summaryrefslogtreecommitdiffstats
path: root/qemu/target-ppc/int_helper.c
blob: 0a55d5e54b1c24de896f4d47e9176ddcb972c509 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
/*
 *  PowerPC integer and vector emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "cpu.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "crypto/aes.h"

#include "helper_regs.h"
/*****************************************************************************/
/* Fixed point operations helpers */

target_ulong helper_divweu(CPUPPCState *env, target_ulong ra, target_ulong rb,
                           uint32_t oe)
{
    uint64_t rt = 0;
    int overflow = 0;

    uint64_t dividend = (uint64_t)ra << 32;
    uint64_t divisor = (uint32_t)rb;

    if (unlikely(divisor == 0)) {
        overflow = 1;
    } else {
        rt = dividend / divisor;
        overflow = rt > UINT32_MAX;
    }

    if (unlikely(overflow)) {
        rt = 0; /* Undefined */
    }

    if (oe) {
        if (unlikely(overflow)) {
            env->so = env->ov = 1;
        } else {
            env->ov = 0;
        }
    }

    return (target_ulong)rt;
}

target_ulong helper_divwe(CPUPPCState *env, target_ulong ra, target_ulong rb,
                          uint32_t oe)
{
    int64_t rt = 0;
    int overflow = 0;

    int64_t dividend = (int64_t)ra << 32;
    int64_t divisor = (int64_t)((int32_t)rb);

    if (unlikely((divisor == 0) ||
                 ((divisor == -1ull) && (dividend == INT64_MIN)))) {
        overflow = 1;
    } else {
        rt = dividend / divisor;
        overflow = rt != (int32_t)rt;
    }

    if (unlikely(overflow)) {
        rt = 0; /* Undefined */
    }

    if (oe) {
        if (unlikely(overflow)) {
            env->so = env->ov = 1;
        } else {
            env->ov = 0;
        }
    }

    return (target_ulong)rt;
}

#if defined(TARGET_PPC64)

uint64_t helper_divdeu(CPUPPCState *env, uint64_t ra, uint64_t rb, uint32_t oe)
{
    uint64_t rt = 0;
    int overflow = 0;

    overflow = divu128(&rt, &ra, rb);

    if (unlikely(overflow)) {
        rt = 0; /* Undefined */
    }

    if (oe) {
        if (unlikely(overflow)) {
            env->so = env->ov = 1;
        } else {
            env->ov = 0;
        }
    }

    return rt;
}

uint64_t helper_divde(CPUPPCState *env, uint64_t rau, uint64_t rbu, uint32_t oe)
{
    int64_t rt = 0;
    int64_t ra = (int64_t)rau;
    int64_t rb = (int64_t)rbu;
    int overflow = divs128(&rt, &ra, rb);

    if (unlikely(overflow)) {
        rt = 0; /* Undefined */
    }

    if (oe) {

        if (unlikely(overflow)) {
            env->so = env->ov = 1;
        } else {
            env->ov = 0;
        }
    }

    return rt;
}

#endif


target_ulong helper_cntlzw(target_ulong t)
{
    return clz32(t);
}

#if defined(TARGET_PPC64)
target_ulong helper_cntlzd(target_ulong t)
{
    return clz64(t);
}
#endif

#if defined(TARGET_PPC64)

uint64_t helper_bpermd(uint64_t rs, uint64_t rb)
{
    int i;
    uint64_t ra = 0;

    for (i = 0; i < 8; i++) {
        int index = (rs >> (i*8)) & 0xFF;
        if (index < 64) {
            if (rb & (1ull << (63-index))) {
                ra |= 1 << i;
            }
        }
    }
    return ra;
}

#endif

target_ulong helper_cmpb(target_ulong rs, target_ulong rb)
{
    target_ulong mask = 0xff;
    target_ulong ra = 0;
    int i;

    for (i = 0; i < sizeof(target_ulong); i++) {
        if ((rs & mask) == (rb & mask)) {
            ra |= mask;
        }
        mask <<= 8;
    }
    return ra;
}

/* shift right arithmetic helper */
target_ulong helper_sraw(CPUPPCState *env, target_ulong value,
                         target_ulong shift)
{
    int32_t ret;

    if (likely(!(shift & 0x20))) {
        if (likely((uint32_t)shift != 0)) {
            shift &= 0x1f;
            ret = (int32_t)value >> shift;
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
                env->ca = 0;
            } else {
                env->ca = 1;
            }
        } else {
            ret = (int32_t)value;
            env->ca = 0;
        }
    } else {
        ret = (int32_t)value >> 31;
        env->ca = (ret != 0);
    }
    return (target_long)ret;
}

#if defined(TARGET_PPC64)
target_ulong helper_srad(CPUPPCState *env, target_ulong value,
                         target_ulong shift)
{
    int64_t ret;

    if (likely(!(shift & 0x40))) {
        if (likely((uint64_t)shift != 0)) {
            shift &= 0x3f;
            ret = (int64_t)value >> shift;
            if (likely(ret >= 0 || (value & ((1ULL << shift) - 1)) == 0)) {
                env->ca = 0;
            } else {
                env->ca = 1;
            }
        } else {
            ret = (int64_t)value;
            env->ca = 0;
        }
    } else {
        ret = (int64_t)value >> 63;
        env->ca = (ret != 0);
    }
    return ret;
}
#endif

#if defined(TARGET_PPC64)
target_ulong helper_popcntb(target_ulong val)
{
    val = (val & 0x5555555555555555ULL) + ((val >>  1) &
                                           0x5555555555555555ULL);
    val = (val & 0x3333333333333333ULL) + ((val >>  2) &
                                           0x3333333333333333ULL);
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) &
                                           0x0f0f0f0f0f0f0f0fULL);
    return val;
}

target_ulong helper_popcntw(target_ulong val)
{
    val = (val & 0x5555555555555555ULL) + ((val >>  1) &
                                           0x5555555555555555ULL);
    val = (val & 0x3333333333333333ULL) + ((val >>  2) &
                                           0x3333333333333333ULL);
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) &
                                           0x0f0f0f0f0f0f0f0fULL);
    val = (val & 0x00ff00ff00ff00ffULL) + ((val >>  8) &
                                           0x00ff00ff00ff00ffULL);
    val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
                                           0x0000ffff0000ffffULL);
    return val;
}

target_ulong helper_popcntd(target_ulong val)
{
    return ctpop64(val);
}
#else
target_ulong helper_popcntb(target_ulong val)
{
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
    return val;
}

target_ulong helper_popcntw(target_ulong val)
{
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
    val = (val & 0x00ff00ff) + ((val >>  8) & 0x00ff00ff);
    val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
    return val;
}
#endif

/*****************************************************************************/
/* PowerPC 601 specific instructions (POWER bridge) */
target_ulong helper_div(CPUPPCState *env, target_ulong arg1, target_ulong arg2)
{
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];

    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
        (int32_t)arg2 == 0) {
        env->spr[SPR_MQ] = 0;
        return INT32_MIN;
    } else {
        env->spr[SPR_MQ] = tmp % arg2;
        return  tmp / (int32_t)arg2;
    }
}

target_ulong helper_divo(CPUPPCState *env, target_ulong arg1,
                         target_ulong arg2)
{
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];

    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
        (int32_t)arg2 == 0) {
        env->so = env->ov = 1;
        env->spr[SPR_MQ] = 0;
        return INT32_MIN;
    } else {
        env->spr[SPR_MQ] = tmp % arg2;
        tmp /= (int32_t)arg2;
        if ((int32_t)tmp != tmp) {
            env->so = env->ov = 1;
        } else {
            env->ov = 0;
        }
        return tmp;
    }
}

target_ulong helper_divs(CPUPPCState *env, target_ulong arg1,
                         target_ulong arg2)
{
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
        (int32_t)arg2 == 0) {
        env->spr[SPR_MQ] = 0;
        return INT32_MIN;
    } else {
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
        return (int32_t)arg1 / (int32_t)arg2;
    }
}

target_ulong helper_divso(CPUPPCState *env, target_ulong arg1,
                          target_ulong arg2)
{
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
        (int32_t)arg2 == 0) {
        env->so = env->ov = 1;
        env->spr[SPR_MQ] = 0;
        return INT32_MIN;
    } else {
        env->ov = 0;
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
        return (int32_t)arg1 / (int32_t)arg2;
    }
}

/*****************************************************************************/
/* 602 specific instructions */
/* mfrom is the most crazy instruction ever seen, imho ! */
/* Real implementation uses a ROM table. Do the same */
/* Extremely decomposed:
 *                      -arg / 256
 * return 256 * log10(10           + 1.0) + 0.5
 */
#if !defined(CONFIG_USER_ONLY)
target_ulong helper_602_mfrom(target_ulong arg)
{
    if (likely(arg < 602)) {
#include "mfrom_table.c"
        return mfrom_ROM_table[arg];
    } else {
        return 0;
    }
}
#endif

/*****************************************************************************/
/* Altivec extension helpers */
#if defined(HOST_WORDS_BIGENDIAN)
#define HI_IDX 0
#define LO_IDX 1
#define AVRB(i) u8[i]
#define AVRW(i) u32[i]
#else
#define HI_IDX 1
#define LO_IDX 0
#define AVRB(i) u8[15-(i)]
#define AVRW(i) u32[3-(i)]
#endif

#if defined(HOST_WORDS_BIGENDIAN)
#define VECTOR_FOR_INORDER_I(index, element)                    \
    for (index = 0; index < ARRAY_SIZE(r->element); index++)
#else
#define VECTOR_FOR_INORDER_I(index, element)                    \
    for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
#endif

/* Saturating arithmetic helpers.  */
#define SATCVT(from, to, from_type, to_type, min, max)          \
    static inline to_type cvt##from##to(from_type x, int *sat)  \
    {                                                           \
        to_type r;                                              \
                                                                \
        if (x < (from_type)min) {                               \
            r = min;                                            \
            *sat = 1;                                           \
        } else if (x > (from_type)max) {                        \
            r = max;                                            \
            *sat = 1;                                           \
        } else {                                                \
            r = x;                                              \
        }                                                       \
        return r;                                               \
    }
#define SATCVTU(from, to, from_type, to_type, min, max)         \
    static inline to_type cvt##from##to(from_type x, int *sat)  \
    {                                                           \
        to_type r;                                              \
                                                                \
        if (x > (from_type)max) {                               \
            r = max;                                            \
            *sat = 1;                                           \
        } else {                                                \
            r = x;                                              \
        }                                                       \
        return r;                                               \
    }
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)

SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
#undef SATCVT
#undef SATCVTU

void helper_lvsl(ppc_avr_t *r, target_ulong sh)
{
    int i, j = (sh & 0xf);

    VECTOR_FOR_INORDER_I(i, u8) {
        r->u8[i] = j++;
    }
}

void helper_lvsr(ppc_avr_t *r, target_ulong sh)
{
    int i, j = 0x10 - (sh & 0xf);

    VECTOR_FOR_INORDER_I(i, u8) {
        r->u8[i] = j++;
    }
}

void helper_mtvscr(CPUPPCState *env, ppc_avr_t *r)
{
#if defined(HOST_WORDS_BIGENDIAN)
    env->vscr = r->u32[3];
#else
    env->vscr = r->u32[0];
#endif
    set_flush_to_zero(vscr_nj, &env->vec_status);
}

void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
        r->u32[i] = ~a->u32[i] < b->u32[i];
    }
}

#define VARITH_DO(name, op, element)                                    \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            r->element[i] = a->element[i] op b->element[i];             \
        }                                                               \
    }
#define VARITH(suffix, element)                 \
    VARITH_DO(add##suffix, +, element)          \
    VARITH_DO(sub##suffix, -, element)
VARITH(ubm, u8)
VARITH(uhm, u16)
VARITH(uwm, u32)
VARITH(udm, u64)
VARITH_DO(muluwm, *, u32)
#undef VARITH_DO
#undef VARITH

#define VARITHFP(suffix, func)                                          \
    void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
                          ppc_avr_t *b)                                 \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
            r->f[i] = func(a->f[i], b->f[i], &env->vec_status);         \
        }                                                               \
    }
VARITHFP(addfp, float32_add)
VARITHFP(subfp, float32_sub)
VARITHFP(minfp, float32_min)
VARITHFP(maxfp, float32_max)
#undef VARITHFP

#define VARITHFPFMA(suffix, type)                                       \
    void helper_v##suffix(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, \
                           ppc_avr_t *b, ppc_avr_t *c)                  \
    {                                                                   \
        int i;                                                          \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
            r->f[i] = float32_muladd(a->f[i], c->f[i], b->f[i],         \
                                     type, &env->vec_status);           \
        }                                                               \
    }
VARITHFPFMA(maddfp, 0);
VARITHFPFMA(nmsubfp, float_muladd_negate_result | float_muladd_negate_c);
#undef VARITHFPFMA

#define VARITHSAT_CASE(type, op, cvt, element)                          \
    {                                                                   \
        type result = (type)a->element[i] op (type)b->element[i];       \
        r->element[i] = cvt(result, &sat);                              \
    }

#define VARITHSAT_DO(name, op, optype, cvt, element)                    \
    void helper_v##name(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,   \
                        ppc_avr_t *b)                                   \
    {                                                                   \
        int sat = 0;                                                    \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            switch (sizeof(r->element[0])) {                            \
            case 1:                                                     \
                VARITHSAT_CASE(optype, op, cvt, element);               \
                break;                                                  \
            case 2:                                                     \
                VARITHSAT_CASE(optype, op, cvt, element);               \
                break;                                                  \
            case 4:                                                     \
                VARITHSAT_CASE(optype, op, cvt, element);               \
                break;                                                  \
            }                                                           \
        }                                                               \
        if (sat) {                                                      \
            env->vscr |= (1 << VSCR_SAT);                               \
        }                                                               \
    }
#define VARITHSAT_SIGNED(suffix, element, optype, cvt)          \
    VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element)      \
    VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt)        \
    VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element)      \
    VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
#undef VARITHSAT_CASE
#undef VARITHSAT_DO
#undef VARITHSAT_SIGNED
#undef VARITHSAT_UNSIGNED

#define VAVG_DO(name, element, etype)                                   \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
            r->element[i] = x >> 1;                                     \
        }                                                               \
    }

#define VAVG(type, signed_element, signed_type, unsigned_element,       \
             unsigned_type)                                             \
    VAVG_DO(avgs##type, signed_element, signed_type)                    \
    VAVG_DO(avgu##type, unsigned_element, unsigned_type)
VAVG(b, s8, int16_t, u8, uint16_t)
VAVG(h, s16, int32_t, u16, uint32_t)
VAVG(w, s32, int64_t, u32, uint64_t)
#undef VAVG_DO
#undef VAVG

#define VCF(suffix, cvt, element)                                       \
    void helper_vcf##suffix(CPUPPCState *env, ppc_avr_t *r,             \
                            ppc_avr_t *b, uint32_t uim)                 \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
            float32 t = cvt(b->element[i], &env->vec_status);           \
            r->f[i] = float32_scalbn(t, -uim, &env->vec_status);        \
        }                                                               \
    }
VCF(ux, uint32_to_float32, u32)
VCF(sx, int32_to_float32, s32)
#undef VCF

#define VCMP_DO(suffix, compare, element, record)                       \
    void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \
                             ppc_avr_t *a, ppc_avr_t *b)                \
    {                                                                   \
        uint64_t ones = (uint64_t)-1;                                   \
        uint64_t all = ones;                                            \
        uint64_t none = 0;                                              \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            uint64_t result = (a->element[i] compare b->element[i] ?    \
                               ones : 0x0);                             \
            switch (sizeof(a->element[0])) {                            \
            case 8:                                                     \
                r->u64[i] = result;                                     \
                break;                                                  \
            case 4:                                                     \
                r->u32[i] = result;                                     \
                break;                                                  \
            case 2:                                                     \
                r->u16[i] = result;                                     \
                break;                                                  \
            case 1:                                                     \
                r->u8[i] = result;                                      \
                break;                                                  \
            }                                                           \
            all &= result;                                              \
            none |= result;                                             \
        }                                                               \
        if (record) {                                                   \
            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
        }                                                               \
    }
#define VCMP(suffix, compare, element)          \
    VCMP_DO(suffix, compare, element, 0)        \
    VCMP_DO(suffix##_dot, compare, element, 1)
VCMP(equb, ==, u8)
VCMP(equh, ==, u16)
VCMP(equw, ==, u32)
VCMP(equd, ==, u64)
VCMP(gtub, >, u8)
VCMP(gtuh, >, u16)
VCMP(gtuw, >, u32)
VCMP(gtud, >, u64)
VCMP(gtsb, >, s8)
VCMP(gtsh, >, s16)
VCMP(gtsw, >, s32)
VCMP(gtsd, >, s64)
#undef VCMP_DO
#undef VCMP

#define VCMPFP_DO(suffix, compare, order, record)                       \
    void helper_vcmp##suffix(CPUPPCState *env, ppc_avr_t *r,            \
                             ppc_avr_t *a, ppc_avr_t *b)                \
    {                                                                   \
        uint32_t ones = (uint32_t)-1;                                   \
        uint32_t all = ones;                                            \
        uint32_t none = 0;                                              \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
            uint32_t result;                                            \
            int rel = float32_compare_quiet(a->f[i], b->f[i],           \
                                            &env->vec_status);          \
            if (rel == float_relation_unordered) {                      \
                result = 0;                                             \
            } else if (rel compare order) {                             \
                result = ones;                                          \
            } else {                                                    \
                result = 0;                                             \
            }                                                           \
            r->u32[i] = result;                                         \
            all &= result;                                              \
            none |= result;                                             \
        }                                                               \
        if (record) {                                                   \
            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
        }                                                               \
    }
#define VCMPFP(suffix, compare, order)          \
    VCMPFP_DO(suffix, compare, order, 0)        \
    VCMPFP_DO(suffix##_dot, compare, order, 1)
VCMPFP(eqfp, ==, float_relation_equal)
VCMPFP(gefp, !=, float_relation_less)
VCMPFP(gtfp, ==, float_relation_greater)
#undef VCMPFP_DO
#undef VCMPFP

static inline void vcmpbfp_internal(CPUPPCState *env, ppc_avr_t *r,
                                    ppc_avr_t *a, ppc_avr_t *b, int record)
{
    int i;
    int all_in = 0;

    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
        int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
        if (le_rel == float_relation_unordered) {
            r->u32[i] = 0xc0000000;
            all_in = 1;
        } else {
            float32 bneg = float32_chs(b->f[i]);
            int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
            int le = le_rel != float_relation_greater;
            int ge = ge_rel != float_relation_less;

            r->u32[i] = ((!le) << 31) | ((!ge) << 30);
            all_in |= (!le | !ge);
        }
    }
    if (record) {
        env->crf[6] = (all_in == 0) << 1;
    }
}

void helper_vcmpbfp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    vcmpbfp_internal(env, r, a, b, 0);
}

void helper_vcmpbfp_dot(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                        ppc_avr_t *b)
{
    vcmpbfp_internal(env, r, a, b, 1);
}

#define VCT(suffix, satcvt, element)                                    \
    void helper_vct##suffix(CPUPPCState *env, ppc_avr_t *r,             \
                            ppc_avr_t *b, uint32_t uim)                 \
    {                                                                   \
        int i;                                                          \
        int sat = 0;                                                    \
        float_status s = env->vec_status;                               \
                                                                        \
        set_float_rounding_mode(float_round_to_zero, &s);               \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
            if (float32_is_any_nan(b->f[i])) {                          \
                r->element[i] = 0;                                      \
            } else {                                                    \
                float64 t = float32_to_float64(b->f[i], &s);            \
                int64_t j;                                              \
                                                                        \
                t = float64_scalbn(t, uim, &s);                         \
                j = float64_to_int64(t, &s);                            \
                r->element[i] = satcvt(j, &sat);                        \
            }                                                           \
        }                                                               \
        if (sat) {                                                      \
            env->vscr |= (1 << VSCR_SAT);                               \
        }                                                               \
    }
VCT(uxs, cvtsduw, u32)
VCT(sxs, cvtsdsw, s32)
#undef VCT

void helper_vmhaddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                      ppc_avr_t *b, ppc_avr_t *c)
{
    int sat = 0;
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
        int32_t prod = a->s16[i] * b->s16[i];
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);

        r->s16[i] = cvtswsh(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vmhraddshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                       ppc_avr_t *b, ppc_avr_t *c)
{
    int sat = 0;
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
        int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
        r->s16[i] = cvtswsh(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

#define VMINMAX_DO(name, compare, element)                              \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            if (a->element[i] compare b->element[i]) {                  \
                r->element[i] = b->element[i];                          \
            } else {                                                    \
                r->element[i] = a->element[i];                          \
            }                                                           \
        }                                                               \
    }
#define VMINMAX(suffix, element)                \
    VMINMAX_DO(min##suffix, >, element)         \
    VMINMAX_DO(max##suffix, <, element)
VMINMAX(sb, s8)
VMINMAX(sh, s16)
VMINMAX(sw, s32)
VMINMAX(sd, s64)
VMINMAX(ub, u8)
VMINMAX(uh, u16)
VMINMAX(uw, u32)
VMINMAX(ud, u64)
#undef VMINMAX_DO
#undef VMINMAX

void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
        int32_t prod = a->s16[i] * b->s16[i];
        r->s16[i] = (int16_t) (prod + c->s16[i]);
    }
}

#define VMRG_DO(name, element, highp)                                   \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
    {                                                                   \
        ppc_avr_t result;                                               \
        int i;                                                          \
        size_t n_elems = ARRAY_SIZE(r->element);                        \
                                                                        \
        for (i = 0; i < n_elems / 2; i++) {                             \
            if (highp) {                                                \
                result.element[i*2+HI_IDX] = a->element[i];             \
                result.element[i*2+LO_IDX] = b->element[i];             \
            } else {                                                    \
                result.element[n_elems - i * 2 - (1 + HI_IDX)] =        \
                    b->element[n_elems - i - 1];                        \
                result.element[n_elems - i * 2 - (1 + LO_IDX)] =        \
                    a->element[n_elems - i - 1];                        \
            }                                                           \
        }                                                               \
        *r = result;                                                    \
    }
#if defined(HOST_WORDS_BIGENDIAN)
#define MRGHI 0
#define MRGLO 1
#else
#define MRGHI 1
#define MRGLO 0
#endif
#define VMRG(suffix, element)                   \
    VMRG_DO(mrgl##suffix, element, MRGHI)       \
    VMRG_DO(mrgh##suffix, element, MRGLO)
VMRG(b, u8)
VMRG(h, u16)
VMRG(w, u32)
#undef VMRG_DO
#undef VMRG
#undef MRGHI
#undef MRGLO

void helper_vmsummbm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    int32_t prod[16];
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
        prod[i] = (int32_t)a->s8[i] * b->u8[i];
    }

    VECTOR_FOR_INORDER_I(i, s32) {
        r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
            prod[4 * i + 2] + prod[4 * i + 3];
    }
}

void helper_vmsumshm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    int32_t prod[8];
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
        prod[i] = a->s16[i] * b->s16[i];
    }

    VECTOR_FOR_INORDER_I(i, s32) {
        r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
    }
}

void helper_vmsumshs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    int32_t prod[8];
    int i;
    int sat = 0;

    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
        prod[i] = (int32_t)a->s16[i] * b->s16[i];
    }

    VECTOR_FOR_INORDER_I(i, s32) {
        int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];

        r->u32[i] = cvtsdsw(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vmsumubm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    uint16_t prod[16];
    int i;

    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
        prod[i] = a->u8[i] * b->u8[i];
    }

    VECTOR_FOR_INORDER_I(i, u32) {
        r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
            prod[4 * i + 2] + prod[4 * i + 3];
    }
}

void helper_vmsumuhm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    uint32_t prod[8];
    int i;

    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
        prod[i] = a->u16[i] * b->u16[i];
    }

    VECTOR_FOR_INORDER_I(i, u32) {
        r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
    }
}

void helper_vmsumuhs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a,
                     ppc_avr_t *b, ppc_avr_t *c)
{
    uint32_t prod[8];
    int i;
    int sat = 0;

    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
        prod[i] = a->u16[i] * b->u16[i];
    }

    VECTOR_FOR_INORDER_I(i, s32) {
        uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];

        r->u32[i] = cvtuduw(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

#define VMUL_DO(name, mul_element, prod_element, cast, evenp)           \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)       \
    {                                                                   \
        int i;                                                          \
                                                                        \
        VECTOR_FOR_INORDER_I(i, prod_element) {                         \
            if (evenp) {                                                \
                r->prod_element[i] =                                    \
                    (cast)a->mul_element[i * 2 + HI_IDX] *              \
                    (cast)b->mul_element[i * 2 + HI_IDX];               \
            } else {                                                    \
                r->prod_element[i] =                                    \
                    (cast)a->mul_element[i * 2 + LO_IDX] *              \
                    (cast)b->mul_element[i * 2 + LO_IDX];               \
            }                                                           \
        }                                                               \
    }
#define VMUL(suffix, mul_element, prod_element, cast)            \
    VMUL_DO(mule##suffix, mul_element, prod_element, cast, 1)    \
    VMUL_DO(mulo##suffix, mul_element, prod_element, cast, 0)
VMUL(sb, s8, s16, int16_t)
VMUL(sh, s16, s32, int32_t)
VMUL(sw, s32, s64, int64_t)
VMUL(ub, u8, u16, uint16_t)
VMUL(uh, u16, u32, uint32_t)
VMUL(uw, u32, u64, uint64_t)
#undef VMUL_DO
#undef VMUL

void helper_vperm(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
                  ppc_avr_t *c)
{
    ppc_avr_t result;
    int i;

    VECTOR_FOR_INORDER_I(i, u8) {
        int s = c->u8[i] & 0x1f;
#if defined(HOST_WORDS_BIGENDIAN)
        int index = s & 0xf;
#else
        int index = 15 - (s & 0xf);
#endif

        if (s & 0x10) {
            result.u8[i] = b->u8[index];
        } else {
            result.u8[i] = a->u8[index];
        }
    }
    *r = result;
}

#if defined(HOST_WORDS_BIGENDIAN)
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[(i)])
#define VBPERMQ_DW(index) (((index) & 0x40) != 0)
#else
#define VBPERMQ_INDEX(avr, i) ((avr)->u8[15-(i)])
#define VBPERMQ_DW(index) (((index) & 0x40) == 0)
#endif

void helper_vbpermq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;
    uint64_t perm = 0;

    VECTOR_FOR_INORDER_I(i, u8) {
        int index = VBPERMQ_INDEX(b, i);

        if (index < 128) {
            uint64_t mask = (1ull << (63-(index & 0x3F)));
            if (a->u64[VBPERMQ_DW(index)] & mask) {
                perm |= (0x8000 >> i);
            }
        }
    }

    r->u64[HI_IDX] = perm;
    r->u64[LO_IDX] = 0;
}

#undef VBPERMQ_INDEX
#undef VBPERMQ_DW

static const uint64_t VGBBD_MASKS[256] = {
    0x0000000000000000ull, /* 00 */
    0x0000000000000080ull, /* 01 */
    0x0000000000008000ull, /* 02 */
    0x0000000000008080ull, /* 03 */
    0x0000000000800000ull, /* 04 */
    0x0000000000800080ull, /* 05 */
    0x0000000000808000ull, /* 06 */
    0x0000000000808080ull, /* 07 */
    0x0000000080000000ull, /* 08 */
    0x0000000080000080ull, /* 09 */
    0x0000000080008000ull, /* 0A */
    0x0000000080008080ull, /* 0B */
    0x0000000080800000ull, /* 0C */
    0x0000000080800080ull, /* 0D */
    0x0000000080808000ull, /* 0E */
    0x0000000080808080ull, /* 0F */
    0x0000008000000000ull, /* 10 */
    0x0000008000000080ull, /* 11 */
    0x0000008000008000ull, /* 12 */
    0x0000008000008080ull, /* 13 */
    0x0000008000800000ull, /* 14 */
    0x0000008000800080ull, /* 15 */
    0x0000008000808000ull, /* 16 */
    0x0000008000808080ull, /* 17 */
    0x0000008080000000ull, /* 18 */
    0x0000008080000080ull, /* 19 */
    0x0000008080008000ull, /* 1A */
    0x0000008080008080ull, /* 1B */
    0x0000008080800000ull, /* 1C */
    0x0000008080800080ull, /* 1D */
    0x0000008080808000ull, /* 1E */
    0x0000008080808080ull, /* 1F */
    0x0000800000000000ull, /* 20 */
    0x0000800000000080ull, /* 21 */
    0x0000800000008000ull, /* 22 */
    0x0000800000008080ull, /* 23 */
    0x0000800000800000ull, /* 24 */
    0x0000800000800080ull, /* 25 */
    0x0000800000808000ull, /* 26 */
    0x0000800000808080ull, /* 27 */
    0x0000800080000000ull, /* 28 */
    0x0000800080000080ull, /* 29 */
    0x0000800080008000ull, /* 2A */
    0x0000800080008080ull, /* 2B */
    0x0000800080800000ull, /* 2C */
    0x0000800080800080ull, /* 2D */
    0x0000800080808000ull, /* 2E */
    0x0000800080808080ull, /* 2F */
    0x0000808000000000ull, /* 30 */
    0x0000808000000080ull, /* 31 */
    0x0000808000008000ull, /* 32 */
    0x0000808000008080ull, /* 33 */
    0x0000808000800000ull, /* 34 */
    0x0000808000800080ull, /* 35 */
    0x0000808000808000ull, /* 36 */
    0x0000808000808080ull, /* 37 */
    0x0000808080000000ull, /* 38 */
    0x0000808080000080ull, /* 39 */
    0x0000808080008000ull, /* 3A */
    0x0000808080008080ull, /* 3B */
    0x0000808080800000ull, /* 3C */
    0x0000808080800080ull, /* 3D */
    0x0000808080808000ull, /* 3E */
    0x0000808080808080ull, /* 3F */
    0x0080000000000000ull, /* 40 */
    0x0080000000000080ull, /* 41 */
    0x0080000000008000ull, /* 42 */
    0x0080000000008080ull, /* 43 */
    0x0080000000800000ull, /* 44 */
    0x0080000000800080ull, /* 45 */
    0x0080000000808000ull, /* 46 */
    0x0080000000808080ull, /* 47 */
    0x0080000080000000ull, /* 48 */
    0x0080000080000080ull, /* 49 */
    0x0080000080008000ull, /* 4A */
    0x0080000080008080ull, /* 4B */
    0x0080000080800000ull, /* 4C */
    0x0080000080800080ull, /* 4D */
    0x0080000080808000ull, /* 4E */
    0x0080000080808080ull, /* 4F */
    0x0080008000000000ull, /* 50 */
    0x0080008000000080ull, /* 51 */
    0x0080008000008000ull, /* 52 */
    0x0080008000008080ull, /* 53 */
    0x0080008000800000ull, /* 54 */
    0x0080008000800080ull, /* 55 */
    0x0080008000808000ull, /* 56 */
    0x0080008000808080ull, /* 57 */
    0x0080008080000000ull, /* 58 */
    0x0080008080000080ull, /* 59 */
    0x0080008080008000ull, /* 5A */
    0x0080008080008080ull, /* 5B */
    0x0080008080800000ull, /* 5C */
    0x0080008080800080ull, /* 5D */
    0x0080008080808000ull, /* 5E */
    0x0080008080808080ull, /* 5F */
    0x0080800000000000ull, /* 60 */
    0x0080800000000080ull, /* 61 */
    0x0080800000008000ull, /* 62 */
    0x0080800000008080ull, /* 63 */
    0x0080800000800000ull, /* 64 */
    0x0080800000800080ull, /* 65 */
    0x0080800000808000ull, /* 66 */
    0x0080800000808080ull, /* 67 */
    0x0080800080000000ull, /* 68 */
    0x0080800080000080ull, /* 69 */
    0x0080800080008000ull, /* 6A */
    0x0080800080008080ull, /* 6B */
    0x0080800080800000ull, /* 6C */
    0x0080800080800080ull, /* 6D */
    0x0080800080808000ull, /* 6E */
    0x0080800080808080ull, /* 6F */
    0x0080808000000000ull, /* 70 */
    0x0080808000000080ull, /* 71 */
    0x0080808000008000ull, /* 72 */
    0x0080808000008080ull, /* 73 */
    0x0080808000800000ull, /* 74 */
    0x0080808000800080ull, /* 75 */
    0x0080808000808000ull, /* 76 */
    0x0080808000808080ull, /* 77 */
    0x0080808080000000ull, /* 78 */
    0x0080808080000080ull, /* 79 */
    0x0080808080008000ull, /* 7A */
    0x0080808080008080ull, /* 7B */
    0x0080808080800000ull, /* 7C */
    0x0080808080800080ull, /* 7D */
    0x0080808080808000ull, /* 7E */
    0x0080808080808080ull, /* 7F */
    0x8000000000000000ull, /* 80 */
    0x8000000000000080ull, /* 81 */
    0x8000000000008000ull, /* 82 */
    0x8000000000008080ull, /* 83 */
    0x8000000000800000ull, /* 84 */
    0x8000000000800080ull, /* 85 */
    0x8000000000808000ull, /* 86 */
    0x8000000000808080ull, /* 87 */
    0x8000000080000000ull, /* 88 */
    0x8000000080000080ull, /* 89 */
    0x8000000080008000ull, /* 8A */
    0x8000000080008080ull, /* 8B */
    0x8000000080800000ull, /* 8C */
    0x8000000080800080ull, /* 8D */
    0x8000000080808000ull, /* 8E */
    0x8000000080808080ull, /* 8F */
    0x8000008000000000ull, /* 90 */
    0x8000008000000080ull, /* 91 */
    0x8000008000008000ull, /* 92 */
    0x8000008000008080ull, /* 93 */
    0x8000008000800000ull, /* 94 */
    0x8000008000800080ull, /* 95 */
    0x8000008000808000ull, /* 96 */
    0x8000008000808080ull, /* 97 */
    0x8000008080000000ull, /* 98 */
    0x8000008080000080ull, /* 99 */
    0x8000008080008000ull, /* 9A */
    0x8000008080008080ull, /* 9B */
    0x8000008080800000ull, /* 9C */
    0x8000008080800080ull, /* 9D */
    0x8000008080808000ull, /* 9E */
    0x8000008080808080ull, /* 9F */
    0x8000800000000000ull, /* A0 */
    0x8000800000000080ull, /* A1 */
    0x8000800000008000ull, /* A2 */
    0x8000800000008080ull, /* A3 */
    0x8000800000800000ull, /* A4 */
    0x8000800000800080ull, /* A5 */
    0x8000800000808000ull, /* A6 */
    0x8000800000808080ull, /* A7 */
    0x8000800080000000ull, /* A8 */
    0x8000800080000080ull, /* A9 */
    0x8000800080008000ull, /* AA */
    0x8000800080008080ull, /* AB */
    0x8000800080800000ull, /* AC */
    0x8000800080800080ull, /* AD */
    0x8000800080808000ull, /* AE */
    0x8000800080808080ull, /* AF */
    0x8000808000000000ull, /* B0 */
    0x8000808000000080ull, /* B1 */
    0x8000808000008000ull, /* B2 */
    0x8000808000008080ull, /* B3 */
    0x8000808000800000ull, /* B4 */
    0x8000808000800080ull, /* B5 */
    0x8000808000808000ull, /* B6 */
    0x8000808000808080ull, /* B7 */
    0x8000808080000000ull, /* B8 */
    0x8000808080000080ull, /* B9 */
    0x8000808080008000ull, /* BA */
    0x8000808080008080ull, /* BB */
    0x8000808080800000ull, /* BC */
    0x8000808080800080ull, /* BD */
    0x8000808080808000ull, /* BE */
    0x8000808080808080ull, /* BF */
    0x8080000000000000ull, /* C0 */
    0x8080000000000080ull, /* C1 */
    0x8080000000008000ull, /* C2 */
    0x8080000000008080ull, /* C3 */
    0x8080000000800000ull, /* C4 */
    0x8080000000800080ull, /* C5 */
    0x8080000000808000ull, /* C6 */
    0x8080000000808080ull, /* C7 */
    0x8080000080000000ull, /* C8 */
    0x8080000080000080ull, /* C9 */
    0x8080000080008000ull, /* CA */
    0x8080000080008080ull, /* CB */
    0x8080000080800000ull, /* CC */
    0x8080000080800080ull, /* CD */
    0x8080000080808000ull, /* CE */
    0x8080000080808080ull, /* CF */
    0x8080008000000000ull, /* D0 */
    0x8080008000000080ull, /* D1 */
    0x8080008000008000ull, /* D2 */
    0x8080008000008080ull, /* D3 */
    0x8080008000800000ull, /* D4 */
    0x8080008000800080ull, /* D5 */
    0x8080008000808000ull, /* D6 */
    0x8080008000808080ull, /* D7 */
    0x8080008080000000ull, /* D8 */
    0x8080008080000080ull, /* D9 */
    0x8080008080008000ull, /* DA */
    0x8080008080008080ull, /* DB */
    0x8080008080800000ull, /* DC */
    0x8080008080800080ull, /* DD */
    0x8080008080808000ull, /* DE */
    0x8080008080808080ull, /* DF */
    0x8080800000000000ull, /* E0 */
    0x8080800000000080ull, /* E1 */
    0x8080800000008000ull, /* E2 */
    0x8080800000008080ull, /* E3 */
    0x8080800000800000ull, /* E4 */
    0x8080800000800080ull, /* E5 */
    0x8080800000808000ull, /* E6 */
    0x8080800000808080ull, /* E7 */
    0x8080800080000000ull, /* E8 */
    0x8080800080000080ull, /* E9 */
    0x8080800080008000ull, /* EA */
    0x8080800080008080ull, /* EB */
    0x8080800080800000ull, /* EC */
    0x8080800080800080ull, /* ED */
    0x8080800080808000ull, /* EE */
    0x8080800080808080ull, /* EF */
    0x8080808000000000ull, /* F0 */
    0x8080808000000080ull, /* F1 */
    0x8080808000008000ull, /* F2 */
    0x8080808000008080ull, /* F3 */
    0x8080808000800000ull, /* F4 */
    0x8080808000800080ull, /* F5 */
    0x8080808000808000ull, /* F6 */
    0x8080808000808080ull, /* F7 */
    0x8080808080000000ull, /* F8 */
    0x8080808080000080ull, /* F9 */
    0x8080808080008000ull, /* FA */
    0x8080808080008080ull, /* FB */
    0x8080808080800000ull, /* FC */
    0x8080808080800080ull, /* FD */
    0x8080808080808000ull, /* FE */
    0x8080808080808080ull, /* FF */
};

void helper_vgbbd(ppc_avr_t *r, ppc_avr_t *b)
{
    int i;
    uint64_t t[2] = { 0, 0 };

    VECTOR_FOR_INORDER_I(i, u8) {
#if defined(HOST_WORDS_BIGENDIAN)
        t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (i & 7);
#else
        t[i>>3] |= VGBBD_MASKS[b->u8[i]] >> (7-(i & 7));
#endif
    }

    r->u64[0] = t[0];
    r->u64[1] = t[1];
}

#define PMSUM(name, srcfld, trgfld, trgtyp)                   \
void helper_##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
{                                                             \
    int i, j;                                                 \
    trgtyp prod[sizeof(ppc_avr_t)/sizeof(a->srcfld[0])];      \
                                                              \
    VECTOR_FOR_INORDER_I(i, srcfld) {                         \
        prod[i] = 0;                                          \
        for (j = 0; j < sizeof(a->srcfld[0]) * 8; j++) {      \
            if (a->srcfld[i] & (1ull<<j)) {                   \
                prod[i] ^= ((trgtyp)b->srcfld[i] << j);       \
            }                                                 \
        }                                                     \
    }                                                         \
                                                              \
    VECTOR_FOR_INORDER_I(i, trgfld) {                         \
        r->trgfld[i] = prod[2*i] ^ prod[2*i+1];               \
    }                                                         \
}

PMSUM(vpmsumb, u8, u16, uint16_t)
PMSUM(vpmsumh, u16, u32, uint32_t)
PMSUM(vpmsumw, u32, u64, uint64_t)

void helper_vpmsumd(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{

#ifdef CONFIG_INT128
    int i, j;
    __uint128_t prod[2];

    VECTOR_FOR_INORDER_I(i, u64) {
        prod[i] = 0;
        for (j = 0; j < 64; j++) {
            if (a->u64[i] & (1ull<<j)) {
                prod[i] ^= (((__uint128_t)b->u64[i]) << j);
            }
        }
    }

    r->u128 = prod[0] ^ prod[1];

#else
    int i, j;
    ppc_avr_t prod[2];

    VECTOR_FOR_INORDER_I(i, u64) {
        prod[i].u64[LO_IDX] = prod[i].u64[HI_IDX] = 0;
        for (j = 0; j < 64; j++) {
            if (a->u64[i] & (1ull<<j)) {
                ppc_avr_t bshift;
                if (j == 0) {
                    bshift.u64[HI_IDX] = 0;
                    bshift.u64[LO_IDX] = b->u64[i];
                } else {
                    bshift.u64[HI_IDX] = b->u64[i] >> (64-j);
                    bshift.u64[LO_IDX] = b->u64[i] << j;
                }
                prod[i].u64[LO_IDX] ^= bshift.u64[LO_IDX];
                prod[i].u64[HI_IDX] ^= bshift.u64[HI_IDX];
            }
        }
    }

    r->u64[LO_IDX] = prod[0].u64[LO_IDX] ^ prod[1].u64[LO_IDX];
    r->u64[HI_IDX] = prod[0].u64[HI_IDX] ^ prod[1].u64[HI_IDX];
#endif
}


#if defined(HOST_WORDS_BIGENDIAN)
#define PKBIG 1
#else
#define PKBIG 0
#endif
void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i, j;
    ppc_avr_t result;
#if defined(HOST_WORDS_BIGENDIAN)
    const ppc_avr_t *x[2] = { a, b };
#else
    const ppc_avr_t *x[2] = { b, a };
#endif

    VECTOR_FOR_INORDER_I(i, u64) {
        VECTOR_FOR_INORDER_I(j, u32) {
            uint32_t e = x[i]->u32[j];

            result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
                                 ((e >> 6) & 0x3e0) |
                                 ((e >> 3) & 0x1f));
        }
    }
    *r = result;
}

#define VPK(suffix, from, to, cvt, dosat)                               \
    void helper_vpk##suffix(CPUPPCState *env, ppc_avr_t *r,             \
                            ppc_avr_t *a, ppc_avr_t *b)                 \
    {                                                                   \
        int i;                                                          \
        int sat = 0;                                                    \
        ppc_avr_t result;                                               \
        ppc_avr_t *a0 = PKBIG ? a : b;                                  \
        ppc_avr_t *a1 = PKBIG ? b : a;                                  \
                                                                        \
        VECTOR_FOR_INORDER_I(i, from) {                                 \
            result.to[i] = cvt(a0->from[i], &sat);                      \
            result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \
        }                                                               \
        *r = result;                                                    \
        if (dosat && sat) {                                             \
            env->vscr |= (1 << VSCR_SAT);                               \
        }                                                               \
    }
#define I(x, y) (x)
VPK(shss, s16, s8, cvtshsb, 1)
VPK(shus, s16, u8, cvtshub, 1)
VPK(swss, s32, s16, cvtswsh, 1)
VPK(swus, s32, u16, cvtswuh, 1)
VPK(sdss, s64, s32, cvtsdsw, 1)
VPK(sdus, s64, u32, cvtsduw, 1)
VPK(uhus, u16, u8, cvtuhub, 1)
VPK(uwus, u32, u16, cvtuwuh, 1)
VPK(udus, u64, u32, cvtuduw, 1)
VPK(uhum, u16, u8, I, 0)
VPK(uwum, u32, u16, I, 0)
VPK(udum, u64, u32, I, 0)
#undef I
#undef VPK
#undef PKBIG

void helper_vrefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
        r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
    }
}

#define VRFI(suffix, rounding)                                  \
    void helper_vrfi##suffix(CPUPPCState *env, ppc_avr_t *r,    \
                             ppc_avr_t *b)                      \
    {                                                           \
        int i;                                                  \
        float_status s = env->vec_status;                       \
                                                                \
        set_float_rounding_mode(rounding, &s);                  \
        for (i = 0; i < ARRAY_SIZE(r->f); i++) {                \
            r->f[i] = float32_round_to_int (b->f[i], &s);       \
        }                                                       \
    }
VRFI(n, float_round_nearest_even)
VRFI(m, float_round_down)
VRFI(p, float_round_up)
VRFI(z, float_round_to_zero)
#undef VRFI

#define VROTATE(suffix, element, mask)                                  \
    void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            unsigned int shift = b->element[i] & mask;                  \
            r->element[i] = (a->element[i] << shift) |                  \
                (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
        }                                                               \
    }
VROTATE(b, u8, 0x7)
VROTATE(h, u16, 0xF)
VROTATE(w, u32, 0x1F)
VROTATE(d, u64, 0x3F)
#undef VROTATE

void helper_vrsqrtefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
        float32 t = float32_sqrt(b->f[i], &env->vec_status);

        r->f[i] = float32_div(float32_one, t, &env->vec_status);
    }
}

void helper_vsel(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
                 ppc_avr_t *c)
{
    r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
    r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
}

void helper_vexptefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
        r->f[i] = float32_exp2(b->f[i], &env->vec_status);
    }
}

void helper_vlogefp(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->f); i++) {
        r->f[i] = float32_log2(b->f[i], &env->vec_status);
    }
}

/* The specification says that the results are undefined if all of the
 * shift counts are not identical.  We check to make sure that they are
 * to conform to what real hardware appears to do.  */
#define VSHIFT(suffix, leftp)                                           \
    void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \
    {                                                                   \
        int shift = b->u8[LO_IDX*15] & 0x7;                             \
        int doit = 1;                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \
            doit = doit && ((b->u8[i] & 0x7) == shift);                 \
        }                                                               \
        if (doit) {                                                     \
            if (shift == 0) {                                           \
                *r = *a;                                                \
            } else if (leftp) {                                         \
                uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \
                                                                        \
                r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \
                r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \
            } else {                                                    \
                uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \
                                                                        \
                r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \
                r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \
            }                                                           \
        }                                                               \
    }
VSHIFT(l, 1)
VSHIFT(r, 0)
#undef VSHIFT

#define VSL(suffix, element, mask)                                      \
    void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            unsigned int shift = b->element[i] & mask;                  \
                                                                        \
            r->element[i] = a->element[i] << shift;                     \
        }                                                               \
    }
VSL(b, u8, 0x7)
VSL(h, u16, 0x0F)
VSL(w, u32, 0x1F)
VSL(d, u64, 0x3F)
#undef VSL

void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
{
    int sh = shift & 0xf;
    int i;
    ppc_avr_t result;

#if defined(HOST_WORDS_BIGENDIAN)
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
        int index = sh + i;
        if (index > 0xf) {
            result.u8[i] = b->u8[index - 0x10];
        } else {
            result.u8[i] = a->u8[index];
        }
    }
#else
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
        int index = (16 - sh) + i;
        if (index > 0xf) {
            result.u8[i] = a->u8[index - 0x10];
        } else {
            result.u8[i] = b->u8[index];
        }
    }
#endif
    *r = result;
}

void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;

#if defined(HOST_WORDS_BIGENDIAN)
    memmove(&r->u8[0], &a->u8[sh], 16 - sh);
    memset(&r->u8[16-sh], 0, sh);
#else
    memmove(&r->u8[sh], &a->u8[0], 16 - sh);
    memset(&r->u8[0], 0, sh);
#endif
}

/* Experimental testing shows that hardware masks the immediate.  */
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
#if defined(HOST_WORDS_BIGENDIAN)
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
#else
#define SPLAT_ELEMENT(element)                                  \
    (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
#endif
#define VSPLT(suffix, element)                                          \
    void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
    {                                                                   \
        uint32_t s = b->element[SPLAT_ELEMENT(element)];                \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            r->element[i] = s;                                          \
        }                                                               \
    }
VSPLT(b, u8)
VSPLT(h, u16)
VSPLT(w, u32)
#undef VSPLT
#undef SPLAT_ELEMENT
#undef _SPLAT_MASKED

#define VSPLTI(suffix, element, splat_type)                     \
    void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat)   \
    {                                                           \
        splat_type x = (int8_t)(splat << 3) >> 3;               \
        int i;                                                  \
                                                                \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {          \
            r->element[i] = x;                                  \
        }                                                       \
    }
VSPLTI(b, s8, int8_t)
VSPLTI(h, s16, int16_t)
VSPLTI(w, s32, int32_t)
#undef VSPLTI

#define VSR(suffix, element, mask)                                      \
    void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
    {                                                                   \
        int i;                                                          \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
            unsigned int shift = b->element[i] & mask;                  \
            r->element[i] = a->element[i] >> shift;                     \
        }                                                               \
    }
VSR(ab, s8, 0x7)
VSR(ah, s16, 0xF)
VSR(aw, s32, 0x1F)
VSR(ad, s64, 0x3F)
VSR(b, u8, 0x7)
VSR(h, u16, 0xF)
VSR(w, u32, 0x1F)
VSR(d, u64, 0x3F)
#undef VSR

void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;

#if defined(HOST_WORDS_BIGENDIAN)
    memmove(&r->u8[sh], &a->u8[0], 16 - sh);
    memset(&r->u8[0], 0, sh);
#else
    memmove(&r->u8[0], &a->u8[sh], 16 - sh);
    memset(&r->u8[16 - sh], 0, sh);
#endif
}

void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
        r->u32[i] = a->u32[i] >= b->u32[i];
    }
}

void helper_vsumsws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int64_t t;
    int i, upper;
    ppc_avr_t result;
    int sat = 0;

#if defined(HOST_WORDS_BIGENDIAN)
    upper = ARRAY_SIZE(r->s32)-1;
#else
    upper = 0;
#endif
    t = (int64_t)b->s32[upper];
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
        t += a->s32[i];
        result.s32[i] = 0;
    }
    result.s32[upper] = cvtsdsw(t, &sat);
    *r = result;

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vsum2sws(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i, j, upper;
    ppc_avr_t result;
    int sat = 0;

#if defined(HOST_WORDS_BIGENDIAN)
    upper = 1;
#else
    upper = 0;
#endif
    for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
        int64_t t = (int64_t)b->s32[upper + i * 2];

        result.u64[i] = 0;
        for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
            t += a->s32[2 * i + j];
        }
        result.s32[upper + i * 2] = cvtsdsw(t, &sat);
    }

    *r = result;
    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vsum4sbs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i, j;
    int sat = 0;

    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
        int64_t t = (int64_t)b->s32[i];

        for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
            t += a->s8[4 * i + j];
        }
        r->s32[i] = cvtsdsw(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vsum4shs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int sat = 0;
    int i;

    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
        int64_t t = (int64_t)b->s32[i];

        t += a->s16[2 * i] + a->s16[2 * i + 1];
        r->s32[i] = cvtsdsw(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

void helper_vsum4ubs(CPUPPCState *env, ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i, j;
    int sat = 0;

    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
        uint64_t t = (uint64_t)b->u32[i];

        for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
            t += a->u8[4 * i + j];
        }
        r->u32[i] = cvtuduw(t, &sat);
    }

    if (sat) {
        env->vscr |= (1 << VSCR_SAT);
    }
}

#if defined(HOST_WORDS_BIGENDIAN)
#define UPKHI 1
#define UPKLO 0
#else
#define UPKHI 0
#define UPKLO 1
#endif
#define VUPKPX(suffix, hi)                                              \
    void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \
    {                                                                   \
        int i;                                                          \
        ppc_avr_t result;                                               \
                                                                        \
        for (i = 0; i < ARRAY_SIZE(r->u32); i++) {                      \
            uint16_t e = b->u16[hi ? i : i+4];                          \
            uint8_t a = (e >> 15) ? 0xff : 0;                           \
            uint8_t r = (e >> 10) & 0x1f;                               \
            uint8_t g = (e >> 5) & 0x1f;                                \
            uint8_t b = e & 0x1f;                                       \
                                                                        \
            result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
        }                                                               \
        *r = result;                                                    \
    }
VUPKPX(lpx, UPKLO)
VUPKPX(hpx, UPKHI)
#undef VUPKPX

#define VUPK(suffix, unpacked, packee, hi)                              \
    void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b)                \
    {                                                                   \
        int i;                                                          \
        ppc_avr_t result;                                               \
                                                                        \
        if (hi) {                                                       \
            for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
                result.unpacked[i] = b->packee[i];                      \
            }                                                           \
        } else {                                                        \
            for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
                 i++) {                                                 \
                result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
            }                                                           \
        }                                                               \
        *r = result;                                                    \
    }
VUPK(hsb, s16, s8, UPKHI)
VUPK(hsh, s32, s16, UPKHI)
VUPK(hsw, s64, s32, UPKHI)
VUPK(lsb, s16, s8, UPKLO)
VUPK(lsh, s32, s16, UPKLO)
VUPK(lsw, s64, s32, UPKLO)
#undef VUPK
#undef UPKHI
#undef UPKLO

#define VGENERIC_DO(name, element)                                      \
    void helper_v##name(ppc_avr_t *r, ppc_avr_t *b)                     \
    {                                                                   \
        int i;                                                          \
                                                                        \
        VECTOR_FOR_INORDER_I(i, element) {                              \
            r->element[i] = name(b->element[i]);                        \
        }                                                               \
    }

#define clzb(v) ((v) ? clz32((uint32_t)(v) << 24) : 8)
#define clzh(v) ((v) ? clz32((uint32_t)(v) << 16) : 16)
#define clzw(v) clz32((v))
#define clzd(v) clz64((v))

VGENERIC_DO(clzb, u8)
VGENERIC_DO(clzh, u16)
VGENERIC_DO(clzw, u32)
VGENERIC_DO(clzd, u64)

#undef clzb
#undef clzh
#undef clzw
#undef clzd

#define popcntb(v) ctpop8(v)
#define popcnth(v) ctpop16(v)
#define popcntw(v) ctpop32(v)
#define popcntd(v) ctpop64(v)

VGENERIC_DO(popcntb, u8)
VGENERIC_DO(popcnth, u16)
VGENERIC_DO(popcntw, u32)
VGENERIC_DO(popcntd, u64)

#undef popcntb
#undef popcnth
#undef popcntw
#undef popcntd

#undef VGENERIC_DO

#if defined(HOST_WORDS_BIGENDIAN)
#define QW_ONE { .u64 = { 0, 1 } }
#else
#define QW_ONE { .u64 = { 1, 0 } }
#endif

#ifndef CONFIG_INT128

static inline void avr_qw_not(ppc_avr_t *t, ppc_avr_t a)
{
    t->u64[0] = ~a.u64[0];
    t->u64[1] = ~a.u64[1];
}

static int avr_qw_cmpu(ppc_avr_t a, ppc_avr_t b)
{
    if (a.u64[HI_IDX] < b.u64[HI_IDX]) {
        return -1;
    } else if (a.u64[HI_IDX] > b.u64[HI_IDX]) {
        return 1;
    } else if (a.u64[LO_IDX] < b.u64[LO_IDX]) {
        return -1;
    } else if (a.u64[LO_IDX] > b.u64[LO_IDX]) {
        return 1;
    } else {
        return 0;
    }
}

static void avr_qw_add(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
{
    t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
    t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
                     (~a.u64[LO_IDX] < b.u64[LO_IDX]);
}

static int avr_qw_addc(ppc_avr_t *t, ppc_avr_t a, ppc_avr_t b)
{
    ppc_avr_t not_a;
    t->u64[LO_IDX] = a.u64[LO_IDX] + b.u64[LO_IDX];
    t->u64[HI_IDX] = a.u64[HI_IDX] + b.u64[HI_IDX] +
                     (~a.u64[LO_IDX] < b.u64[LO_IDX]);
    avr_qw_not(&not_a, a);
    return avr_qw_cmpu(not_a, b) < 0;
}

#endif

void helper_vadduqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
#ifdef CONFIG_INT128
    r->u128 = a->u128 + b->u128;
#else
    avr_qw_add(r, *a, *b);
#endif
}

void helper_vaddeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
#ifdef CONFIG_INT128
    r->u128 = a->u128 + b->u128 + (c->u128 & 1);
#else

    if (c->u64[LO_IDX] & 1) {
        ppc_avr_t tmp;

        tmp.u64[HI_IDX] = 0;
        tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
        avr_qw_add(&tmp, *a, tmp);
        avr_qw_add(r, tmp, *b);
    } else {
        avr_qw_add(r, *a, *b);
    }
#endif
}

void helper_vaddcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
#ifdef CONFIG_INT128
    r->u128 = (~a->u128 < b->u128);
#else
    ppc_avr_t not_a;

    avr_qw_not(&not_a, *a);

    r->u64[HI_IDX] = 0;
    r->u64[LO_IDX] = (avr_qw_cmpu(not_a, *b) < 0);
#endif
}

void helper_vaddecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
#ifdef CONFIG_INT128
    int carry_out = (~a->u128 < b->u128);
    if (!carry_out && (c->u128 & 1)) {
        carry_out = ((a->u128 + b->u128 + 1) == 0) &&
                    ((a->u128 != 0) || (b->u128 != 0));
    }
    r->u128 = carry_out;
#else

    int carry_in = c->u64[LO_IDX] & 1;
    int carry_out = 0;
    ppc_avr_t tmp;

    carry_out = avr_qw_addc(&tmp, *a, *b);

    if (!carry_out && carry_in) {
        ppc_avr_t one = QW_ONE;
        carry_out = avr_qw_addc(&tmp, tmp, one);
    }
    r->u64[HI_IDX] = 0;
    r->u64[LO_IDX] = carry_out;
#endif
}

void helper_vsubuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
#ifdef CONFIG_INT128
    r->u128 = a->u128 - b->u128;
#else
    ppc_avr_t tmp;
    ppc_avr_t one = QW_ONE;

    avr_qw_not(&tmp, *b);
    avr_qw_add(&tmp, *a, tmp);
    avr_qw_add(r, tmp, one);
#endif
}

void helper_vsubeuqm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
#ifdef CONFIG_INT128
    r->u128 = a->u128 + ~b->u128 + (c->u128 & 1);
#else
    ppc_avr_t tmp, sum;

    avr_qw_not(&tmp, *b);
    avr_qw_add(&sum, *a, tmp);

    tmp.u64[HI_IDX] = 0;
    tmp.u64[LO_IDX] = c->u64[LO_IDX] & 1;
    avr_qw_add(r, sum, tmp);
#endif
}

void helper_vsubcuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
#ifdef CONFIG_INT128
    r->u128 = (~a->u128 < ~b->u128) ||
                 (a->u128 + ~b->u128 == (__uint128_t)-1);
#else
    int carry = (avr_qw_cmpu(*a, *b) > 0);
    if (!carry) {
        ppc_avr_t tmp;
        avr_qw_not(&tmp, *b);
        avr_qw_add(&tmp, *a, tmp);
        carry = ((tmp.s64[HI_IDX] == -1ull) && (tmp.s64[LO_IDX] == -1ull));
    }
    r->u64[HI_IDX] = 0;
    r->u64[LO_IDX] = carry;
#endif
}

void helper_vsubecuq(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
#ifdef CONFIG_INT128
    r->u128 =
        (~a->u128 < ~b->u128) ||
        ((c->u128 & 1) && (a->u128 + ~b->u128 == (__uint128_t)-1));
#else
    int carry_in = c->u64[LO_IDX] & 1;
    int carry_out = (avr_qw_cmpu(*a, *b) > 0);
    if (!carry_out && carry_in) {
        ppc_avr_t tmp;
        avr_qw_not(&tmp, *b);
        avr_qw_add(&tmp, *a, tmp);
        carry_out = ((tmp.u64[HI_IDX] == -1ull) && (tmp.u64[LO_IDX] == -1ull));
    }

    r->u64[HI_IDX] = 0;
    r->u64[LO_IDX] = carry_out;
#endif
}

#define BCD_PLUS_PREF_1 0xC
#define BCD_PLUS_PREF_2 0xF
#define BCD_PLUS_ALT_1  0xA
#define BCD_NEG_PREF    0xD
#define BCD_NEG_ALT     0xB
#define BCD_PLUS_ALT_2  0xE

#if defined(HOST_WORDS_BIGENDIAN)
#define BCD_DIG_BYTE(n) (15 - (n/2))
#else
#define BCD_DIG_BYTE(n) (n/2)
#endif

static int bcd_get_sgn(ppc_avr_t *bcd)
{
    switch (bcd->u8[BCD_DIG_BYTE(0)] & 0xF) {
    case BCD_PLUS_PREF_1:
    case BCD_PLUS_PREF_2:
    case BCD_PLUS_ALT_1:
    case BCD_PLUS_ALT_2:
    {
        return 1;
    }

    case BCD_NEG_PREF:
    case BCD_NEG_ALT:
    {
        return -1;
    }

    default:
    {
        return 0;
    }
    }
}

static int bcd_preferred_sgn(int sgn, int ps)
{
    if (sgn >= 0) {
        return (ps == 0) ? BCD_PLUS_PREF_1 : BCD_PLUS_PREF_2;
    } else {
        return BCD_NEG_PREF;
    }
}

static uint8_t bcd_get_digit(ppc_avr_t *bcd, int n, int *invalid)
{
    uint8_t result;
    if (n & 1) {
        result = bcd->u8[BCD_DIG_BYTE(n)] >> 4;
    } else {
       result = bcd->u8[BCD_DIG_BYTE(n)] & 0xF;
    }

    if (unlikely(result > 9)) {
        *invalid = true;
    }
    return result;
}

static void bcd_put_digit(ppc_avr_t *bcd, uint8_t digit, int n)
{
    if (n & 1) {
        bcd->u8[BCD_DIG_BYTE(n)] &= 0x0F;
        bcd->u8[BCD_DIG_BYTE(n)] |= (digit<<4);
    } else {
        bcd->u8[BCD_DIG_BYTE(n)] &= 0xF0;
        bcd->u8[BCD_DIG_BYTE(n)] |= digit;
    }
}

static int bcd_cmp_mag(ppc_avr_t *a, ppc_avr_t *b)
{
    int i;
    int invalid = 0;
    for (i = 31; i > 0; i--) {
        uint8_t dig_a = bcd_get_digit(a, i, &invalid);
        uint8_t dig_b = bcd_get_digit(b, i, &invalid);
        if (unlikely(invalid)) {
            return 0; /* doesn't matter */
        } else if (dig_a > dig_b) {
            return 1;
        } else if (dig_a < dig_b) {
            return -1;
        }
    }

    return 0;
}

static int bcd_add_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
                       int *overflow)
{
    int carry = 0;
    int i;
    int is_zero = 1;
    for (i = 1; i <= 31; i++) {
        uint8_t digit = bcd_get_digit(a, i, invalid) +
                        bcd_get_digit(b, i, invalid) + carry;
        is_zero &= (digit == 0);
        if (digit > 9) {
            carry = 1;
            digit -= 10;
        } else {
            carry = 0;
        }

        bcd_put_digit(t, digit, i);

        if (unlikely(*invalid)) {
            return -1;
        }
    }

    *overflow = carry;
    return is_zero;
}

static int bcd_sub_mag(ppc_avr_t *t, ppc_avr_t *a, ppc_avr_t *b, int *invalid,
                       int *overflow)
{
    int carry = 0;
    int i;
    int is_zero = 1;
    for (i = 1; i <= 31; i++) {
        uint8_t digit = bcd_get_digit(a, i, invalid) -
                        bcd_get_digit(b, i, invalid) + carry;
        is_zero &= (digit == 0);
        if (digit & 0x80) {
            carry = -1;
            digit += 10;
        } else {
            carry = 0;
        }

        bcd_put_digit(t, digit, i);

        if (unlikely(*invalid)) {
            return -1;
        }
    }

    *overflow = carry;
    return is_zero;
}

uint32_t helper_bcdadd(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
{

    int sgna = bcd_get_sgn(a);
    int sgnb = bcd_get_sgn(b);
    int invalid = (sgna == 0) || (sgnb == 0);
    int overflow = 0;
    int zero = 0;
    uint32_t cr = 0;
    ppc_avr_t result = { .u64 = { 0, 0 } };

    if (!invalid) {
        if (sgna == sgnb) {
            result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
            zero = bcd_add_mag(&result, a, b, &invalid, &overflow);
            cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
        } else if (bcd_cmp_mag(a, b) > 0) {
            result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgna, ps);
            zero = bcd_sub_mag(&result, a, b, &invalid, &overflow);
            cr = (sgna > 0) ? 1 << CRF_GT : 1 << CRF_LT;
        } else {
            result.u8[BCD_DIG_BYTE(0)] = bcd_preferred_sgn(sgnb, ps);
            zero = bcd_sub_mag(&result, b, a, &invalid, &overflow);
            cr = (sgnb > 0) ? 1 << CRF_GT : 1 << CRF_LT;
        }
    }

    if (unlikely(invalid)) {
        result.u64[HI_IDX] = result.u64[LO_IDX] = -1;
        cr = 1 << CRF_SO;
    } else if (overflow) {
        cr |= 1 << CRF_SO;
    } else if (zero) {
        cr = 1 << CRF_EQ;
    }

    *r = result;

    return cr;
}

uint32_t helper_bcdsub(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, uint32_t ps)
{
    ppc_avr_t bcopy = *b;
    int sgnb = bcd_get_sgn(b);
    if (sgnb < 0) {
        bcd_put_digit(&bcopy, BCD_PLUS_PREF_1, 0);
    } else if (sgnb > 0) {
        bcd_put_digit(&bcopy, BCD_NEG_PREF, 0);
    }
    /* else invalid ... defer to bcdadd code for proper handling */

    return helper_bcdadd(r, a, &bcopy, ps);
}

void helper_vsbox(ppc_avr_t *r, ppc_avr_t *a)
{
    int i;
    VECTOR_FOR_INORDER_I(i, u8) {
        r->u8[i] = AES_sbox[a->u8[i]];
    }
}

void helper_vcipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;

    VECTOR_FOR_INORDER_I(i, u32) {
        r->AVRW(i) = b->AVRW(i) ^
            (AES_Te0[a->AVRB(AES_shifts[4*i + 0])] ^
             AES_Te1[a->AVRB(AES_shifts[4*i + 1])] ^
             AES_Te2[a->AVRB(AES_shifts[4*i + 2])] ^
             AES_Te3[a->AVRB(AES_shifts[4*i + 3])]);
    }
}

void helper_vcipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;

    VECTOR_FOR_INORDER_I(i, u8) {
        r->AVRB(i) = b->AVRB(i) ^ (AES_sbox[a->AVRB(AES_shifts[i])]);
    }
}

void helper_vncipher(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    /* This differs from what is written in ISA V2.07.  The RTL is */
    /* incorrect and will be fixed in V2.07B.                      */
    int i;
    ppc_avr_t tmp;

    VECTOR_FOR_INORDER_I(i, u8) {
        tmp.AVRB(i) = b->AVRB(i) ^ AES_isbox[a->AVRB(AES_ishifts[i])];
    }

    VECTOR_FOR_INORDER_I(i, u32) {
        r->AVRW(i) =
            AES_imc[tmp.AVRB(4*i + 0)][0] ^
            AES_imc[tmp.AVRB(4*i + 1)][1] ^
            AES_imc[tmp.AVRB(4*i + 2)][2] ^
            AES_imc[tmp.AVRB(4*i + 3)][3];
    }
}

void helper_vncipherlast(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
{
    int i;

    VECTOR_FOR_INORDER_I(i, u8) {
        r->AVRB(i) = b->AVRB(i) ^ (AES_isbox[a->AVRB(AES_ishifts[i])]);
    }
}

#define ROTRu32(v, n) (((v) >> (n)) | ((v) << (32-n)))
#if defined(HOST_WORDS_BIGENDIAN)
#define EL_IDX(i) (i)
#else
#define EL_IDX(i) (3 - (i))
#endif

void helper_vshasigmaw(ppc_avr_t *r,  ppc_avr_t *a, uint32_t st_six)
{
    int st = (st_six & 0x10) != 0;
    int six = st_six & 0xF;
    int i;

    VECTOR_FOR_INORDER_I(i, u32) {
        if (st == 0) {
            if ((six & (0x8 >> i)) == 0) {
                r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 7) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 18) ^
                                    (a->u32[EL_IDX(i)] >> 3);
            } else { /* six.bit[i] == 1 */
                r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 17) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 19) ^
                                    (a->u32[EL_IDX(i)] >> 10);
            }
        } else { /* st == 1 */
            if ((six & (0x8 >> i)) == 0) {
                r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 2) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 13) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 22);
            } else { /* six.bit[i] == 1 */
                r->u32[EL_IDX(i)] = ROTRu32(a->u32[EL_IDX(i)], 6) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 11) ^
                                    ROTRu32(a->u32[EL_IDX(i)], 25);
            }
        }
    }
}

#undef ROTRu32
#undef EL_IDX

#define ROTRu64(v, n) (((v) >> (n)) | ((v) << (64-n)))
#if defined(HOST_WORDS_BIGENDIAN)
#define EL_IDX(i) (i)
#else
#define EL_IDX(i) (1 - (i))
#endif

void helper_vshasigmad(ppc_avr_t *r,  ppc_avr_t *a, uint32_t st_six)
{
    int st = (st_six & 0x10) != 0;
    int six = st_six & 0xF;
    int i;

    VECTOR_FOR_INORDER_I(i, u64) {
        if (st == 0) {
            if ((six & (0x8 >> (2*i))) == 0) {
                r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 1) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 8) ^
                                    (a->u64[EL_IDX(i)] >> 7);
            } else { /* six.bit[2*i] == 1 */
                r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 19) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 61) ^
                                    (a->u64[EL_IDX(i)] >> 6);
            }
        } else { /* st == 1 */
            if ((six & (0x8 >> (2*i))) == 0) {
                r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 28) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 34) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 39);
            } else { /* six.bit[2*i] == 1 */
                r->u64[EL_IDX(i)] = ROTRu64(a->u64[EL_IDX(i)], 14) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 18) ^
                                    ROTRu64(a->u64[EL_IDX(i)], 41);
            }
        }
    }
}

#undef ROTRu64
#undef EL_IDX

void helper_vpermxor(ppc_avr_t *r,  ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
{
    int i;
    VECTOR_FOR_INORDER_I(i, u8) {
        int indexA = c->u8[i] >> 4;
        int indexB = c->u8[i] & 0xF;
#if defined(HOST_WORDS_BIGENDIAN)
        r->u8[i] = a->u8[indexA] ^ b->u8[indexB];
#else
        r->u8[i] = a->u8[15-indexA] ^ b->u8[15-indexB];
#endif
    }
}

#undef VECTOR_FOR_INORDER_I
#undef HI_IDX
#undef LO_IDX

/*****************************************************************************/
/* SPE extension helpers */
/* Use a table to make this quicker */
static const uint8_t hbrev[16] = {
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
};

static inline uint8_t byte_reverse(uint8_t val)
{
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
}

static inline uint32_t word_reverse(uint32_t val)
{
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
}

#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
{
    uint32_t a, b, d, mask;

    mask = UINT32_MAX >> (32 - MASKBITS);
    a = arg1 & mask;
    b = arg2 & mask;
    d = word_reverse(1 + word_reverse(a | ~b));
    return (arg1 & ~mask) | (d & b);
}

uint32_t helper_cntlsw32(uint32_t val)
{
    if (val & 0x80000000) {
        return clz32(~val);
    } else {
        return clz32(val);
    }
}

uint32_t helper_cntlzw32(uint32_t val)
{
    return clz32(val);
}

/* 440 specific */
target_ulong helper_dlmzb(CPUPPCState *env, target_ulong high,
                          target_ulong low, uint32_t update_Rc)
{
    target_ulong mask;
    int i;

    i = 1;
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
        if ((high & mask) == 0) {
            if (update_Rc) {
                env->crf[0] = 0x4;
            }
            goto done;
        }
        i++;
    }
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
        if ((low & mask) == 0) {
            if (update_Rc) {
                env->crf[0] = 0x8;
            }
            goto done;
        }
        i++;
    }
    i = 8;
    if (update_Rc) {
        env->crf[0] = 0x2;
    }
 done:
    env->xer = (env->xer & ~0x7F) | i;
    if (update_Rc) {
        env->crf[0] |= xer_so;
    }
    return i;
}