aboutsummaryrefslogtreecommitdiffstats
path: root/.gitignore
AgeCommit message (Expand)AuthorFilesLines
2016-07-26add .idea directory to gitignoreSerenaFeng1-0/+1
2016-04-25Add untracked files to ignoreCédric Ollivier1-0/+3
2016-01-08add .gitignoreRyota MIBU1-0/+5
n116'>116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "sysemu/arch_init.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "qemu/crc32c.h"
#include "exec/cpu_ldst.h"
#include "arm_ldst.h"
#include <zlib.h> /* For crc32 */
#include "exec/semihost.h"
#include "sysemu/kvm.h"

#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

#ifndef CONFIG_USER_ONLY
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi);

static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi);

/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
#endif

static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
    }
    return 0;
}

static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    assert(ri->fieldoffset);
    if (cpreg_field_is_64bit(ri)) {
        return CPREG_FIELD64(env, ri);
    } else {
        return CPREG_FIELD32(env, ri);
    }
}

static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    assert(ri->fieldoffset);
    if (cpreg_field_is_64bit(ri)) {
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
}

static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Raw read of a coprocessor register (as needed for migration, etc). */
    if (ri->type & ARM_CP_CONST) {
        return ri->resetvalue;
    } else if (ri->raw_readfn) {
        return ri->raw_readfn(env, ri);
    } else if (ri->readfn) {
        return ri->readfn(env, ri);
    } else {
        return raw_read(env, ri);
    }
}

static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t v)
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
        return;
    } else if (ri->raw_writefn) {
        ri->raw_writefn(env, ri, v);
    } else if (ri->writefn) {
        ri->writefn(env, ri, v);
    } else {
        raw_write(env, ri, v);
    }
}

static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;

        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_RAW) {
            continue;
        }
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_RAW) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);

    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);

    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);

    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
    GList *keys;
    int arraylen;

    keys = g_hash_table_get_keys(cpu->cp_regs);
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

/*
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 *
 * access_el3_aa32ns: Used to check AArch32 register views.
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    bool secure = arm_is_secure_below_el3(env);

    assert(!arm_el_is_aa64(env, 3));
    if (secure) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
                                                const ARMCPRegInfo *ri,
                                                bool isread)
{
    if (!arm_el_is_aa64(env, 3)) {
        return access_el3_aa32ns(env, ri, isread);
    }
    return CP_ACCESS_OK;
}

/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
                                            const ARMCPRegInfo *ri,
                                            bool isread)
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    raw_write(env, ri, value);
    tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
}

static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
        tlb_flush(CPU(cpu), 1);
        raw_write(env, ri, value);
    }
}

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
        && !extended_addresses_enabled(env)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate all (TLBIALL) */
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), 1);
}

static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
}

static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Invalidate by ASID (TLBIASID) */
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush(CPU(cpu), value == 0);
}

static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
}

/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, 1);
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush(other_cs, value == 0);
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static const ARMCPRegInfo cp_reginfo[] = {
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_RAW },
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
    }
    env->cp15.cpacr_el1 = value;
}

static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
      .access = PL0_W, .type = ARM_CP_NOP },
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
      .resetvalue = 0, .writefn = cpacr_write },
    REGINFO_SENTINEL
};

static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* Performance monitor registers user accessibility is controlled
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
     */
    int el = arm_current_el(env);

    if (el == 0 && !env->cp15.c9_pmuserenr) {
        return CP_ACCESS_TRAP;
    }
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

#ifndef CONFIG_USER_ONLY

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    pmccntr_sync(env);

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);

    pmccntr_sync(env);
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint64_t total_ticks;

    if (!arm_ccnt_enabled(env)) {
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint64_t total_ticks;

    if (!arm_ccnt_enabled(env)) {
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
}

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

#endif

static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    env->cp15.c9_pmovsr &= ~value;
}

static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
    raw_write(env, ri, value & ~0x1FULL);
}

static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
         * On ARMv8, this bit is always available.
         */
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
}

static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    raw_write(env, ri, value & 0xf);
}

static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
      .type = ARM_CP_ALIAS },
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    /* Unimplemented so WI. */
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
     * We choose to RAZ/WI.
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
#ifndef CONFIG_USER_ONLY
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
      .accessfn = pmreg_access },
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
#endif
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
      .writefn = pmccfiltr_write,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
      .writefn = pmintenset_write, .raw_writefn = raw_write },
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write, },
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
    { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vbar_write,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                             offsetof(CPUARMState, cp15.vbar_ns) },
      .resetvalue = 0 },
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
      .resetvalue = 0 },
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W,
      .writefn = tlbiasid_is_write },
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .type = ARM_CP_NO_RAW, .access = PL1_W,
      .writefn = tlbimvaa_is_write },
    REGINFO_SENTINEL
};

static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    value &= 1;
    env->teecr = value;
}

static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
{
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
      .accessfn = teehbr_access, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v6k_cp_reginfo[] = {
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

#ifndef CONFIG_USER_ONLY

static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);

    switch (el) {
    case 0:
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
    }

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
    if (cur_el == 0 &&
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
    if (cur_el == 0 &&
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                    const ARMCPRegInfo *ri,
                                    bool isread)
{
    return gt_counter_access(env, GTIMER_PHYS, isread);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                    const ARMCPRegInfo *ri,
                                    bool isread)
{
    return gt_counter_access(env, GTIMER_VIRT, isread);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    return gt_timer_access(env, GTIMER_PHYS, isread);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    return gt_timer_access(env, GTIMER_VIRT, isread);
}

static CPAccessResult gt_stimer_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri,
                                       bool isread)
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

static uint64_t gt_get_countervalue(CPUARMState *env)
{
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count - offset >= gt->cval;
        uint64_t nexttick;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (istatus && !(gt->ctl & 2)));
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval + offset;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
        timer_mod(cpu->gt_timer[timeridx], nexttick);
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
        timer_del(cpu->gt_timer[timeridx]);
    }
}

static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    timer_del(cpu->gt_timer[timeridx]);
}

static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env);
}

static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          int timeridx,
                          uint64_t value)
{
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
{
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;

    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      (gt_get_countervalue(env) - offset));
}

static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          int timeridx,
                          uint64_t value)
{
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;

    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
                                         sextract64(value, 0, 32);
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         int timeridx,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval ^ value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        qemu_set_irq(cpu->gt_timer_outputs[timeridx],
                     (oldval & 4) && !(value & 2));
    }
}

static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_NS,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_NS,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
    },
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
    },
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
    },
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
    },
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_pct_access,
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_vct_access,
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_NS,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_ptimer_access,
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .accessfn = gt_vtimer_access,
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
    },
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
 * so instead just don't register any of them.
 */
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

#endif

static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        raw_write(env, ri, value);
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        raw_write(env, ri, value & 0xfffff6ff);
    } else {
        raw_write(env, ri, value & 0xfffff1ff);
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */

static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    if (ri->opc2 & 4) {
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
         */
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
    }
    return CP_ACCESS_OK;
}

static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
                             int access_type, ARMMMUIdx mmu_idx)
{
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    uint32_t fsr;
    bool ret;
    uint64_t par64;
    MemTxAttrs attrs = {};
    ARMMMUFaultInfo fi = {};

    ret = get_phys_addr(env, value, access_type, mmu_idx,
                        &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
    if (extended_addresses_enabled(env)) {
        /* fsr is a DFSR/IFSR value for the long descriptor
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
        par64 = (1 << 11); /* LPAE bit always set */
        if (!ret) {
            par64 |= phys_addr & ~0xfffULL;
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
            /* We don't set the ATTR or SH fields in the PAR. */
        } else {
            par64 |= 1; /* F */
            par64 |= (fsr & 0x3f) << 1; /* FS */
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
        }
    } else {
        /* fsr is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (!ret) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                par64 = (phys_addr & 0xff000000) | (1 << 1);
            } else {
                par64 = phys_addr & 0xfffff000;
            }
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
        } else {
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
        }
    }
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
        break;
    case 6: /* AT S12E0R, AT S12E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    /* This underdecoding is safe because the reginfo is NO_RAW. */
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
#endif
    REGINFO_SENTINEL
};

/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
}

static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
}

static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
}

static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
}

static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->cp15.c6_rgnr;
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->cp15.c6_rgnr;
    tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
    *u32p = value;
}

static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
      .writefn = pmsav7_rgnr_write },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
    /* Protection region base and size registers */
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
    REGINFO_SENTINEL
};

static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    TCR *tcr = raw_ptr(env, ri);
    int maskshift = extract32(value, 0, 3);

    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
    }

    /* Update the masks corresponding to the TCR bank being written
     * Note that we always calculate mask and base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
     */
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
}

static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
        tlb_flush(CPU(cpu), 1);
    }
    vmsa_ttbcr_raw_write(env, ri, value);
}

static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
}

static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    TCR *tcr = raw_ptr(env, ri);

    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
    tlb_flush(CPU(cpu), 1);
    tcr->raw_tcr = value;
}

static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
        ARMCPU *cpu = arm_env_get_cpu(env);

        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
    if (raw_read(env, ri) != value) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                            ARMMMUIdx_S2NS, -1);
        raw_write(env, ri, value);
    }
}

static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
      .raw_writefn = vmsa_ttbcr_raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
    REGINFO_SENTINEL
};

static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c15_threadid = value & 0xffff;
}

static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Wait-for-interrupt (deprecated) */
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
}

static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
      .resetvalue = 0, },
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .type = ARM_CP_NO_RAW,
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
      .writefn = omap_cachemaint_write },
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    env->cp15.c15_cpar = value & 0x3fff;
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = (1 << 30) },
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = (1 << 30) },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
    REGINFO_SENTINEL
};

static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

static uint64_t mpidr_read_val(CPUARMState *env)
{
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

    if (arm_feature(env, ARM_FEATURE_V7MP)) {
        mpidr |= (1U << 31);
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, Cortex-R5).
         */
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
    }
    return mpidr;
}

static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
    return mpidr_read_val(env);
}

static const ARMCPRegInfo mpidr_cp_reginfo[] = {
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo lpae_cp_reginfo[] = {
    /* NOP AMAIR0/1 */
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
      .writefn = vmsa_ttbr_write, },
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
      .writefn = vmsa_ttbr_write, },
    REGINFO_SENTINEL
};

static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return vfp_get_fpcr(env);
}

static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    vfp_set_fpcr(env, value);
}

static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return vfp_get_fpsr(env);
}

static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    vfp_set_fpsr(env, value);
}

static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

static CPAccessResult aa64_cacheop_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri,
                                          bool isread)
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
    }
}

static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
    bool sec = arm_is_secure_below_el3(env);
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
    }
}

static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                                ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
        }
    }
}

static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
}

static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
}

static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else if (has_el2) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
    }
}

static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
    }
}

static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
    }
}

static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
                                 ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
                                 ARMMMUIdx_S12NSE0, -1);
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
}

static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
}

static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    bool sec = arm_is_secure_below_el3(env);
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        if (sec) {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
                                     ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
                                     ARMMMUIdx_S12NSE0, -1);
        }
    }
}

static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
    }
}

static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
    }
}

static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
    }
}

static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
{
    if (!(env->pstate & PSTATE_SP)) {
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu), 1);
}

static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
        return CP_ACCESS_TRAP_FP_EL2;
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
        return CP_ACCESS_TRAP_FP_EL3;
    }
    return CP_ACCESS_OK;
}

static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
      .type = ARM_CP_NO_RAW,
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_NO_RAW,
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1is_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1is_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1_write },
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
#endif
    /* TLB invalidate last level of translation table walk */
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .type = ARM_CP_NO_RAW, .access = PL1_W,
      .writefn = tlbimvaa_is_write },
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW,
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
    REGINFO_SENTINEL
};

/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_RAW,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
        tlb_flush(CPU(cpu), 1);
    }
    raw_write(env, ri, value);
}

static const ARMCPRegInfo el2_cp_reginfo[] = {
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .type = ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_alle2_write },
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vae2is_write },
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
#ifndef CONFIG_USER_ONLY
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
#endif
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't impelment any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    REGINFO_SENTINEL
};

static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
    { .name = "SCR",  .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
      .writefn = scr_write },
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    REGINFO_SENTINEL
};

static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tda,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .access = PL1_R, .accessfn = access_tda,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .accessfn = access_tdosa,
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
      .accessfn = access_tdosa,
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void define_debug_regs(ARMCPU *cpu)
{
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
     */
    int i;
    int wrps, brps, ctx_cmps;
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
    };

    /* Note that all these register fields hold "number of Xs minus 1". */
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
    }

    define_one_arm_cp_reg(cpu, &dbgdidr);
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

    for (i = 0; i < brps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

    define_arm_cp_regs(cpu, cp_reginfo);
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_V6)) {
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr0 },
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_pfr1 },
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_dfr0 },
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr0 },
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr1 },
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr2 },
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr3 },
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar0 },
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar1 },
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar2 },
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar3 },
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar4 },
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_isar5 },
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr4 },
            /* 7 is as yet unallocated and must RAZ */
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V7)) {
        /* v7 performance monitor control register: same implementor
         * field as main ID register, and we implement only the cycle
         * count register.
         */
#ifndef CONFIG_USER_ONLY
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
            .access = PL0_RW,
            .type = ARM_CP_IO | ARM_CP_ALIAS,
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
        };
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
        define_one_arm_cp_reg(cpu, &pmcr);
        define_one_arm_cp_reg(cpu, &pmcr64);
#endif
        ARMCPRegInfo clidr = {
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
        define_arm_cp_regs(cpu, v7_cp_reginfo);
        define_debug_regs(cpu);
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              /* We mask out the PMUVer field, because we don't currently
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            REGINFO_SENTINEL
        };
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
        define_arm_cp_regs(cpu, v8_idregs);
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        uint64_t vmpidr_def = mpidr_read_val(env);
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
        define_arm_cp_regs(cpu, el2_cp_reginfo);
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
        }
    }
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        define_arm_cp_regs(cpu, el3_cp_reginfo);
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
        };

        define_arm_cp_regs(cpu, el3_regs);
    }
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
    } else {
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
             */
            { .name = "MIDR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .resetvalue = cpu->midr,
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
              .readfn = midr_read,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
            id_tlbtr_reginfo.access = PL1_RW;
            id_tlbtr_reginfo.access = PL1_RW;
        }
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
        define_arm_cp_regs(cpu, id_cp_reginfo);
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
        }
    }

    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, auxcr_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
    }

    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
}

ARMCPU *cpu_arm_init(const char *cpu_model)
{
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;

    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 19, "arm-vfp.xml", 0);
    }
}

/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
{
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;

    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
        return 1;
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
        return -1;
    } else {
        return strcmp(name_a, name_b);
    }
}

static void arm_cpu_list_entry(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CPUListState *s = user_data;
    const char *typename;
    char *name;

    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
    (*s->cpu_fprintf)(s->file, "  %s\n",
                      name);
    g_free(name);
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
    CPUListState s = {
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
}

static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
                                   void *opaque, int state, int secstate,
                                   int crm, int opc1, int opc2)
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
         */
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
                r2->type |= ARM_CP_ALIAS;
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
            r2->type |= ARM_CP_ALIAS;
        }

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

#ifdef HOST_WORDS_BIGENDIAN
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
#endif
        }
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
         */
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
    }
    if (opaque) {
        r2->opaque = opaque;
    }
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * ALIAS so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable and not even raw-accessible.
     */
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_ALIAS;
    }

    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
     */
    int crm, opc1, opc2, state;
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
        }
        if (r->access & PL3_W) {
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
                }
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
{
    return g_hash_table_lookup(cpregs, &encoded_cp);
}

void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* Helper coprocessor write function for write-ignore registers */
}

uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

    switch (mode) {
    case ARM_CPU_MODE_USR:
        return 0;
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->cp15.hcr_el2 & HCR_TGE) &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            !arm_is_secure_below_el3(env)) {
            return 1;
        }
        return 0;
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure(env);
    case ARM_CPU_MODE_MON:
        return arm_current_el(env) < 3;
    default:
        return 1;
    }
}

uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | (env->GE << 16) | (env->daif & CPSR_AIF);
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
{
    uint32_t changed_daif;

    if (mask & CPSR_NZCV) {
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
             */
            mask &= ~CPSR_M;
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
        } else {
            switch_mode(env, val & CPSR_M);
        }
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(clz)(uint32_t x)
{
    return clz32(x);
}

int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
    if (num == INT_MIN && den == -1)
      return INT_MIN;
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    return revbit32(x);
}

#if defined(CONFIG_USER_ONLY)

/* These should probably raise undefined insn exceptions.  */
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
}

uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
    return 0;
}

void switch_mode(CPUARMState *env, int mode)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
}

uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
{
    return 1;
}

void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

#else

void switch_mode(CPUARMState *env, int mode)
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    }

    i = bank_number(old_mode);
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

    i = bank_number(mode);
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
static const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
{
    CPUARMState *env = cs->env_ptr;
    int rw;
    int scr;
    int hcr;
    int target_el;
    /* Is the highest EL AArch64? */
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

static void v7m_push(CPUARMState *env, uint32_t val)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));

    env->regs[13] -= 4;
    stl_phys(cs->as, env->regs[13], val);
}

static uint32_t v7m_pop(CPUARMState *env)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));
    uint32_t val;

    val = ldl_phys(cs->as, env->regs[13]);
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
static void switch_v7m_sp(CPUARMState *env, int process)
{
    uint32_t tmp;
    if (env->v7m.current_sp != process) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
        env->v7m.current_sp = process;
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
    if (env->v7m.exception != 0)
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

void arm_v7m_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

    arm_log_exception(cs->exception_index);

    lr = 0xfffffff1;
    if (env->v7m.current_sp)
        lr |= 4;
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
    switch (cs->exception_index) {
    case EXCP_UDEF:
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
        return;
    case EXCP_SWI:
        /* The PC already points to the next instruction.  */
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
        return;
    case EXCP_BKPT:
        if (semihosting_enabled()) {
            int nr;
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
            if (nr == 0xab) {
                env->regs[15] += 2;
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
        return;
    case EXCP_IRQ:
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }

    /* Align stack pointer.  */
    /* ??? Should only do this if Configuration Control Register
       STACKALIGN bit is set.  */
    if (env->regs[13] & 4) {
        env->regs[13] -= 4;
        xpsr |= 0x200;
    }
    /* Switch to the handler mode.  */
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
    /* Clear IT bits */
    env->condexec_bits = 0;
    env->regs[14] = lr;
    addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
    } else {
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
    } else {
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
    } else {
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
    } else {
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
    } else {
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
    } else {
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
    } else {
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
    } else {
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
    uint32_t moe;

    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

    /* TODO: Vectored interrupt controller.  */
    switch (cs->exception_index) {
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
        /* The PC already points to the next instruction.  */
        offset = 0;
        break;
    case EXCP_BKPT:
        env->exception.fsr = 2;
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->exception.fsr,
                      (uint32_t)env->exception.vaddress);
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
        offset = 4;
        break;
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
        /* High vectors. When enabled, base address cannot be remapped. */
        addr += 0xffff0000;
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and is banked.
         * Note: only bits 31:5 are valid.
         */
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
    }

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

    switch_mode (env, new_mode);
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
    env->spsr = cpsr_read(env);
    /* Clear IT bits.  */
    env->condexec_bits = 0;
    /* Switch to the new mode, and to the correct instruction set.  */
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
        env->uncached_cpsr |= ~CPSR_E;
    }
    env->daif |= mask;
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
    }
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
}

/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);

    if (arm_current_el(env) < new_el) {
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
            break;
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    case EXCP_SEMIHOST:
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
        if (!env->thumb) {
            env->cp15.esr_el[new_el] |= 1 << 25;
        }
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
}

static inline bool check_for_semihosting(CPUState *cs)
{
    /* Check whether this exception is a semihosting call; if so
     * then handle it and return true; otherwise return false.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        if (cs->exception_index == EXCP_SEMIHOST) {
            /* This is always the 64-bit semihosting exception.
             * The "is this usermode" and "is semihosting enabled"
             * checks have been done at translate time.
             */
            qemu_log_mask(CPU_LOG_INT,
                          "...handling as semihosting call 0x%" PRIx64 "\n",
                          env->xregs[0]);
            env->xregs[0] = do_arm_semihosting(env);
            return true;
        }
        return false;
    } else {
        uint32_t imm;

        /* Only intercept calls from privileged modes, to provide some
         * semblance of security.
         */
        if (!semihosting_enabled() ||
            ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
            return false;
        }

        switch (cs->exception_index) {
        case EXCP_SWI:
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
                    & 0xff;
                if (imm == 0xab) {
                    break;
                }
            } else {
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
                    & 0xffffff;
                if (imm == 0x123456) {
                    break;
                }
            }
            return false;
        case EXCP_BKPT:
            /* See if this is a semihosting syscall.  */
            if (env->thumb) {
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
                    & 0xff;
                if (imm == 0xab) {
                    env->regs[15] += 2;
                    break;
                }
            }
            return false;
        default:
            return false;
        }

        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        return true;
    }
}

/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

    assert(!IS_M(env));

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
        qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

    /* Semihosting semantics depend on the register width of the
     * code that caused the exception, not the target exception level,
     * so must be handled here.
     */
    if (check_for_semihosting(cs)) {
        return;
    }

    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }

    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return &env->cp15.vtcr_el2;
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return env->cp15.vttbr_el2;
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

    return regime_using_lpae_format(env, mmu_idx);
}

static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

/* Translate section/page access permissions to page
 * R/W protection flags
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
        if (is_user) {
            return PAGE_READ;
        } else {
            return PAGE_READ | PAGE_WRITE;
        }
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
        return is_user ? 0 : PAGE_READ;
    case 6:
        return PAGE_READ;
    case 7:
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
            return 0;
        }
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @is_user: TRUE if accessing from PL0
 */
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bit
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }
    if (!xn) {
        prot |= PAGE_EXEC;
    }
    return prot;
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
{
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
    } else {
        if (tcr->raw_tcr & TTBCR_PD0) {
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
}

/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
{
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;

        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
                                 &txattrs, &s2prot, &s2size, fsr, fi);
        if (ret) {
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    AddressSpace *as;

    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldl_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldl_le(as, addr, attrs, NULL);
    }
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    AddressSpace *as;

    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldq_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldq_le(as, addr, attrs, NULL);
    }
}

static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
    type = (desc & 3);
    domain = (desc >> 5) & 0x0f;
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (type == 0) {
        /* Section translation fault.  */
        code = 5;
        goto do_fault;
    }
    if (domain_prot == 0 || domain_prot == 2) {
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
        *page_size = 1024 * 1024;
    } else {
        /* Lookup l2 entry.  */
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
            *page_size = 0x10000;
            break;
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
            *page_size = 0x1000;
            break;
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
            if (type == 1) {
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
                    *page_size = 0x1000;
                } else {
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
                *page_size = 0x400;
            }
            ap = (desc >> 4) & 3;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
        }
        code = 15;
    }
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    *fsr = code | (domain << 4);
    return true;
}

static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
    uint32_t pxn = 0;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;
    bool ns;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
    type = (desc & 3);
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
        code = 5;
        goto do_fault;
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
        domain = (desc >> 5) & 0x0f;
    }
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
        if (type != 1) {
            code = 9; /* Section domain fault.  */
        } else {
            code = 11; /* Page domain fault.  */
        }
        goto do_fault;
    }
    if (type != 1) {
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
            *page_size = 0x1000000;
        } else {
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
            *page_size = 0x100000;
        }
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
        pxn = desc & 1;
        code = 13;
        ns = extract32(desc, 19, 1);
    } else {
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
        ns = extract32(desc, 3, 1);
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
            *page_size = 0x10000;
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
            *page_size = 0x1000;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
        }
        code = 15;
    }
    if (domain_prot == 3) {
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
        if (pxn && !regime_is_user(env, mmu_idx)) {
            xn = 1;
        }
        if (xn && access_type == 2)
            goto do_fault;

        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
        }
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
            /* Access permission fault.  */
            goto do_fault;
        }
    }
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    *fsr = code | (domain << 4);
    return true;
}

/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

/*
 * check_s2_mmu_setup
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
 */
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
{
    const int grainsize = stride + 3;
    int startsizecheck;

    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

    if (is_aa64) {
        CPUARMState *env = &cpu->env;
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
    uint32_t level;
    uint32_t epd = 0;
    int32_t t0sz, t1sz;
    uint32_t tg;
    uint64_t ttbr;
    int ttbr_select;
    hwaddr descaddr, descmask;
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
    int32_t stride = 9;
    int32_t va_size;
    int inputsize;
    int32_t tbi = 0;
    TCR *tcr = regime_tcr(env, mmu_idx);
    int ap, ns, xn, pxn;
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
    uint64_t descaddrmask;

    /* TODO:
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
     */
    if (arm_el_is_aa64(env, el)) {
        level = 0;
        va_size = 64;
        if (el > 1) {
            if (mmu_idx != ARMMMUIdx_S2NS) {
                tbi = extract64(tcr->raw_tcr, 20, 1);
            }
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
        tbi *= 8;

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
    } else {
        level = 1;
        va_size = 32;
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
    }

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
    if (va_size == 64) {
        /* AArch64 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 6);
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
        /* AArch32 stage 1 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 3);
    } else {
        /* AArch32 stage 2 translation.  */
        bool sext = extract32(tcr->raw_tcr, 4, 1);
        bool sign = extract32(tcr->raw_tcr, 3, 1);
        t0sz = sextract32(tcr->raw_tcr, 0, 4);

        /* If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.  */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
        }
    }
    t1sz = extract32(tcr->raw_tcr, 16, 6);
    if (va_size == 64) {
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
    if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
    } else if (ttbr1_valid && t1sz &&
               !extract64(~address, va_size - t1sz, t1sz - tbi)) {
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
    } else if (!t1sz && ttbr1_valid) {
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
        ttbr = regime_ttbr(env, mmu_idx, 0);
        if (el < 2) {
            epd = extract32(tcr->raw_tcr, 7, 1);
        }
        inputsize = va_size - t0sz;

        tg = extract32(tcr->raw_tcr, 14, 2);
        if (tg == 1) { /* 64KB pages */
            stride = 13;
        }
        if (tg == 2) { /* 16KB pages */
            stride = 11;
        }
    } else {
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

        ttbr = regime_ttbr(env, mmu_idx, 1);
        epd = extract32(tcr->raw_tcr, 23, 1);
        inputsize = va_size - t1sz;

        tg = extract32(tcr->raw_tcr, 30, 2);
        if (tg == 3)  { /* 64KB pages */
            stride = 13;
        }
        if (tg == 1) { /* 16KB pages */
            stride = 11;
        }
    }

    /* Here we should have set up all the parameters for the translation:
     * va_size, inputsize, ttbr, epd, stride, tbi
     */

    if (epd) {
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
        goto do_fault;
    }

    if (mmu_idx != ARMMMUIdx_S2NS) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
        bool ok;

        if (va_size == 32 || stride == 9) {
            /* AArch32 or 4KB pages */
            startlevel = 2 - sl0;
        } else {
            /* 16KB or 64KB pages */
            startlevel = 3 - sl0;
        }

        /* Check that the starting level is valid. */
        ok = check_s2_mmu_setup(cpu, va_size == 64, startlevel,
                                inputsize, stride);
        if (!ok) {
            fault_type = translation_fault;
            goto do_fault;
        }
        level = startlevel;
    }

    /* Clear the vaddr bits which aren't part of the within-region address,
     * so that we don't have to special case things when calculating the
     * first descriptor address.
     */
    if (va_size != inputsize) {
        address &= (1ULL << inputsize) - 1;
    }

    descmask = (1ULL << (stride + 3)) - 1;

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 48);
    descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);

    /* The address field in the descriptor goes up to bit 39 for ARMv7
     * but up to bit 47 for ARMv8.
     */
    if (arm_feature(env, ARM_FEATURE_V8)) {
        descaddrmask = 0xfffffffff000ULL;
    } else {
        descaddrmask = 0xfffffff000ULL;
    }

    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
    for (;;) {
        uint64_t descriptor;
        bool nstable;

        descaddr |= (address >> (stride * (4 - level))) & descmask;
        descaddr &= ~7ULL;
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
        if (fi->s1ptw) {
            goto do_fault;
        }

        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & descaddrmask;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
        page_size = (1ULL << ((stride * (4 - level)) + 3));
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);

        if (mmu_idx == ARMMMUIdx_S2NS) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
        attrs |= nstable << 3; /* NS */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }

    ap = extract32(attrs, 4, 2);
    xn = extract32(attrs, 12, 1);

    if (mmu_idx == ARMMMUIdx_S2NS) {
        ns = true;
        *prot = get_S2prot(env, ap, xn);
    } else {
        ns = extract32(attrs, 3, 1);
        pxn = extract32(attrs, 11, 1);
        *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
    }

    fault_type = permission_fault;
    if (!(*prot & (1 << access_type))) {
        goto do_fault;
    }

    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return false;

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
    *fsr = (1 << 9) | (fault_type << 2) | level;
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
    return true;
}

static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    *prot = PAGE_READ | PAGE_WRITE;
    switch (address) {
    case 0xF0000000 ... 0xFFFFFFFF:
        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
            *prot |= PAGE_EXEC;
        }
        break;
    case 0x00000000 ... 0x7FFFFFFF:
        *prot |= PAGE_EXEC;
        break;
    }

}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
                              "to DRSR region size, mask = %" PRIx32,
                              base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
                              rsize, TARGET_PAGE_BITS);
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (cpu->pmsav7_dregion &&
                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
                /* background fault */
                *fsr = 0;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            }

            /* execute never */
            if (env->pmsav7.dracr[n] & (1 << 12)) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    *fsr = 0x00d; /* Permission fault */
    return !(*prot & (1 << access_type));
}

static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    int n;
    uint32_t mask;
    uint32_t base;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
        base = env->cp15.c6_region[n];
        if ((base & 1) == 0) {
            continue;
        }
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
        if (((base ^ address) & ~mask) == 0) {
            break;
        }
    }
    if (n < 0) {
        *fsr = 2;
        return true;
    }

    if (access_type == 2) {
        mask = env->cp15.pmsav5_insn_ap;
    } else {
        mask = env->cp15.pmsav5_data_ap;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
        *fsr = 1;
        return true;
    case 1:
        if (is_user) {
            *fsr = 1;
            return true;
        }
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 2:
        *prot = PAGE_READ;
        if (!is_user) {
            *prot |= PAGE_WRITE;
        }
        break;
    case 3:
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 5:
        if (is_user) {
            *fsr = 1;
            return true;
        }
        *prot = PAGE_READ;
        break;
    case 6:
        *prot = PAGE_READ;
        break;
    default:
        /* Bad permission.  */
        *fsr = 1;
        return true;
    }
    *prot |= PAGE_EXEC;
    return false;
}

/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @mmu_idx: MMU index indicating required translation regime
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @attrs: set to the memory transaction attributes to use
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 * @fsr: set to the DFSR/IFSR value on failure
 */
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi)
{
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
         */
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;

            ret = get_phys_addr(env, address, access_type,
                                mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
                                prot, page_size, fsr, fi);

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
                                     phys_ptr, attrs, &s2_prot,
                                     page_size, fsr, fi);
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;
            return ret;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
            mmu_idx += ARMMMUIdx_S1NSE0;
        }
    }

    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
    attrs->user = regime_is_user(env, mmu_idx);

    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
    }

    /* pmsav7 has special handling for when MPU is disabled so call it before
     * the common MMU/MPU disabled check below.
     */
    if (arm_feature(env, ARM_FEATURE_MPU) &&
        arm_feature(env, ARM_FEATURE_V7)) {
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

    if (regime_translation_disabled(env, mmu_idx)) {
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        *page_size = TARGET_PAGE_SIZE;
        return 0;
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
        /* Pre-v7 MPU */
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
                                  attrs, prot, page_size, fsr, fi);
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
                                attrs, prot, page_size, fsr, fi);
    } else {
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
                                prot, page_size, fsr, fi);
    }
}

/* Walk the page table and (if the mapping exists) add the page
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
 */
bool arm_tlb_fill(CPUState *cs, vaddr address,
                  int access_type, int mmu_idx, uint32_t *fsr,
                  ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    int ret;
    MemTxAttrs attrs = {};

    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
                        &attrs, &prot, &page_size, fsr, fi);
    if (!ret) {
        /* Map a single [sub]page.  */
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
        return 0;
    }

    return ret;
}

hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    bool ret;
    uint32_t fsr;
    ARMMMUFaultInfo fi = {};

    *attrs = (MemTxAttrs) {};

    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
                        attrs, &prot, &page_size, &fsr, &fi);

    if (ret) {
        return -1;
    }
    return phys_addr;
}

uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    switch (reg) {
    case 0: /* APSR */
        return xpsr_read(env) & 0xf8000000;
    case 1: /* IAPSR */
        return xpsr_read(env) & 0xf80001ff;
    case 2: /* EAPSR */
        return xpsr_read(env) & 0xff00fc00;
    case 3: /* xPSR */
        return xpsr_read(env) & 0xff00fdff;
    case 5: /* IPSR */
        return xpsr_read(env) & 0x000001ff;
    case 6: /* EPSR */
        return xpsr_read(env) & 0x0700fc00;
    case 7: /* IEPSR */
        return xpsr_read(env) & 0x0700edff;
    case 8: /* MSP */
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
    case 9: /* PSP */
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
    case 16: /* PRIMASK */
        return (env->daif & PSTATE_I) != 0;
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
        return env->v7m.basepri;
    case 19: /* FAULTMASK */
        return (env->daif & PSTATE_F) != 0;
    case 20: /* CONTROL */
        return env->v7m.control;
    default:
        /* ??? For debugging only.  */
        cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
        return 0;
    }
}

void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    switch (reg) {
    case 0: /* APSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 1: /* IAPSR */
        xpsr_write(env, val, 0xf8000000);
        break;
    case 2: /* EAPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 3: /* xPSR */
        xpsr_write(env, val, 0xfe00fc00);
        break;
    case 5: /* IPSR */
        /* IPSR bits are readonly.  */
        break;
    case 6: /* EPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 7: /* IEPSR */
        xpsr_write(env, val, 0x0600fc00);
        break;
    case 8: /* MSP */
        if (env->v7m.current_sp)
            env->v7m.other_sp = val;
        else
            env->regs[13] = val;
        break;
    case 9: /* PSP */
        if (env->v7m.current_sp)
            env->regs[13] = val;
        else
            env->v7m.other_sp = val;
        break;
    case 16: /* PRIMASK */
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
        break;
    case 17: /* BASEPRI */
        env->v7m.basepri = val & 0xff;
        break;
    case 18: /* BASEPRI_MAX */
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
    case 19: /* FAULTMASK */
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
        break;
    case 20: /* CONTROL */
        env->v7m.control = val & 3;
        switch_v7m_sp(env, (val & 2) != 0);
        break;
    default:
        /* ??? For debugging only.  */
        cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
        return;
    }
}

#endif

void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
        unsigned mmu_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
                                                1, mmu_idx);
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
                    helper_ret_stb_mmu(env, va, 0, oi, GETRA());
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

/* Perform 16-bit signed saturating addition.  */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

/* Perform 8-bit signed saturating addition.  */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

/* Perform 16-bit signed saturating subtraction.  */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

/* Perform 8-bit signed saturating subtraction.  */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
    if (a > b)
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 1) \
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
        ge |= 1 << n; \
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
    return target_bits;
}

uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

uint32_t vfp_get_fpscr(CPUARMState *env)
{
    return HELPER(vfp_get_fpscr)(env);
}

/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
    return host_bits;
}

void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
        case FPROUNDING_TIEEVEN:
            i = float_round_nearest_even;
            break;
        case FPROUNDING_POSINF:
            i = float_round_up;
            break;
        case FPROUNDING_NEGINF:
            i = float_round_down;
            break;
        case FPROUNDING_ZERO:
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
    if (changed & (1 << 24)) {
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);

    i = vfp_exceptbits_to_host(val);
    set_float_exception_flags(i, &env->vfp.fp_status);
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
}

void vfp_set_fpscr(CPUARMState *env, uint32_t val)
{
    HELPER(vfp_set_fpscr)(env, val);
}

#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
    return float64_chs(a);
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
    return float64_abs(a);
}

float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

/* Integer to float and float to integer conversions */

#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
}

#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
}

#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)

FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)

#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS

/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
{
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float64_maybe_silence_nan(r);
}

float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
{
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
    return float32_maybe_silence_nan(r);
}

/* VFP3 fixed point conversion.  */
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    float##fsz tmp; \
    tmp = itype##_to_##float##fsz(x, fpst); \
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
}

/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    int old_exc_flags = get_float_exception_flags(fpst); \
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    tmp = float##fsz##_scalbn(x, shift, fpst); \
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
    return float##fsz##_to_##itype##round(tmp, fpst); \
}

#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
#undef VFP_CONV_FIX
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND

/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

/* Half precision conversions.  */
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
        return float32_maybe_silence_nan(r);
    }
    return r;
}

static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
        return float64_maybe_silence_nan(r);
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
        r = float16_maybe_silence_nan(r);
    }
    return float16_val(r);
}

#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)

float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
{
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
}

float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
{
    float_status *s = &env->vfp.standard_fp_status;
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
        return float32_one_point_five;
    }
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
}

/* NEON helpers.  */

/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)

/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
 */

static float64 recip_estimate(float64 a, float_status *real_fp_status)
{
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = *real_fp_status;
    float_status *s = &dummy_status;
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
{
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;

    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }

    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_maybe_silence_nan(f32);
        }
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan;
        }
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    }


    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_maybe_silence_nan(f64);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }

    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
}

/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
{
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
    float_status dummy_status = *real_fp_status;
    float_status *s = &dummy_status;
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
{
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
    int result_exp;
    float64 f64;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32)) {
            float_raise(float_flag_invalid, s);
            nan = float32_maybe_silence_nan(f32);
        }
        if (s->default_nan_mode) {
            nan =  float32_default_nan;
        }
        return nan;
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
        float_raise(float_flag_invalid, s);
        return float32_default_nan;
    } else if (float32_is_infinity(f32)) {
        return float32_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (380 - f32_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    val64 = float64_val(f64);

    val = ((result_exp & 0xff) << 23)
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
}

float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64)) {
            float_raise(float_flag_invalid, s);
            nan = float64_maybe_silence_nan(f64);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan;
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan;
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

    f64 = recip_estimate(f64, s);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}

uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

    f64 = recip_sqrt_estimate(f64, fpst);

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}

/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}

/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    stl_le_p(buf, val);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    stl_le_p(buf, val);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}