summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/include/configs/davinci_dm6467evm.h
blob: 8a3c45334736f66a21c0b93fb2a4382dd4ead799 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
 * Copyright (C) 2009 Texas Instruments Incorporated
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#ifndef __CONFIG_H
#define __CONFIG_H

/* Spectrum Digital TMS320DM6467 EVM board */
#define DAVINCI_DM6467EVM
#define CONFIG_SYS_USE_NAND
#define CONFIG_SYS_NAND_SMALLPAGE

#define CONFIG_SKIP_LOWLEVEL_INIT

/* SoC Configuration */
#define CONFIG_ARM926EJS				/* arm926ejs CPU */

/* Clock rates detection */
#ifndef __ASSEMBLY__
extern unsigned int davinci_arm_clk_get(void);
#endif

/* Arm Clock frequency    */
#define CONFIG_SYS_CLK_FREQ	davinci_arm_clk_get()
/* Timer Input clock freq */
#define CONFIG_SYS_HZ_CLOCK		(CONFIG_SYS_CLK_FREQ/2)
#define CONFIG_SYS_TIMERBASE		0x01c21400	/* use timer 0 */
#define CONFIG_SOC_DM646X

/* EEPROM definitions for EEPROM */
#define CONFIG_SYS_I2C_EEPROM_ADDR_LEN		2
#define CONFIG_SYS_I2C_EEPROM_ADDR		0x50
#define CONFIG_SYS_EEPROM_PAGE_WRITE_BITS	6
#define CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS	20

/* Memory Info */
#define CONFIG_SYS_MALLOC_LEN		(1 << 20)	/* 1 MiB */
#define CONFIG_SYS_MEMTEST_START	0x80000000
#define CONFIG_SYS_MEMTEST_END		0x81000000	/* 16MB RAM test */
#define CONFIG_NR_DRAM_BANKS		1
#define PHYS_SDRAM_1			0x80000000	/* DDR Start */
#define PHYS_SDRAM_1_SIZE		(256 << 20)	/* DDR size 256MB */

/* Linux interfacing */
#define CONFIG_CMDLINE_TAG
#define CONFIG_SETUP_MEMORY_TAGS
#define CONFIG_SYS_BARGSIZE		1024		/* Bootarg Size */
#define CONFIG_SYS_LOAD_ADDR		0x80700000	/* kernel address */
#define CONFIG_REVISION_TAG

/* Serial Driver info */
#define CONFIG_SYS_NS16550
#define CONFIG_SYS_NS16550_SERIAL
#define CONFIG_SYS_NS16550_REG_SIZE	4
#define CONFIG_SYS_NS16550_COM1		0x01c20000
#define CONFIG_SYS_NS16550_CLK		24000000
#define CONFIG_CONS_INDEX		1
#define CONFIG_BAUDRATE			115200

/* I2C Configuration */
#define CONFIG_SYS_I2C
#define CONFIG_SYS_I2C_DAVINCI
#define CONFIG_SYS_DAVINCI_I2C_SPEED		80000
#define CONFIG_SYS_DAVINCI_I2C_SLAVE		10

/* Network & Ethernet Configuration */
#define CONFIG_DRIVER_TI_EMAC
#define CONFIG_MII
#define CONFIG_BOOTP_DNS
#define CONFIG_BOOTP_DNS2
#define CONFIG_BOOTP_SEND_HOSTNAME
#define CONFIG_NET_RETRY_COUNT	10
#define CONFIG_CMD_NET

/* Flash & Environment */
#define CONFIG_SYS_NO_FLASH
#ifdef CONFIG_SYS_USE_NAND
#define CONFIG_NAND_DAVINCI
#define CONFIG_SYS_NAND_CS		2
#undef CONFIG_ENV_IS_IN_FLASH
#define CONFIG_ENV_IS_IN_NAND
#define CONFIG_ENV_SIZE			(16 << 10)	/* 16 KiB */
#define CONFIG_SYS_NAND_BASE_LIST	{0x42000000, }
#define CONFIG_SYS_NAND_HW_ECC
#define CONFIG_SYS_MAX_NAND_DEVICE	1
#define CONFIG_ENV_OFFSET		0
#else
#define CONFIG_ENV_IS_NOWHERE
#define CONFIG_ENV_SIZE			(4 << 10)	/* 4 KiB */
#endif

/* U-Boot general configuration */
#define CONFIG_BOOTDELAY	3
#define CONFIG_BOOTFILE		"uImage"	/* Boot file name */
#define CONFIG_SYS_PROMPT	"DM6467 EVM > "	/* Monitor Command Prompt */
#define CONFIG_SYS_CBSIZE	1024		/* Console I/O Buffer Size  */
#define CONFIG_SYS_PBSIZE		\
			(CONFIG_SYS_CBSIZE + sizeof(CONFIG_SYS_PROMPT) + 16)
#define CONFIG_SYS_MAXARGS		16
#define CONFIG_VERSION_VARIABLE
#define CONFIG_AUTO_COMPLETE
#define CONFIG_SYS_HUSH_PARSER
#define CONFIG_CMDLINE_EDITING
#define CONFIG_SYS_LONGHELP
#define CONFIG_CRC32_VERIFY
#define CONFIG_MX_CYCLIC
#define CONFIG_BOOTCOMMAND		"source 0x82080000; dhcp; bootm"
#define CONFIG_BOOTARGS			\
					"mem=120M console=ttyS0,115200n8 " \
					"root=/dev/hda1 rw noinitrd ip=dhcp"

/* U-Boot commands */
#include <config_cmd_default.h>
#define CONFIG_CMD_ASKENV
#define CONFIG_CMD_DIAG
#define CONFIG_CMD_I2C
#define CONFIG_CMD_MII
#define CONFIG_CMD_SAVES
#define CONFIG_CMD_EEPROM
#define CONFIG_CMD_PING
#define CONFIG_CMD_DHCP
#undef CONFIG_CMD_BDI
#undef CONFIG_CMD_FPGA
#undef CONFIG_CMD_SETGETDCR
#ifdef CONFIG_SYS_USE_NAND
#undef CONFIG_CMD_FLASH
#undef CONFIG_CMD_IMLS
#define CONFIG_CMD_NAND
#endif

#ifdef CONFIG_CMD_BDI
#define CONFIG_CLOCKS
#endif

#define CONFIG_MAX_RAM_BANK_SIZE	(256 << 20)	/* 256 MB */

#define CONFIG_SYS_SDRAM_BASE		PHYS_SDRAM_1
#define CONFIG_SYS_INIT_RAM_SIZE	0x1000
#define CONFIG_SYS_INIT_SP_ADDR		(CONFIG_SYS_SDRAM_BASE + \
					 CONFIG_SYS_INIT_RAM_SIZE - \
					 GENERATED_GBL_DATA_SIZE)

#endif /* __CONFIG_H */
'>705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
/*
 *  x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include <math.h>
#include "cpu.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "exec/cpu_ldst.h"

#define FPU_RC_MASK         0xc00
#define FPU_RC_NEAR         0x000
#define FPU_RC_DOWN         0x400
#define FPU_RC_UP           0x800
#define FPU_RC_CHOP         0xc00

#define MAXTAN 9223372036854775808.0

/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp)        (fp.l.upper & 0x7fff)
#define SIGND(fp)       ((fp.l.upper) & 0x8000)
#define MANTD(fp)       (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS

#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B  (1 << 15)

#define FPUC_EM 0x3f

#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL)
#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL)
#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL)

static inline void fpush(CPUX86State *env)
{
    env->fpstt = (env->fpstt - 1) & 7;
    env->fptags[env->fpstt] = 0; /* validate stack entry */
}

static inline void fpop(CPUX86State *env)
{
    env->fptags[env->fpstt] = 1; /* invalidate stack entry */
    env->fpstt = (env->fpstt + 1) & 7;
}

static inline floatx80 helper_fldt(CPUX86State *env, target_ulong ptr,
                                   uintptr_t retaddr)
{
    CPU_LDoubleU temp;

    temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr);
    temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr);
    return temp.d;
}

static inline void helper_fstt(CPUX86State *env, floatx80 f, target_ulong ptr,
                               uintptr_t retaddr)
{
    CPU_LDoubleU temp;

    temp.d = f;
    cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr);
    cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr);
}

/* x87 FPU helpers */

static inline double floatx80_to_double(CPUX86State *env, floatx80 a)
{
    union {
        float64 f64;
        double d;
    } u;

    u.f64 = floatx80_to_float64(a, &env->fp_status);
    return u.d;
}

static inline floatx80 double_to_floatx80(CPUX86State *env, double a)
{
    union {
        float64 f64;
        double d;
    } u;

    u.d = a;
    return float64_to_floatx80(u.f64, &env->fp_status);
}

static void fpu_set_exception(CPUX86State *env, int mask)
{
    env->fpus |= mask;
    if (env->fpus & (~env->fpuc & FPUC_EM)) {
        env->fpus |= FPUS_SE | FPUS_B;
    }
}

static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b)
{
    if (floatx80_is_zero(b)) {
        fpu_set_exception(env, FPUS_ZE);
    }
    return floatx80_div(a, b, &env->fp_status);
}

static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr)
{
    if (env->cr[0] & CR0_NE_MASK) {
        raise_exception_ra(env, EXCP10_COPR, retaddr);
    }
#if !defined(CONFIG_USER_ONLY)
    else {
        cpu_set_ferr(env);
    }
#endif
}

void helper_flds_FT0(CPUX86State *env, uint32_t val)
{
    union {
        float32 f;
        uint32_t i;
    } u;

    u.i = val;
    FT0 = float32_to_floatx80(u.f, &env->fp_status);
}

void helper_fldl_FT0(CPUX86State *env, uint64_t val)
{
    union {
        float64 f;
        uint64_t i;
    } u;

    u.i = val;
    FT0 = float64_to_floatx80(u.f, &env->fp_status);
}

void helper_fildl_FT0(CPUX86State *env, int32_t val)
{
    FT0 = int32_to_floatx80(val, &env->fp_status);
}

void helper_flds_ST0(CPUX86State *env, uint32_t val)
{
    int new_fpstt;
    union {
        float32 f;
        uint32_t i;
    } u;

    new_fpstt = (env->fpstt - 1) & 7;
    u.i = val;
    env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
    env->fpstt = new_fpstt;
    env->fptags[new_fpstt] = 0; /* validate stack entry */
}

void helper_fldl_ST0(CPUX86State *env, uint64_t val)
{
    int new_fpstt;
    union {
        float64 f;
        uint64_t i;
    } u;

    new_fpstt = (env->fpstt - 1) & 7;
    u.i = val;
    env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
    env->fpstt = new_fpstt;
    env->fptags[new_fpstt] = 0; /* validate stack entry */
}

void helper_fildl_ST0(CPUX86State *env, int32_t val)
{
    int new_fpstt;

    new_fpstt = (env->fpstt - 1) & 7;
    env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
    env->fpstt = new_fpstt;
    env->fptags[new_fpstt] = 0; /* validate stack entry */
}

void helper_fildll_ST0(CPUX86State *env, int64_t val)
{
    int new_fpstt;

    new_fpstt = (env->fpstt - 1) & 7;
    env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
    env->fpstt = new_fpstt;
    env->fptags[new_fpstt] = 0; /* validate stack entry */
}

uint32_t helper_fsts_ST0(CPUX86State *env)
{
    union {
        float32 f;
        uint32_t i;
    } u;

    u.f = floatx80_to_float32(ST0, &env->fp_status);
    return u.i;
}

uint64_t helper_fstl_ST0(CPUX86State *env)
{
    union {
        float64 f;
        uint64_t i;
    } u;

    u.f = floatx80_to_float64(ST0, &env->fp_status);
    return u.i;
}

int32_t helper_fist_ST0(CPUX86State *env)
{
    int32_t val;

    val = floatx80_to_int32(ST0, &env->fp_status);
    if (val != (int16_t)val) {
        val = -32768;
    }
    return val;
}

int32_t helper_fistl_ST0(CPUX86State *env)
{
    int32_t val;
    signed char old_exp_flags;

    old_exp_flags = get_float_exception_flags(&env->fp_status);
    set_float_exception_flags(0, &env->fp_status);

    val = floatx80_to_int32(ST0, &env->fp_status);
    if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
        val = 0x80000000;
    }
    set_float_exception_flags(get_float_exception_flags(&env->fp_status)
                                | old_exp_flags, &env->fp_status);
    return val;
}

int64_t helper_fistll_ST0(CPUX86State *env)
{
    int64_t val;
    signed char old_exp_flags;

    old_exp_flags = get_float_exception_flags(&env->fp_status);
    set_float_exception_flags(0, &env->fp_status);

    val = floatx80_to_int64(ST0, &env->fp_status);
    if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
        val = 0x8000000000000000ULL;
    }
    set_float_exception_flags(get_float_exception_flags(&env->fp_status)
                                | old_exp_flags, &env->fp_status);
    return val;
}

int32_t helper_fistt_ST0(CPUX86State *env)
{
    int32_t val;

    val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
    if (val != (int16_t)val) {
        val = -32768;
    }
    return val;
}

int32_t helper_fisttl_ST0(CPUX86State *env)
{
    int32_t val;

    val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
    return val;
}

int64_t helper_fisttll_ST0(CPUX86State *env)
{
    int64_t val;

    val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
    return val;
}

void helper_fldt_ST0(CPUX86State *env, target_ulong ptr)
{
    int new_fpstt;

    new_fpstt = (env->fpstt - 1) & 7;
    env->fpregs[new_fpstt].d = helper_fldt(env, ptr, GETPC());
    env->fpstt = new_fpstt;
    env->fptags[new_fpstt] = 0; /* validate stack entry */
}

void helper_fstt_ST0(CPUX86State *env, target_ulong ptr)
{
    helper_fstt(env, ST0, ptr, GETPC());
}

void helper_fpush(CPUX86State *env)
{
    fpush(env);
}

void helper_fpop(CPUX86State *env)
{
    fpop(env);
}

void helper_fdecstp(CPUX86State *env)
{
    env->fpstt = (env->fpstt - 1) & 7;
    env->fpus &= ~0x4700;
}

void helper_fincstp(CPUX86State *env)
{
    env->fpstt = (env->fpstt + 1) & 7;
    env->fpus &= ~0x4700;
}

/* FPU move */

void helper_ffree_STN(CPUX86State *env, int st_index)
{
    env->fptags[(env->fpstt + st_index) & 7] = 1;
}

void helper_fmov_ST0_FT0(CPUX86State *env)
{
    ST0 = FT0;
}

void helper_fmov_FT0_STN(CPUX86State *env, int st_index)
{
    FT0 = ST(st_index);
}

void helper_fmov_ST0_STN(CPUX86State *env, int st_index)
{
    ST0 = ST(st_index);
}

void helper_fmov_STN_ST0(CPUX86State *env, int st_index)
{
    ST(st_index) = ST0;
}

void helper_fxchg_ST0_STN(CPUX86State *env, int st_index)
{
    floatx80 tmp;

    tmp = ST(st_index);
    ST(st_index) = ST0;
    ST0 = tmp;
}

/* FPU operations */

static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};

void helper_fcom_ST0_FT0(CPUX86State *env)
{
    int ret;

    ret = floatx80_compare(ST0, FT0, &env->fp_status);
    env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}

void helper_fucom_ST0_FT0(CPUX86State *env)
{
    int ret;

    ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
    env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}

static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};

void helper_fcomi_ST0_FT0(CPUX86State *env)
{
    int eflags;
    int ret;

    ret = floatx80_compare(ST0, FT0, &env->fp_status);
    eflags = cpu_cc_compute_all(env, CC_OP);
    eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
    CC_SRC = eflags;
}

void helper_fucomi_ST0_FT0(CPUX86State *env)
{
    int eflags;
    int ret;

    ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
    eflags = cpu_cc_compute_all(env, CC_OP);
    eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
    CC_SRC = eflags;
}

void helper_fadd_ST0_FT0(CPUX86State *env)
{
    ST0 = floatx80_add(ST0, FT0, &env->fp_status);
}

void helper_fmul_ST0_FT0(CPUX86State *env)
{
    ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
}

void helper_fsub_ST0_FT0(CPUX86State *env)
{
    ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
}

void helper_fsubr_ST0_FT0(CPUX86State *env)
{
    ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
}

void helper_fdiv_ST0_FT0(CPUX86State *env)
{
    ST0 = helper_fdiv(env, ST0, FT0);
}

void helper_fdivr_ST0_FT0(CPUX86State *env)
{
    ST0 = helper_fdiv(env, FT0, ST0);
}

/* fp operations between STN and ST0 */

void helper_fadd_STN_ST0(CPUX86State *env, int st_index)
{
    ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
}

void helper_fmul_STN_ST0(CPUX86State *env, int st_index)
{
    ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
}

void helper_fsub_STN_ST0(CPUX86State *env, int st_index)
{
    ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
}

void helper_fsubr_STN_ST0(CPUX86State *env, int st_index)
{
    ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
}

void helper_fdiv_STN_ST0(CPUX86State *env, int st_index)
{
    floatx80 *p;

    p = &ST(st_index);
    *p = helper_fdiv(env, *p, ST0);
}

void helper_fdivr_STN_ST0(CPUX86State *env, int st_index)
{
    floatx80 *p;

    p = &ST(st_index);
    *p = helper_fdiv(env, ST0, *p);
}

/* misc FPU operations */
void helper_fchs_ST0(CPUX86State *env)
{
    ST0 = floatx80_chs(ST0);
}

void helper_fabs_ST0(CPUX86State *env)
{
    ST0 = floatx80_abs(ST0);
}

void helper_fld1_ST0(CPUX86State *env)
{
    ST0 = floatx80_one;
}

void helper_fldl2t_ST0(CPUX86State *env)
{
    ST0 = floatx80_l2t;
}

void helper_fldl2e_ST0(CPUX86State *env)
{
    ST0 = floatx80_l2e;
}

void helper_fldpi_ST0(CPUX86State *env)
{
    ST0 = floatx80_pi;
}

void helper_fldlg2_ST0(CPUX86State *env)
{
    ST0 = floatx80_lg2;
}

void helper_fldln2_ST0(CPUX86State *env)
{
    ST0 = floatx80_ln2;
}

void helper_fldz_ST0(CPUX86State *env)
{
    ST0 = floatx80_zero;
}

void helper_fldz_FT0(CPUX86State *env)
{
    FT0 = floatx80_zero;
}

uint32_t helper_fnstsw(CPUX86State *env)
{
    return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
}

uint32_t helper_fnstcw(CPUX86State *env)
{
    return env->fpuc;
}

void update_fp_status(CPUX86State *env)
{
    int rnd_type;

    /* set rounding mode */
    switch (env->fpuc & FPU_RC_MASK) {
    default:
    case FPU_RC_NEAR:
        rnd_type = float_round_nearest_even;
        break;
    case FPU_RC_DOWN:
        rnd_type = float_round_down;
        break;
    case FPU_RC_UP:
        rnd_type = float_round_up;
        break;
    case FPU_RC_CHOP:
        rnd_type = float_round_to_zero;
        break;
    }
    set_float_rounding_mode(rnd_type, &env->fp_status);
    switch ((env->fpuc >> 8) & 3) {
    case 0:
        rnd_type = 32;
        break;
    case 2:
        rnd_type = 64;
        break;
    case 3:
    default:
        rnd_type = 80;
        break;
    }
    set_floatx80_rounding_precision(rnd_type, &env->fp_status);
}

void helper_fldcw(CPUX86State *env, uint32_t val)
{
    cpu_set_fpuc(env, val);
}

void helper_fclex(CPUX86State *env)
{
    env->fpus &= 0x7f00;
}

void helper_fwait(CPUX86State *env)
{
    if (env->fpus & FPUS_SE) {
        fpu_raise_exception(env, GETPC());
    }
}

void helper_fninit(CPUX86State *env)
{
    env->fpus = 0;
    env->fpstt = 0;
    cpu_set_fpuc(env, 0x37f);
    env->fptags[0] = 1;
    env->fptags[1] = 1;
    env->fptags[2] = 1;
    env->fptags[3] = 1;
    env->fptags[4] = 1;
    env->fptags[5] = 1;
    env->fptags[6] = 1;
    env->fptags[7] = 1;
}

/* BCD ops */

void helper_fbld_ST0(CPUX86State *env, target_ulong ptr)
{
    floatx80 tmp;
    uint64_t val;
    unsigned int v;
    int i;

    val = 0;
    for (i = 8; i >= 0; i--) {
        v = cpu_ldub_data_ra(env, ptr + i, GETPC());
        val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
    }
    tmp = int64_to_floatx80(val, &env->fp_status);
    if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) {
        tmp = floatx80_chs(tmp);
    }
    fpush(env);
    ST0 = tmp;
}

void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
{
    int v;
    target_ulong mem_ref, mem_end;
    int64_t val;

    val = floatx80_to_int64(ST0, &env->fp_status);
    mem_ref = ptr;
    mem_end = mem_ref + 9;
    if (val < 0) {
        cpu_stb_data_ra(env, mem_end, 0x80, GETPC());
        val = -val;
    } else {
        cpu_stb_data_ra(env, mem_end, 0x00, GETPC());
    }
    while (mem_ref < mem_end) {
        if (val == 0) {
            break;
        }
        v = val % 100;
        val = val / 100;
        v = ((v / 10) << 4) | (v % 10);
        cpu_stb_data_ra(env, mem_ref++, v, GETPC());
    }
    while (mem_ref < mem_end) {
        cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
    }
}

void helper_f2xm1(CPUX86State *env)
{
    double val = floatx80_to_double(env, ST0);

    val = pow(2.0, val) - 1.0;
    ST0 = double_to_floatx80(env, val);
}

void helper_fyl2x(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if (fptemp > 0.0) {
        fptemp = log(fptemp) / log(2.0); /* log2(ST) */
        fptemp *= floatx80_to_double(env, ST1);
        ST1 = double_to_floatx80(env, fptemp);
        fpop(env);
    } else {
        env->fpus &= ~0x4700;
        env->fpus |= 0x400;
    }
}

void helper_fptan(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
        env->fpus |= 0x400;
    } else {
        fptemp = tan(fptemp);
        ST0 = double_to_floatx80(env, fptemp);
        fpush(env);
        ST0 = floatx80_one;
        env->fpus &= ~0x400; /* C2 <-- 0 */
        /* the above code is for |arg| < 2**52 only */
    }
}

void helper_fpatan(CPUX86State *env)
{
    double fptemp, fpsrcop;

    fpsrcop = floatx80_to_double(env, ST1);
    fptemp = floatx80_to_double(env, ST0);
    ST1 = double_to_floatx80(env, atan2(fpsrcop, fptemp));
    fpop(env);
}

void helper_fxtract(CPUX86State *env)
{
    CPU_LDoubleU temp;

    temp.d = ST0;

    if (floatx80_is_zero(ST0)) {
        /* Easy way to generate -inf and raising division by 0 exception */
        ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero,
                           &env->fp_status);
        fpush(env);
        ST0 = temp.d;
    } else {
        int expdif;

        expdif = EXPD(temp) - EXPBIAS;
        /* DP exponent bias */
        ST0 = int32_to_floatx80(expdif, &env->fp_status);
        fpush(env);
        BIASEXPONENT(temp);
        ST0 = temp.d;
    }
}

void helper_fprem1(CPUX86State *env)
{
    double st0, st1, dblq, fpsrcop, fptemp;
    CPU_LDoubleU fpsrcop1, fptemp1;
    int expdif;
    signed long long int q;

    st0 = floatx80_to_double(env, ST0);
    st1 = floatx80_to_double(env, ST1);

    if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
        ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        return;
    }

    fpsrcop = st0;
    fptemp = st1;
    fpsrcop1.d = ST0;
    fptemp1.d = ST1;
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);

    if (expdif < 0) {
        /* optimisation? taken from the AMD docs */
        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        /* ST0 is unchanged */
        return;
    }

    if (expdif < 53) {
        dblq = fpsrcop / fptemp;
        /* round dblq towards nearest integer */
        dblq = rint(dblq);
        st0 = fpsrcop - fptemp * dblq;

        /* convert dblq to q by truncating towards zero */
        if (dblq < 0.0) {
            q = (signed long long int)(-dblq);
        } else {
            q = (signed long long int)dblq;
        }

        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        /* (C0,C3,C1) <-- (q2,q1,q0) */
        env->fpus |= (q & 0x4) << (8 - 2);  /* (C0) <-- q2 */
        env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
        env->fpus |= (q & 0x1) << (9 - 0);  /* (C1) <-- q0 */
    } else {
        env->fpus |= 0x400;  /* C2 <-- 1 */
        fptemp = pow(2.0, expdif - 50);
        fpsrcop = (st0 / st1) / fptemp;
        /* fpsrcop = integer obtained by chopping */
        fpsrcop = (fpsrcop < 0.0) ?
                  -(floor(fabs(fpsrcop))) : floor(fpsrcop);
        st0 -= (st1 * fpsrcop * fptemp);
    }
    ST0 = double_to_floatx80(env, st0);
}

void helper_fprem(CPUX86State *env)
{
    double st0, st1, dblq, fpsrcop, fptemp;
    CPU_LDoubleU fpsrcop1, fptemp1;
    int expdif;
    signed long long int q;

    st0 = floatx80_to_double(env, ST0);
    st1 = floatx80_to_double(env, ST1);

    if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
        ST0 = double_to_floatx80(env, 0.0 / 0.0); /* NaN */
        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        return;
    }

    fpsrcop = st0;
    fptemp = st1;
    fpsrcop1.d = ST0;
    fptemp1.d = ST1;
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);

    if (expdif < 0) {
        /* optimisation? taken from the AMD docs */
        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        /* ST0 is unchanged */
        return;
    }

    if (expdif < 53) {
        dblq = fpsrcop / fptemp; /* ST0 / ST1 */
        /* round dblq towards zero */
        dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
        st0 = fpsrcop - fptemp * dblq; /* fpsrcop is ST0 */

        /* convert dblq to q by truncating towards zero */
        if (dblq < 0.0) {
            q = (signed long long int)(-dblq);
        } else {
            q = (signed long long int)dblq;
        }

        env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
        /* (C0,C3,C1) <-- (q2,q1,q0) */
        env->fpus |= (q & 0x4) << (8 - 2);  /* (C0) <-- q2 */
        env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
        env->fpus |= (q & 0x1) << (9 - 0);  /* (C1) <-- q0 */
    } else {
        int N = 32 + (expdif % 32); /* as per AMD docs */

        env->fpus |= 0x400;  /* C2 <-- 1 */
        fptemp = pow(2.0, (double)(expdif - N));
        fpsrcop = (st0 / st1) / fptemp;
        /* fpsrcop = integer obtained by chopping */
        fpsrcop = (fpsrcop < 0.0) ?
                  -(floor(fabs(fpsrcop))) : floor(fpsrcop);
        st0 -= (st1 * fpsrcop * fptemp);
    }
    ST0 = double_to_floatx80(env, st0);
}

void helper_fyl2xp1(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if ((fptemp + 1.0) > 0.0) {
        fptemp = log(fptemp + 1.0) / log(2.0); /* log2(ST + 1.0) */
        fptemp *= floatx80_to_double(env, ST1);
        ST1 = double_to_floatx80(env, fptemp);
        fpop(env);
    } else {
        env->fpus &= ~0x4700;
        env->fpus |= 0x400;
    }
}

void helper_fsqrt(CPUX86State *env)
{
    if (floatx80_is_neg(ST0)) {
        env->fpus &= ~0x4700;  /* (C3,C2,C1,C0) <-- 0000 */
        env->fpus |= 0x400;
    }
    ST0 = floatx80_sqrt(ST0, &env->fp_status);
}

void helper_fsincos(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
        env->fpus |= 0x400;
    } else {
        ST0 = double_to_floatx80(env, sin(fptemp));
        fpush(env);
        ST0 = double_to_floatx80(env, cos(fptemp));
        env->fpus &= ~0x400;  /* C2 <-- 0 */
        /* the above code is for |arg| < 2**63 only */
    }
}

void helper_frndint(CPUX86State *env)
{
    ST0 = floatx80_round_to_int(ST0, &env->fp_status);
}

void helper_fscale(CPUX86State *env)
{
    if (floatx80_is_any_nan(ST1)) {
        ST0 = ST1;
    } else {
        int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
        ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
    }
}

void helper_fsin(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
        env->fpus |= 0x400;
    } else {
        ST0 = double_to_floatx80(env, sin(fptemp));
        env->fpus &= ~0x400;  /* C2 <-- 0 */
        /* the above code is for |arg| < 2**53 only */
    }
}

void helper_fcos(CPUX86State *env)
{
    double fptemp = floatx80_to_double(env, ST0);

    if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
        env->fpus |= 0x400;
    } else {
        ST0 = double_to_floatx80(env, cos(fptemp));
        env->fpus &= ~0x400;  /* C2 <-- 0 */
        /* the above code is for |arg| < 2**63 only */
    }
}

void helper_fxam_ST0(CPUX86State *env)
{
    CPU_LDoubleU temp;
    int expdif;

    temp.d = ST0;

    env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
    if (SIGND(temp)) {
        env->fpus |= 0x200; /* C1 <-- 1 */
    }

    /* XXX: test fptags too */
    expdif = EXPD(temp);
    if (expdif == MAXEXPD) {
        if (MANTD(temp) == 0x8000000000000000ULL) {
            env->fpus |= 0x500; /* Infinity */
        } else {
            env->fpus |= 0x100; /* NaN */
        }
    } else if (expdif == 0) {
        if (MANTD(temp) == 0) {
            env->fpus |=  0x4000; /* Zero */
        } else {
            env->fpus |= 0x4400; /* Denormal */
        }
    } else {
        env->fpus |= 0x400;
    }
}

static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32,
                      uintptr_t retaddr)
{
    int fpus, fptag, exp, i;
    uint64_t mant;
    CPU_LDoubleU tmp;

    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i = 7; i >= 0; i--) {
        fptag <<= 2;
        if (env->fptags[i]) {
            fptag |= 3;
        } else {
            tmp.d = env->fpregs[i].d;
            exp = EXPD(tmp);
            mant = MANTD(tmp);
            if (exp == 0 && mant == 0) {
                /* zero */
                fptag |= 1;
            } else if (exp == 0 || exp == MAXEXPD
                       || (mant & (1LL << 63)) == 0) {
                /* NaNs, infinity, denormal */
                fptag |= 2;
            }
        }
    }
    if (data32) {
        /* 32 bit */
        cpu_stl_data_ra(env, ptr, env->fpuc, retaddr);
        cpu_stl_data_ra(env, ptr + 4, fpus, retaddr);
        cpu_stl_data_ra(env, ptr + 8, fptag, retaddr);
        cpu_stl_data_ra(env, ptr + 12, 0, retaddr); /* fpip */
        cpu_stl_data_ra(env, ptr + 16, 0, retaddr); /* fpcs */
        cpu_stl_data_ra(env, ptr + 20, 0, retaddr); /* fpoo */
        cpu_stl_data_ra(env, ptr + 24, 0, retaddr); /* fpos */
    } else {
        /* 16 bit */
        cpu_stw_data_ra(env, ptr, env->fpuc, retaddr);
        cpu_stw_data_ra(env, ptr + 2, fpus, retaddr);
        cpu_stw_data_ra(env, ptr + 4, fptag, retaddr);
        cpu_stw_data_ra(env, ptr + 6, 0, retaddr);
        cpu_stw_data_ra(env, ptr + 8, 0, retaddr);
        cpu_stw_data_ra(env, ptr + 10, 0, retaddr);
        cpu_stw_data_ra(env, ptr + 12, 0, retaddr);
    }
}

void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32)
{
    do_fstenv(env, ptr, data32, GETPC());
}

static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32,
                      uintptr_t retaddr)
{
    int i, fpus, fptag;

    if (data32) {
        cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
        fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr);
        fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr);
    } else {
        cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
        fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr);
        fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr);
    }
    env->fpstt = (fpus >> 11) & 7;
    env->fpus = fpus & ~0x3800;
    for (i = 0; i < 8; i++) {
        env->fptags[i] = ((fptag & 3) == 3);
        fptag >>= 2;
    }
}

void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32)
{
    do_fldenv(env, ptr, data32, GETPC());
}

void helper_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
    floatx80 tmp;
    int i;

    do_fstenv(env, ptr, data32, GETPC());

    ptr += (14 << data32);
    for (i = 0; i < 8; i++) {
        tmp = ST(i);
        helper_fstt(env, tmp, ptr, GETPC());
        ptr += 10;
    }

    /* fninit */
    env->fpus = 0;
    env->fpstt = 0;
    cpu_set_fpuc(env, 0x37f);
    env->fptags[0] = 1;
    env->fptags[1] = 1;
    env->fptags[2] = 1;
    env->fptags[3] = 1;
    env->fptags[4] = 1;
    env->fptags[5] = 1;
    env->fptags[6] = 1;
    env->fptags[7] = 1;
}

void helper_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
    floatx80 tmp;
    int i;

    do_fldenv(env, ptr, data32, GETPC());
    ptr += (14 << data32);

    for (i = 0; i < 8; i++) {
        tmp = helper_fldt(env, ptr, GETPC());
        ST(i) = tmp;
        ptr += 10;
    }
}

#if defined(CONFIG_USER_ONLY)
void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32)
{
    helper_fsave(env, ptr, data32);
}

void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32)
{
    helper_frstor(env, ptr, data32);
}
#endif

static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    int fpus, fptag, i;
    target_ulong addr;

    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
    fptag = 0;
    for (i = 0; i < 8; i++) {
        fptag |= (env->fptags[i] << i);
    }
    cpu_stw_data_ra(env, ptr, env->fpuc, ra);
    cpu_stw_data_ra(env, ptr + 2, fpus, ra);
    cpu_stw_data_ra(env, ptr + 4, fptag ^ 0xff, ra);

    /* In 32-bit mode this is eip, sel, dp, sel.
       In 64-bit mode this is rip, rdp.
       But in either case we don't write actual data, just zeros.  */
    cpu_stq_data_ra(env, ptr + 0x08, 0, ra); /* eip+sel; rip */
    cpu_stq_data_ra(env, ptr + 0x10, 0, ra); /* edp+sel; rdp */

    addr = ptr + 0x20;
    for (i = 0; i < 8; i++) {
        floatx80 tmp = ST(i);
        helper_fstt(env, tmp, addr, ra);
        addr += 16;
    }
}

static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    cpu_stl_data_ra(env, ptr + 0x18, env->mxcsr, ra); /* mxcsr */
    cpu_stl_data_ra(env, ptr + 0x1c, 0x0000ffff, ra); /* mxcsr_mask */
}

static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    int i, nb_xmm_regs;
    target_ulong addr;

    if (env->hflags & HF_CS64_MASK) {
        nb_xmm_regs = 16;
    } else {
        nb_xmm_regs = 8;
    }

    addr = ptr + 0xa0;
    for (i = 0; i < nb_xmm_regs; i++) {
        cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra);
        cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra);
        addr += 16;
    }
}

static void do_xsave_bndregs(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    int i;

    for (i = 0; i < 4; i++, addr += 16) {
        cpu_stq_data_ra(env, addr, env->bnd_regs[i].lb, ra);
        cpu_stq_data_ra(env, addr + 8, env->bnd_regs[i].ub, ra);
    }
}

static void do_xsave_bndcsr(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    cpu_stq_data_ra(env, addr, env->bndcs_regs.cfgu, ra);
    cpu_stq_data_ra(env, addr + 8, env->bndcs_regs.sts, ra);
}

static void do_xsave_pkru(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    cpu_stq_data_ra(env, addr, env->pkru, ra);
}

void helper_fxsave(CPUX86State *env, target_ulong ptr)
{
    uintptr_t ra = GETPC();

    /* The operand must be 16 byte aligned */
    if (ptr & 0xf) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    do_xsave_fpu(env, ptr, ra);

    if (env->cr[4] & CR4_OSFXSR_MASK) {
        do_xsave_mxcsr(env, ptr, ra);
        /* Fast FXSAVE leaves out the XMM registers */
        if (!(env->efer & MSR_EFER_FFXSR)
            || (env->hflags & HF_CPL_MASK)
            || !(env->hflags & HF_LMA_MASK)) {
            do_xsave_sse(env, ptr, ra);
        }
    }
}

static uint64_t get_xinuse(CPUX86State *env)
{
    uint64_t inuse = -1;

    /* For the most part, we don't track XINUSE.  We could calculate it
       here for all components, but it's probably less work to simply
       indicate in use.  That said, the state of BNDREGS is important
       enough to track in HFLAGS, so we might as well use that here.  */
    if ((env->hflags & HF_MPX_IU_MASK) == 0) {
       inuse &= ~XSTATE_BNDREGS_MASK;
    }
    return inuse;
}

static void do_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm,
                     uint64_t inuse, uint64_t opt, uintptr_t ra)
{
    uint64_t old_bv, new_bv;

    /* The OS must have enabled XSAVE.  */
    if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
        raise_exception_ra(env, EXCP06_ILLOP, ra);
    }

    /* The operand must be 64 byte aligned.  */
    if (ptr & 63) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    /* Never save anything not enabled by XCR0.  */
    rfbm &= env->xcr0;
    opt &= rfbm;

    if (opt & XSTATE_FP_MASK) {
        do_xsave_fpu(env, ptr, ra);
    }
    if (rfbm & XSTATE_SSE_MASK) {
        /* Note that saving MXCSR is not suppressed by XSAVEOPT.  */
        do_xsave_mxcsr(env, ptr, ra);
    }
    if (opt & XSTATE_SSE_MASK) {
        do_xsave_sse(env, ptr, ra);
    }
    if (opt & XSTATE_BNDREGS_MASK) {
        target_ulong off = x86_ext_save_areas[XSTATE_BNDREGS_BIT].offset;
        do_xsave_bndregs(env, ptr + off, ra);
    }
    if (opt & XSTATE_BNDCSR_MASK) {
        target_ulong off = x86_ext_save_areas[XSTATE_BNDCSR_BIT].offset;
        do_xsave_bndcsr(env, ptr + off, ra);
    }
    if (opt & XSTATE_PKRU_MASK) {
        target_ulong off = x86_ext_save_areas[XSTATE_PKRU_BIT].offset;
        do_xsave_pkru(env, ptr + off, ra);
    }

    /* Update the XSTATE_BV field.  */
    old_bv = cpu_ldq_data_ra(env, ptr + 512, ra);
    new_bv = (old_bv & ~rfbm) | (inuse & rfbm);
    cpu_stq_data_ra(env, ptr + 512, new_bv, ra);
}

void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
    do_xsave(env, ptr, rfbm, get_xinuse(env), -1, GETPC());
}

void helper_xsaveopt(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
    uint64_t inuse = get_xinuse(env);
    do_xsave(env, ptr, rfbm, inuse, inuse, GETPC());
}

static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    int i, fpus, fptag;
    target_ulong addr;

    cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, ra));
    fpus = cpu_lduw_data_ra(env, ptr + 2, ra);
    fptag = cpu_lduw_data_ra(env, ptr + 4, ra);
    env->fpstt = (fpus >> 11) & 7;
    env->fpus = fpus & ~0x3800;
    fptag ^= 0xff;
    for (i = 0; i < 8; i++) {
        env->fptags[i] = ((fptag >> i) & 1);
    }

    addr = ptr + 0x20;
    for (i = 0; i < 8; i++) {
        floatx80 tmp = helper_fldt(env, addr, ra);
        ST(i) = tmp;
        addr += 16;
    }
}

static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + 0x18, ra));
}

static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
{
    int i, nb_xmm_regs;
    target_ulong addr;

    if (env->hflags & HF_CS64_MASK) {
        nb_xmm_regs = 16;
    } else {
        nb_xmm_regs = 8;
    }

    addr = ptr + 0xa0;
    for (i = 0; i < nb_xmm_regs; i++) {
        env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra);
        env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra);
        addr += 16;
    }
}

static void do_xrstor_bndregs(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    int i;

    for (i = 0; i < 4; i++, addr += 16) {
        env->bnd_regs[i].lb = cpu_ldq_data_ra(env, addr, ra);
        env->bnd_regs[i].ub = cpu_ldq_data_ra(env, addr + 8, ra);
    }
}

static void do_xrstor_bndcsr(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    /* FIXME: Extend highest implemented bit of linear address.  */
    env->bndcs_regs.cfgu = cpu_ldq_data_ra(env, addr, ra);
    env->bndcs_regs.sts = cpu_ldq_data_ra(env, addr + 8, ra);
}

static void do_xrstor_pkru(CPUX86State *env, target_ulong addr, uintptr_t ra)
{
    env->pkru = cpu_ldq_data_ra(env, addr, ra);
}

void helper_fxrstor(CPUX86State *env, target_ulong ptr)
{
    uintptr_t ra = GETPC();

    /* The operand must be 16 byte aligned */
    if (ptr & 0xf) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    do_xrstor_fpu(env, ptr, ra);

    if (env->cr[4] & CR4_OSFXSR_MASK) {
        do_xrstor_mxcsr(env, ptr, ra);
        /* Fast FXRSTOR leaves out the XMM registers */
        if (!(env->efer & MSR_EFER_FFXSR)
            || (env->hflags & HF_CPL_MASK)
            || !(env->hflags & HF_LMA_MASK)) {
            do_xrstor_sse(env, ptr, ra);
        }
    }
}

void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
{
    uintptr_t ra = GETPC();
    uint64_t xstate_bv, xcomp_bv0, xcomp_bv1;

    rfbm &= env->xcr0;

    /* The OS must have enabled XSAVE.  */
    if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
        raise_exception_ra(env, EXCP06_ILLOP, ra);
    }

    /* The operand must be 64 byte aligned.  */
    if (ptr & 63) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    xstate_bv = cpu_ldq_data_ra(env, ptr + 512, ra);

    if ((int64_t)xstate_bv < 0) {
        /* FIXME: Compact form.  */
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    /* Standard form.  */

    /* The XSTATE field must not set bits not present in XCR0.  */
    if (xstate_bv & ~env->xcr0) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    /* The XCOMP field must be zero.  */
    xcomp_bv0 = cpu_ldq_data_ra(env, ptr + 520, ra);
    xcomp_bv1 = cpu_ldq_data_ra(env, ptr + 528, ra);
    if (xcomp_bv0 || xcomp_bv1) {
        raise_exception_ra(env, EXCP0D_GPF, ra);
    }

    if (rfbm & XSTATE_FP_MASK) {
        if (xstate_bv & XSTATE_FP_MASK) {
            do_xrstor_fpu(env, ptr, ra);
        } else {
            helper_fninit(env);
            memset(env->fpregs, 0, sizeof(env->fpregs));
        }
    }
    if (rfbm & XSTATE_SSE_MASK) {
        /* Note that the standard form of XRSTOR loads MXCSR from memory
           whether or not the XSTATE_BV bit is set.  */
        do_xrstor_mxcsr(env, ptr, ra);
        if (xstate_bv & XSTATE_SSE_MASK) {
            do_xrstor_sse(env, ptr, ra);
        } else {
            /* ??? When AVX is implemented, we may have to be more
               selective in the clearing.  */
            memset(env->xmm_regs, 0, sizeof(env->xmm_regs));
        }
    }
    if (rfbm & XSTATE_BNDREGS_MASK) {
        if (xstate_bv & XSTATE_BNDREGS_MASK) {
            target_ulong off = x86_ext_save_areas[XSTATE_BNDREGS_BIT].offset;
            do_xrstor_bndregs(env, ptr + off, ra);
            env->hflags |= HF_MPX_IU_MASK;
        } else {
            memset(env->bnd_regs, 0, sizeof(env->bnd_regs));
            env->hflags &= ~HF_MPX_IU_MASK;
        }
    }
    if (rfbm & XSTATE_BNDCSR_MASK) {
        if (xstate_bv & XSTATE_BNDCSR_MASK) {
            target_ulong off = x86_ext_save_areas[XSTATE_BNDCSR_BIT].offset;
            do_xrstor_bndcsr(env, ptr + off, ra);
        } else {
            memset(&env->bndcs_regs, 0, sizeof(env->bndcs_regs));
        }
        cpu_sync_bndcs_hflags(env);
    }
    if (rfbm & XSTATE_PKRU_MASK) {
        uint64_t old_pkru = env->pkru;
        if (xstate_bv & XSTATE_PKRU_MASK) {
            target_ulong off = x86_ext_save_areas[XSTATE_PKRU_BIT].offset;
            do_xrstor_pkru(env, ptr + off, ra);
        } else {
            env->pkru = 0;
        }
        if (env->pkru != old_pkru) {
            CPUState *cs = CPU(x86_env_get_cpu(env));
            tlb_flush(cs, 1);
        }
    }
}

uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx)
{
    /* The OS must have enabled XSAVE.  */
    if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
        raise_exception_ra(env, EXCP06_ILLOP, GETPC());
    }

    switch (ecx) {
    case 0:
        return env->xcr0;
    case 1:
        if (env->features[FEAT_XSAVE] & CPUID_XSAVE_XGETBV1) {
            return env->xcr0 & get_xinuse(env);
        }
        break;
    }
    raise_exception_ra(env, EXCP0D_GPF, GETPC());
}

void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask)
{
    uint32_t dummy, ena_lo, ena_hi;
    uint64_t ena;

    /* The OS must have enabled XSAVE.  */
    if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
        raise_exception_ra(env, EXCP06_ILLOP, GETPC());
    }

    /* Only XCR0 is defined at present; the FPU may not be disabled.  */
    if (ecx != 0 || (mask & XSTATE_FP_MASK) == 0) {
        goto do_gpf;
    }

    /* Disallow enabling unimplemented features.  */
    cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi);
    ena = ((uint64_t)ena_hi << 32) | ena_lo;
    if (mask & ~ena) {
        goto do_gpf;
    }

    /* Disallow enabling only half of MPX.  */
    if ((mask ^ (mask * (XSTATE_BNDCSR_MASK / XSTATE_BNDREGS_MASK)))
        & XSTATE_BNDCSR_MASK) {
        goto do_gpf;
    }

    env->xcr0 = mask;
    cpu_sync_bndcs_hflags(env);
    return;

 do_gpf:
    raise_exception_ra(env, EXCP0D_GPF, GETPC());
}

void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
{
    CPU_LDoubleU temp;

    temp.d = f;
    *pmant = temp.l.lower;
    *pexp = temp.l.upper;
}

floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
{
    CPU_LDoubleU temp;

    temp.l.upper = upper;
    temp.l.lower = mant;
    return temp.d;
}

/* MMX/SSE */
/* XXX: optimize by storing fptt and fptags in the static cpu state */

#define SSE_DAZ             0x0040
#define SSE_RC_MASK         0x6000
#define SSE_RC_NEAR         0x0000
#define SSE_RC_DOWN         0x2000
#define SSE_RC_UP           0x4000
#define SSE_RC_CHOP         0x6000
#define SSE_FZ              0x8000

void cpu_set_mxcsr(CPUX86State *env, uint32_t mxcsr)
{
    int rnd_type;

    env->mxcsr = mxcsr;

    /* set rounding mode */
    switch (mxcsr & SSE_RC_MASK) {
    default:
    case SSE_RC_NEAR:
        rnd_type = float_round_nearest_even;
        break;
    case SSE_RC_DOWN:
        rnd_type = float_round_down;
        break;
    case SSE_RC_UP:
        rnd_type = float_round_up;
        break;
    case SSE_RC_CHOP:
        rnd_type = float_round_to_zero;
        break;
    }
    set_float_rounding_mode(rnd_type, &env->sse_status);

    /* set denormals are zero */
    set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);

    /* set flush to zero */
    set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->fp_status);
}

void cpu_set_fpuc(CPUX86State *env, uint16_t val)
{
    env->fpuc = val;
    update_fp_status(env);
}

void helper_ldmxcsr(CPUX86State *env, uint32_t val)
{
    cpu_set_mxcsr(env, val);
}

void helper_enter_mmx(CPUX86State *env)
{
    env->fpstt = 0;
    *(uint32_t *)(env->fptags) = 0;
    *(uint32_t *)(env->fptags + 4) = 0;
}

void helper_emms(CPUX86State *env)
{
    /* set to empty state */
    *(uint32_t *)(env->fptags) = 0x01010101;
    *(uint32_t *)(env->fptags + 4) = 0x01010101;
}

/* XXX: suppress */
void helper_movq(CPUX86State *env, void *d, void *s)
{
    *(uint64_t *)d = *(uint64_t *)s;
}

#define SHIFT 0
#include "ops_sse.h"

#define SHIFT 1
#include "ops_sse.h"