
- element_init(a0b0, base);
- element_init(a1b1, base);
- element_init(t0, base);
- element_init(t1, base);
- element_init(c1, base);
- element_mul(a0b0, a0, b0);
- element_mul(a1b1, a1, b1);
- element_add(t0, a1, a0);
- element_add(t1, b1, b0);
- element_mul(c1, t0, t1); // c1 == (a1+a0)*(b1+b0)
- element_sub(c1, c1, a1b1);
- element_sub(c1, c1, a0b0);
- element_ptr c0 = a0b0;
- element_sub(c0, c0, a1b1); // c0 == a0*b0 - a1*b1
- element_set(e0, c0);
- element_set(e1, c1);
- element_clear(a0b0);
- element_clear(a1b1);
- element_clear(t0);
- element_clear(t1);
- element_clear(c1);
-}
-
-/* $e <- a^3$ */
-static void gf32m_cubic(element_t e, element_t a) {
- element_ptr a0 = GF32M(a)->_0, a1 = GF32M(a)->_1, e0 = GF32M(e)->_0, e1 =
- GF32M(e)->_1;
- field_ptr base = BASE(a);
- element_t c0, c1;
- element_init(c0, base);
- element_init(c1, base);
- element_cubic(c0, a0);
- element_cubic(c1, a1);
- element_neg(c1, c1); // c1 == -(a1^3)
- element_set(e0, c0);
- element_set(e1, c1);
- element_clear(c0);
- element_clear(c1);
-}
-
-void field_clear_gf32m(field_t f) {
- UNUSED_VAR(f);
-}
-
-/* initialize the finite field as $base_field[x]/(x^2 + 1)$, whose base field is $b$ */
-void field_init_gf32m(field_t f, field_t b) {
- field_init(f);
- f->data = b;
- f->field_clear = field_clear_gf32m;
- f->init = gf32m_init;
- f->clear = gf32m_clear;
- f->set = gf32m_assign;
- f->set0 = gf32m_set0;
- f->set1 = gf32m_set1;
- f->random = gf32m_random;
- f->cmp = gf32m_cmp;
- f->add = gf32m_add;
- f->sub = gf32m_sub;
- f->neg = gf32m_neg;
- f->mul = gf32m_mult;
- f->cubic = gf32m_cubic;
- f->item_count = gf32m_item_count;
- f->item = gf32m_item;
- f->out_str = gf32m_out_str;
- mpz_pow_ui(f->order, b->order, 2);
- f->name = "GF(3^{2*m})";
-}
-
-static size_t gf33m_out_str(FILE *stream, int base, element_t e) {
- UNUSED_VAR(base);
- element_ptr e0 = GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- size_t size = 0;
- size += element_out_str(stream, base, e0);
- size += element_out_str(stream, base, e1);
- size += element_out_str(stream, base, e2);
- return size;
-}
-
-static void gf33m_init(element_t e) {
- e->data = pbc_malloc(sizeof(gf33m_s));
- gf33m_ptr p = (gf33m_ptr) e->data;
- field_ptr base = BASE(e);
- element_init(p->_0, base);
- element_init(p->_1, base);
- element_init(p->_2, base);
-}
-
-static void gf33m_clear(element_t e) {
- gf33m_ptr p = (gf33m_ptr) e->data;
- element_clear(p->_0);
- element_clear(p->_1);
- element_clear(p->_2);
- pbc_free(e->data);
-}
-
-static void gf33m_set0(element_t e) {
- element_ptr e0 = GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- element_set0(e0);
- element_set0(e1);
- element_set0(e2);
-}
-
-static void gf33m_set1(element_t e) {
- element_ptr e0 = GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- element_set1(e0);
- element_set0(e1);
- element_set0(e2);
-}
-
-static int gf33m_item_count(element_t e) {
- UNUSED_VAR(e);
- return 3;
-}
-
-static element_ptr gf33m_item(element_t a, int i) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2;
- return i == 0 ? a0 : (i == 1 ? a1 : a2);
-}
-
-static void gf33m_assign(element_t e, element_t a) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, e0 =
- GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- element_set(e0, a0);
- element_set(e1, a1);
- element_set(e2, a2);
-}
-
-static void gf33m_random(element_t e) {
- element_ptr e0 = GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- element_random(e0);
- element_random(e1);
- element_random(e2);
-}
-
-/* return 0 if $a == b$, 1 otherwise */
-static int gf33m_cmp(element_t a, element_t b) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, b0 =
- GF33M(b)->_0, b1 = GF33M(b)->_1, b2 = GF33M(b)->_2;
- return element_cmp(a0, b0) || element_cmp(a1, b1) || element_cmp(a2, b2);
-}
-
-/* $c <- a+b$ */
-static void gf33m_add(element_t c, element_t a, element_t b) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, b0 =
- GF33M(b)->_0, b1 = GF33M(b)->_1, b2 = GF33M(b)->_2, c0 =
- GF33M(c)->_0, c1 = GF33M(c)->_1, c2 = GF33M(c)->_2;
- element_add(c0, a0, b0);
- element_add(c1, a1, b1);
- element_add(c2, a2, b2);
-}
-
-/* $c <- a-b$ */
-static void gf33m_sub(element_t c, element_t a, element_t b) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, b0 =
- GF33M(b)->_0, b1 = GF33M(b)->_1, b2 = GF33M(b)->_2, c0 =
- GF33M(c)->_0, c1 = GF33M(c)->_1, c2 = GF33M(c)->_2;
- element_sub(c0, a0, b0);
- element_sub(c1, a1, b1);
- element_sub(c2, a2, b2);
-}
-
-/* $c <- a*b$ */
-static void gf33m_mult(element_t e, element_t a, element_t b) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, b0 =
- GF33M(b)->_0, b1 = GF33M(b)->_1, b2 = GF33M(b)->_2, e0 =
- GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- field_ptr base = BASE(e);
- element_t t0, t1, c1, a0b0, a1b1, a2b2;
- element_init(t0, base);
- element_init(t1, base);
- element_init(c1, base);
- element_init(a0b0, base);
- element_init(a1b1, base);
- element_init(a2b2, base);
- element_mul(a0b0, a0, b0);
- element_mul(a1b1, a1, b1);
- element_mul(a2b2, a2, b2);
- element_ptr d0 = a0b0;
- element_add(t0, a1, a0);
- element_add(t1, b1, b0);
- element_t d1;
- element_init(d1, base);
- element_mul(d1, t0, t1);
- element_sub(d1, d1, a1b1);
- element_sub(d1, d1, a0b0);
- element_add(t0, a2, a0);
- element_add(t1, b2, b0);
- element_t d2;
- element_init(d2, base);
- element_mul(d2, t0, t1);
- element_add(d2, d2, a1b1);
- element_sub(d2, d2, a2b2);
- element_sub(d2, d2, a0b0);
- element_add(t0, a2, a1);
- element_add(t1, b2, b1);
- element_t d3;
- element_init(d3, base);
- element_mul(d3, t0, t1);
- element_sub(d3, d3, a2b2);
- element_sub(d3, d3, a1b1);
- element_ptr d4 = a2b2;
- element_add(t0, d0, d3);
- element_ptr c0 = t0;
- element_add(c1, d1, d3);
- element_add(c1, c1, d4);
- element_add(t1, d2, d4);
- element_ptr c2 = t1;
- element_set(e0, c0);
- element_set(e1, c1);
- element_set(e2, c2);
- element_clear(t0);
- element_clear(t1);
- element_clear(c1);
- element_clear(a0b0);
- element_clear(a1b1);
- element_clear(a2b2);
- element_clear(d1);
- element_clear(d2);
- element_clear(d3);
-}
-
-/* $e <- a^3$ */
-static void gf33m_cubic(element_t e, element_t a) {
- field_ptr base = BASE(a);
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, e0 =
- GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- element_t a03, a13, a23;
- element_init(a03, base);
- element_init(a13, base);
- element_init(a23, base);
- element_cubic(a03, a0);
- element_cubic(a13, a1);
- element_cubic(a23, a2);
- element_add(a03, a03, a13);
- element_add(a03, a03, a23);
- element_ptr c0 = a03;
- element_sub(a13, a13, a23);
- element_ptr c1 = a13;
- element_ptr c2 = a23;
- element_set(e0, c0);
- element_set(e1, c1);
- element_set(e2, c2);
- element_clear(a03);
- element_clear(a13);
- element_clear(a23);
-}
-
-/* $e <- a^{-1}$ */
-static void gf33m_invert(element_t e, element_t a) {
- element_ptr a0 = GF33M(a)->_0, a1 = GF33M(a)->_1, a2 = GF33M(a)->_2, e0 =
- GF33M(e)->_0, e1 = GF33M(e)->_1, e2 = GF33M(e)->_2;
- field_ptr base = BASE(e);
- element_t a02, a12, a22;
- element_init(a02, base);
- element_init(a12, base);
- element_init(a22, base);
- element_mul(a02, a0, a0);
- element_mul(a12, a1, a1);
- element_mul(a22, a2, a2);
- element_t v0;
- element_init(v0, base);
- element_sub(v0, a0, a2); // v0 == a0-a2
- element_t delta;
- element_init(delta, base);
- element_mul(delta, v0, a02); // delta = (a0-a2)*(a0^2), free
- element_sub(v0, a1, a0); // v0 == a1-a0
- element_t c0;
- element_init(c0, base);
- element_mul(c0, v0, a12); // c0 == (a1-a0)*(a1^2)
- element_add(delta, delta, c0); // delta = (a0-a2)*(a0^2) + (a1-a0)*(a1^2)
- element_sub(v0, a2, v0); // v0 == a2-(a1-a0) = a0-a1+a2
- element_t c1;
- element_init(c1, base);
- element_mul(c1, v0, a22); // c1 == (a0-a1+a2)*(a2^2)
- element_add(delta, delta, c1); // delta = (a0-a2)*(a0^2) + (a1-a0)*(a1^2) + (a0-a1+a2)*(a2^2)
- element_invert(delta, delta); // delta = [(a0-a2)*(a0^2) + (a1-a0)*(a1^2) + (a0-a1+a2)*(a2^2)] ^ {-1}
- element_add(v0, a02, a22); // v0 == a0^2+a2^2
- element_t c2;
- element_init(c2, base);
- element_mul(c2, a0, a2); // c2 == a0*a2
- element_sub(c0, v0, c2); // c0 == a0^2+a2^2-a0*a2
- element_add(v0, a1, a2); // v0 == a1+a2
- element_t c3;
- element_init(c3, base);
- element_mul(c3, a1, v0); // c3 == a1*(a1+a2)
- element_sub(c0, c0, c3); // c0 == a0^2+a2^2-a0*a2-a1*(a1+a2)
- element_mul(c0, c0, delta); // c0 *= delta
- element_mul(c1, a0, a1); // c1 == a0*a1
- element_sub(c1, a22, c1); // c1 == a2^2-a0*a1
- element_mul(c1, c1, delta); // c1 *= delta
- element_sub(c2, a12, c2); // c2 == a1^2-a0*a2
- element_sub(c2, c2, a22); // c2 == a1^2-a0*a2-a2^2
- element_mul(c2, c2, delta); // c2 *= delta
- element_set(e0, c0);
- element_set(e1, c1);
- element_set(e2, c2);
- element_clear(a02);
- element_clear(a12);
- element_clear(a22);
- element_clear(v0);
- element_clear(delta);
- element_clear(c0);
- element_clear(c1);
- element_clear(c2);
- element_clear(c3);
-}
-
-void field_clear_gf33m(field_t f) {
- UNUSED_VAR(f);
-}
-
-/* initialize the finite field as $base_field[x]/(x^3 - x - 1)$, whose base field is $b$ */
-void field_init_gf33m(field_t f, field_t b) {
- field_init(f);
- f->data = b;
- f->field_clear = field_clear_gf33m;
- f->init = gf33m_init;
- f->clear = gf33m_clear;
- f->set = gf33m_assign;
- f->set0 = gf33m_set0;
- f->set1 = gf33m_set1;
- f->random = gf33m_random;
- f->cmp = gf33m_cmp;
- f->add = gf33m_add;
- f->sub = gf33m_sub;
- f->mul = gf33m_mult;
- f->cubic = gf33m_cubic;
- f->invert = gf33m_invert;
- f->item_count = gf33m_item_count;
- f->item = gf33m_item;
- f->out_str = gf33m_out_str;
- mpz_pow_ui(f->order, b->order, 3);
- f->name = "GF(3^{3*m})";
-}
-