aboutsummaryrefslogtreecommitdiffstats
path: root/Makefile
blob: 31243b01f4d844721893f5baea172bcf2776a437 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
build:
	docker-compose -f docker-compose.yml -f docker-compose.override-dev.yml build

dev-up:
	docker-compose -f docker-compose.yml -f docker-compose.override-dev.yml up -d

dev-start:
	docker-compose -f docker-compose.yml -f docker-compose.override-dev.yml start

dev-stop:
	docker-compose -f docker-compose.yml -f docker-compose.override-dev.yml stop

up:
	docker-compose up -d

start:
	docker-compose start

stop:
	docker-compose stop

data:
	docker volume create --name=pharos-data

shell-nginx:
	docker exec -ti ng01 bash

shell-web:
	docker exec -ti dg01 bash

shell-db:
	docker exec -ti ps01 bash

log-nginx:
	docker-compose logs nginx

log-web:
	docker-compose logs web

log-ps:
	docker-compose logs postgres

log-rmq:
	docker-compose logs rabbitmq

log-worker:
	docker-compose logs worker
ref='#n388'>388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
====================================================================================================================
OPNFV Installation instruction for the AArch64 Brahmaputra 3.0 release of OPNFV when using Fuel as a deployment tool
====================================================================================================================

License
=======

This work is licensed under a Creative Commons Attribution 4.0 International
License. .. http://creativecommons.org/licenses/by/4.0 ..
(c) Jonas Bjurel (Ericsson AB) and others

Abstract
========

This document describes how to install the Brahmaputra 3.0 release of
OPNFV when using Fuel as a deployment tool, with an AArch64 (only) target
node pool.

Introduction
============

This document provides guidelines on how to install and
configure the Brahmaputra 3.0 release of OPNFV when using Fuel as a
deployment tool, with an AArch64 (only) target node pool,
including required software and hardware configurations.

Although the available installation options give a high degree of
freedom in how the system is set-up, including architecture, services
and features, etc., said permutations may not provide an OPNFV
compliant reference architecture. This instruction provides a
step-by-step guide that results in an OPNFV Brahmaputra compliant
deployment.

The audience of this document is assumed to have good knowledge in
networking and Unix/Linux administration.

Preface
=======
Before starting the installation of the AArch64 Brahmaputra 3.0 release of
OPNFV, using Fuel as a deployment tool, some planning must be
done.

Retrieving the ISO image
------------------------

First of all, the Fuel deployment ISO image needs to be retrieved, the
ArmbandFuel .iso image of the AArch64 Brahmaputra release can be found
at *Reference: 2*

Building the ISO image
----------------------

Alternatively, you may build the ArmbandFuel .iso from source by cloning the
opnfv/armband git repository. To retrieve the repository for the AArch64
Brahmaputra 3.0 release use the following command:

.. code-block:: bash

    $ git clone https://gerrit.opnfv.org/gerrit/armband

Check-out the Brahmaputra release tag to set the HEAD to the
baseline required to replicate the Brahmaputra release:

.. code-block:: bash

    $ git checkout brahmaputra.3.0

Go to the armband directory and build the .iso:

.. code-block:: bash

    $ cd armband
    $ make release

For more information on how to build, please see *Reference: 14*

Other preparations
------------------

Next, familiarize yourself with Fuel by reading the following documents:

- Fuel planning guide, please see *Reference: 8*

- Fuel user guide, please see *Reference: 9*

- Fuel operations guide, please see *Reference: 10*

- Fuel Plugin Developers Guide, please see *Reference: 11*

Prior to installation, a number of deployment specific parameters must be collected, those are:

#.     Provider sub-net and gateway information

#.     Provider VLAN information

#.     Provider DNS addresses

#.     Provider NTP addresses

#.     Network overlay you plan to deploy (VLAN, VXLAN, FLAT)

#.     How many nodes and what roles you want to deploy (Controllers, Storage, Computes)

#.     Monitoring options you want to deploy (Ceilometer, Syslog, erc.).

#.     Other options not covered in the document are available in the links above


This information will be needed for the configuration procedures
provided in this document.

Hardware requirements
=====================

The following minimum hardware requirements must be met for the
installation of AArch64 Brahmaputra 3.0 using Fuel:

+--------------------+------------------------------------------------------+
| **HW Aspect**      | **Requirement**                                      |
|                    |                                                      |
+====================+======================================================+
| **AArch64 nodes**  | Minimum 5 (3 for non redundant deployment):          |
|                    |                                                      |
|                    | - 3(1) Controllers (1 colocated mongo/ceilometer     |
|                    |   role, 2 Ceph-OSD roles)                            |
|                    |                                                      |
|                    | - 1 Compute (1 co-located Ceph-OSD role)             |
|                    |                                                      |
+--------------------+------------------------------------------------------+
| **CPU**            | Minimum 1 socket AArch64 (ARMv8) with Virtualization |
|                    | support                                              |
+--------------------+------------------------------------------------------+
| **RAM**            | Minimum 16GB/server (Depending on VNF work load)     |
|                    |                                                      |
+--------------------+------------------------------------------------------+
| **Disk**           | Minimum 256GB 10kRPM spinning disks                  |
|                    |                                                      |
+--------------------+------------------------------------------------------+
| **Firmware**       | UEFI compatible (e.g. EDK2) with PXE support         |
+--------------------+------------------------------------------------------+
| **Networks**       | 4 Tagged VLANs (PUBLIC, MGMT, STORAGE, PRIVATE)      |
|                    |                                                      |
|                    | 1 Un-Tagged VLAN for PXE Boot - ADMIN Network        |
|                    |                                                      |
|                    | Note: These can be allocated to a single NIC -       |
|                    | or spread out over multiple NICs as your hardware    |
|                    | supports.                                            |
+--------------------+------------------------------------------------------+
| **1 x86_64 node**  | - 1 Fuel deployment master, x86 (may be virtualized) |
+--------------------+------------------------------------------------------+

Help with Hardware Requirements
===============================

Calculate hardware requirements:

When choosing the hardware on which you will deploy your OpenStack
environment, you should think about:

- CPU -- Consider the number of virtual machines that you plan to deploy in your cloud environment and the CPU per virtual machine.

- Memory -- Depends on the amount of RAM assigned per virtual machine and the controller node.

- Storage -- Depends on the local drive space per virtual machine, remote volumes that can be attached to a virtual machine, and object storage.

- Networking -- Depends on the Choose Network Topology, the network bandwidth per virtual machine, and network storage.


Top of the rack (TOR) Configuration requirements
================================================

The switching infrastructure provides connectivity for the OPNFV
infrastructure operations, tenant networks (East/West) and provider
connectivity (North/South); it also provides needed connectivity for
the Storage Area Network (SAN).
To avoid traffic congestion, it is strongly suggested that three
physically separated networks are used, that is: 1 physical network
for administration and control, one physical network for tenant private
and public networks, and one physical network for SAN.
The switching connectivity can (but does not need to) be fully redundant,
in such case it comprises a redundant 10GE switch pair for each of the
three physically separated networks.

The physical TOR switches are **not** automatically configured from
the Fuel OPNFV reference platform. All the networks involved in the OPNFV
infrastructure as well as the provider networks and the private tenant
VLANs needs to be manually configured.

Manual configuration of the Brahmaputra hardware platform should
be carried out according to the OPNFV Pharos specification:
<https://wiki.opnfv.org/pharos/pharos_specification>

OPNFV Software installation and deployment
==========================================

This section describes the installation of the OPNFV installation
server (Fuel master) as well as the deployment of the full OPNFV
reference platform stack across a server cluster.

Install Fuel master
-------------------
#. Mount the Brahmaputra Fuel ISO file/media as a boot device to the jump host server.

#. Reboot the jump host to establish the Fuel server.

   - The system now boots from the ISO image.

   - Select "Fuel Install (Static IP)" (See figure below)

   - Press [Enter].

   .. figure:: img/grub-1.png

#. Wait until screen Fuel setup is shown (Note: This can take up to 30 minutes).

#. In the "Fuel User" section - Confirm/change the default password (See figure below)

   - Enter "admin" in the Fuel password input

   - Enter "admin" in the Confirm password input

   - Select "Check" and press [Enter]

   .. figure:: img/fuelmenu1.png

#. In the "Network Setup" section - Configure DHCP/Static IP information for your FUEL node - For example, ETH0 is 10.20.0.2/24 for FUEL booting and ETH1 is DHCP/Static in your corporate/lab network (see figure below).

   - **NOTE**: ArmbandFuel@OPNFV requires internet connectivity during bootstrap
     image building, due to missing arm64 (AArch64) packages in the partial
     local Ubuntu mirror (consequence of ports.ubuntu.com mirror architecture).

   - Configuration of ETH1 interface for connectivity into your corporate/lab
     network is mandatory, as internet connection is required during deployment.

   .. figure:: img/fuelmenu2.png

   .. figure:: img/fuelmenu2a.png

#. In the "PXE Setup" section (see figure below) - Change the following fields to appropriate values (example below):

   - DHCP Pool Start 10.20.0.3

   - DHCP Pool End 10.20.0.254

   - DHCP Pool Gateway  10.20.0.2 (IP address of Fuel node)

   .. figure:: img/fuelmenu3.png

#. In the "DNS & Hostname" section (see figure below) - Change the following fields to appropriate values:

   - Hostname

   - Domain

   - Search Domain

   - External DNS

   - Hostname to test DNS

   - Select <Check> and press [Enter]

   .. figure:: img/fuelmenu4.png

#. **DO NOT CHANGE** anything in "Bootstrap Image" section (see figure below).

   In ArmbandFuel@OPNFV, this data is **NOT** actually used for bootstrap
   image building. Any change here will replace the configuration from
   the OPNFV bootstrap build scripts and will lead to a failed bootstrap
   image build.

   **NOTE:** Cannot be used in tandem with local repository support.

   .. figure:: img/fuelmenu5.png

#. In the "Time Sync" section (see figure below) - Change the following fields to appropriate values:

   - NTP Server 1 <Customer NTP server 1>

   - NTP Server 2 <Customer NTP server 2>

   - NTP Server 3 <Customer NTP server 3>

   .. figure:: img/fuelmenu6.png

#. Start the installation.

   - Press <F8> or select Quit Setup and press Save and Quit.

   - Installation starts, wait until the login screen is shown.


Boot the Node Servers
---------------------

After the Fuel Master node has rebooted from the above steps and is at
the login prompt, you should boot the Node Servers (Your
Compute/Control/Storage blades (nested or real) with a PXE booting
scheme so that the FUEL Master can pick them up for control.

**NOTE**: AArch64 target nodes are expected to support PXE booting an
EFI binary, i.e. an EFI-stubbed GRUB2 bootloader.

**NOTE**: UEFI (EDK2) firmware is **highly** recommended, becoming
the **de facto** standard for ARMv8 nodes.

#. Enable PXE booting

   - For every controller and compute server: enable PXE Booting as the first boot device in the UEFI (EDK2) boot order menu and hard disk as the second boot device in the same menu.

#. Reboot all the control and compute blades.

#. Wait for the availability of nodes showing up in the Fuel GUI.

   - Connect to the FUEL UI via the URL provided in the Console (default: https://10.20.0.2:8443)

   - Wait until all nodes are displayed in top right corner of the Fuel GUI: Total nodes and Unallocated nodes (see figure below).

   .. figure:: img/nodes.png


Install additional Plugins/Features on the FUEL node
----------------------------------------------------

#. SSH to your FUEL node (e.g. root@10.20.0.2  pwd: r00tme)

#. Select wanted plugins/features from the /opt/opnfv/ directory.

#. Install the wanted plugin with the command:

    .. code-block:: bash

        $ fuel plugins --install /opt/opnfv/<plugin-name>-<version>.<arch>.rpm

    Expected output (see figure below):

    .. code-block:: bash

        Plugin ....... was successfully installed.

    **NOTE**: AArch64 Brahmaputra 3.0 ships only with Opendaylight plugin,
    see *Reference 15*.

   .. figure:: img/plugin_install.png

Create an OpenStack Environment
-------------------------------

#. Connect to Fuel WEB UI with a browser (default: https://10.20.0.2:8443) (login admin/admin)

#. Create and name a new OpenStack environment, to be installed.

   .. figure:: img/newenv.png

#. Select "<Liberty on Ubuntu 14.04 (aarch64)>" and press <Next>

#. Select "compute virtulization method".

   - Select "QEMU-KVM as hypervisor" and press <Next>

#. Select "network mode".

   - Select "Neutron with ML2 plugin"

   - Select "Neutron with tunneling segmentation" (Required when using the ODL plugin)

   - Press <Next>

#. Select "Storage Back-ends".

   - Select "Ceph for block storage" and press <Next>

#. Select "additional services" you wish to install.

   - Check option "Install Ceilometer (OpenStack Telemetry)" and press <Next>

#. Create the new environment.

   - Click <Create> Button

Configure the network environment
---------------------------------

#. Open the environment you previously created.

#. Open the networks tab and select the "default Node Networks group to" on the left pane (see figure below).

   .. figure:: img/network.png

#. Update the Public network configuration and change the following fields to appropriate values:

   - CIDR to <CIDR for Public IP Addresses>

   - IP Range Start to <Public IP Address start>

   - IP Range End to <Public IP Address end>

   - Gateway to <Gateway for Public IP Addresses>

   - Check <VLAN tagging>.

   - Set appropriate VLAN id.

#. Update the Storage Network Configuration

   - Set CIDR to appropriate value  (default 192.168.1.0/24)

   - Set IP Range Start to appropriate value (default 192.168.1.1)

   - Set IP Range End to appropriate value (default 192.168.1.254)

   - Set vlan to appropriate value  (default 102)

#. Update the Management network configuration.

   - Set CIDR to appropriate value (default 192.168.0.0/24)

   - Set IP Range Start to appropriate value (default 192.168.0.1)

   - Set IP Range End to appropriate value (default 192.168.0.254)

   - Check <VLAN tagging>.

   - Set appropriate VLAN id. (default 101)

#. Update the Private Network Information

   - Set CIDR to appropriate value (default 192.168.2.0/24

   - Set IP Range Start to appropriate value (default 192.168.2.1)

   - Set IP Range End to appropriate value (default 192.168.2.254)

   - Check <VLAN tagging>.

   - Set appropriate VLAN tag (default 103)

#. Select the "Neutron L3 Node Networks group" on the left pane.

   .. figure:: img/neutronl3.png

#. Update the Floating Network configuration.

   - Set the Floating IP range start (default 172.16.0.130)

   - Set the Floating IP range end (default 172.16.0.254)

   - Set the Floating network name (default admin_floating_net)

#. Update the Internal Network configuration.

   - Set Internal network CIDR to an appropriate value (default 192.168.111.0/24)

   - Set Internal network gateway to an appropriate value

   - Set the Internal network name (default admin_internal_net)

#. Update the Guest OS DNS servers.

   - Set Guest OS DNS Server values appropriately

#. Save Settings.

#. Select the "Other Node Networks group" on the left pane(see figure below).

   .. figure:: img/other.png

#. Update the Public network assignment.

   - Check the box for "Assign public network to all nodes" (Required by OpenDaylight)

#. Update Host OS DNS Servers.

   - Provide the DNS server settings

#. Update Host OS NTP Servers.

   - Provide the NTP server settings

Select Hypervisor type
----------------------

#. In the FUEL UI of your Environment, click the "Settings" Tab

#. Select Compute on the left side pane (see figure below)

   - Check the KVM box and press "Save settings"

   .. figure:: img/compute.png

Enable Plugins
--------------

#. In the FUEL UI of your Environment, click the "Settings" Tab

#. Select Other on the left side pane (see figure below)

   - Enable and configure the plugins of your choice

   .. figure:: img/plugins_aarch64.png

Allocate nodes to environment and assign functional roles
---------------------------------------------------------

#. Click on the "Nodes" Tab in the FUEL WEB UI (see figure below).

    .. figure:: img/addnodes.png

#. Assign roles (see figure below).

    - Click on the <+Add Nodes> button

    - Check <Controller>, <Telemetry - MongoDB>  and optionally an SDN Controller role (OpenDaylight controller) in the Assign Roles Section.

    - Check one node which you want to act as a Controller from the bottom half of the screen

    - Click <Apply Changes>.

    - Click on the <+Add Nodes> button

    - Check the <Controller> and <Storage - Ceph OSD> roles.

    - Check the two next nodes you want to act as Controllers from the bottom half of the screen

    - Click <Apply Changes>

    - Click on <+Add Nodes> button

    - Check the <Compute> and <Storage - Ceph OSD> roles.

    - Check the Nodes you want to act as Computes from the bottom half of the screen

    - Click <Apply Changes>.

    .. figure:: img/computelist.png

#. Configure interfaces (see figure below).

    - Check Select <All> to select all allocated nodes

    - Click <Configure Interfaces>

    - Assign interfaces (bonded) for mgmt-, admin-, private-, public-
      and storage networks

    - Click <Apply>

    .. figure:: img/interfaceconf.png

OPTIONAL - UNTESTED - Set Local Mirror Repos
---------------------------------

**NOTE**: AArch64 Brahmaputra 3.0 does not fully support local Ubuntu mirrors,
or at least does not ship with arm64 packages in local repos by default.
In order to use local (partial) Ubuntu mirrors, one should add arm64 packages
by hand to the existing amd64 mirrors and re-generate repo metadata.
Local MOS/Auxiliary repos contain packages for both amd64 and arm64.

**NOTE**: Below instruction assume you already added (by hand) arm64
Ubuntu necessary packages to the local repository!

The following steps can be executed if you are in an environment with
no connection to the Internet. The Fuel server delivers a local repo
that can be used for installation / deployment of openstack.

#. In the Fuel UI of your Environment, click the Settings Tab and select General from the left pane.

   - Replace the URI values for the "Name" values outlined below:

   - "ubuntu" URI="deb http://<ip-of-fuel-server>:8080/mirrors/ubuntu/ trusty main"

   - "ubuntu-security" URI="deb http://<ip-of-fuel-server>:8080/mirrors/ubuntu/ trusty-security main"

   - "ubuntu-updates" URI="deb http://<ip-of-fuel-server>:8080/mirrors/ubuntu/ trusty-updates main"

   - "mos" URI="deb http://<ip-of-fuel-server>::8080/liberty-8.0/ubuntu/x86_64 mos8.0 main restricted"

   - "Auxiliary" URI="deb http://<ip-of-fuel-server>:8080/liberty-8.0/ubuntu/auxiliary auxiliary main restricted"

   - Click <Save Settings> at the bottom to Save your changes

Target specific configuration
-----------------------------

#. [AArch64 specific] Configure MySQL WSREP SST provider

   **NOTE**: This option is only available for ArmbandFuel@OPNFV, since it
   currently only affects AArch64 targets (see *Reference 15*).

   When using some AArch64 platforms as controller nodes, WSREP SST
   synchronisation using default backend provider (xtrabackup-v2) might fail,
   so a mechanism that allows selecting a different WSREP SST provider
   has been introduced.

   In the FUEL UI of your Environment, click the <Settings> tab, click
   <OpenStack Services> on the left side pane (see figure below), then
   select one of the following options:

   - xtrabackup-v2 (default provider, AArch64 stability issues);

   - rsync (AArch64 validated, better or comparable speed to xtrabackup,
     takes the donor node offline during state transfer);

   - mysqldump (untested);

   .. figure:: img/fuelwsrepsst.png

#. Set up targets for provisioning with non-default "Offloading Modes"

   Some target nodes may require additional configuration after they are
   PXE booted (bootstrapped); the most frequent changes are in defaults
   for ethernet devices' "Offloading Modes" settings (e.g. some targets'
   ethernet drivers may strip VLAN traffic by default).

   If your target ethernet drivers have wrong "Offloading Modes" defaults,
   in "Configure interfaces" page (described above), expand affected
   interface's "Offloading Modes" and [un]check the relevant settings
   (see figure below):

   .. figure:: img/offloadingmodes.png

#. Set up targets for "Verify Networks" with non-default "Offloading Modes"

   **NOTE**: Check *Reference 15* for an updated and comprehensive list of
   known issues and/or limitations, including "Offloading Modes" not being
   applied during "Verify Networks" step.

   Setting custom "Offloading Modes" in Fuel GUI will only apply those settings
   during provisiong and **not** during "Verify Networks", so if your targets
   need this change, you have to apply "Offloading Modes" settings by hand
   to bootstrapped nodes.

   **E.g.**: Our driver has "rx-vlan-filter" default "on" (expected "off") on
   the Openstack interface(s) "eth1", preventing VLAN traffic from passing
   during "Verify Networks".

   - From Fuel master console identify target nodes admin IPs (see figure below):

     .. code-block:: bash

         $ fuel nodes

     .. figure:: img/fuelconsole1.png

   - SSH into each of the target nodes and disable "rx-vlan-filter" on the
     affected physical interface(s) allocated for OpenStack traffic (eth1):

     .. code-block:: bash

         $ ssh root@10.20.0.6 ethtool -K eth1 rx-vlan-filter off

   - Repeat the step above for all affected nodes/interfaces in the POD.

Verify Networks
---------------

It is important that the Verify Networks action is performed as it will verify
that communicate works for the networks you have setup, as well as check that
packages needed for a successful deployment can be fetched.

#. From the FUEL UI in your Environment, Select the Networks Tab and select "Connectivity check" on the left pane (see figure below)

   - Select <Verify Networks>

   - Continue to fix your topology (physical switch, etc) until the "Verification Succeeded" and "Your network is configured correctly" message is shown

   .. figure:: img/verifynet.png


Deploy Your Environment
-----------------------

38. Deploy the environment.

    - In the Fuel GUI, click on the "Dashboard" Tab.

    - Click on <Deploy Changes> in the "Ready to Deploy?" section

    - Examine any information notice that pops up and click <Deploy>

    Wait for your deployment to complete, you can view the "Dashboard"
    Tab to see the progress and status of your deployment.

Installation health-check
=========================

#. Perform system health-check (see figure below)

    - Click the "Health Check" tab inside your Environment in the FUEL Web UI

    - Check <Select All> and Click <Run Tests>

    - Allow tests to run and investigate results where appropriate

    - Check *Reference 15* for known issues / limitations on AArch64, like
      unsupported migration tests when using a GICv3 interrupt controller

    .. figure:: img/health.png

References
==========

OPNFV
-----

1) `OPNFV Home Page <http://www.opnfv.org>`_

2) `OPNFV documentation- and software downloads <https://www.opnfv.org/software/download>`_

OpenStack
---------

3) `OpenStack Liberty Release artifacts <http://www.openstack.org/software/liberty>`_

4) `OpenStack documentation <http://docs.openstack.org>`_

OpenDaylight
------------

5) `OpenDaylight artifacts <http://www.opendaylight.org/software/downloads>`_

Fuel
----
6) `The Fuel OpenStack project <https://wiki.openstack.org/wiki/Fuel>`_

7) `Fuel documentation overview <https://docs.fuel-infra.org/openstack/fuel/fuel-8.0/>`_

8) `Fuel planning guide <https://docs.fuel-infra.org/openstack/fuel/fuel-8.0/mos-planning-guide.html>`_

9) `Fuel quick start guide <https://docs.mirantis.com/openstack/fuel/fuel-8.0/quickstart-guide.html>`_

10) `Fuel operations guide <https://docs.mirantis.com/openstack/fuel/fuel-8.0/operations.html>`_

11) `Fuel Plugin Developers Guide <https://wiki.openstack.org/wiki/Fuel/Plugins>`_

12) `(N/A on AArch64) Fuel OpenStack Hardware Compatibility List <https://www.mirantis.com/products/openstack-drivers-and-plugins/hardware-compatibility-list>`_

Fuel in OPNFV
-------------

13) `OPNFV Installation instruction for the AArch64 Brahmaputra release of OPNFV when using Fuel as a deployment tool <http://artifacts.opnfv.org/armband/brahmaputra/docs/installation-instruction.html>`_

14) `OPNFV Build instruction for the AArch64 Brahmaputra release of OPNFV when using Fuel as a deployment tool <http://artifacts.opnfv.org/armband/brahmaputra/docs/build-instruction.html>`_

15) `OPNFV Release Note for the AArch64 Brahmaputra release of OPNFV when using Fuel as a deployment tool <http://artifacts.opnfv.org/armband/brahmaputra/docs/release-notes.html>`_