summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/drivers/spi/tegra20_sflash.c
blob: b5d561be34108dade5a7450391ff9824461d03c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/*
 * Copyright (c) 2010-2013 NVIDIA Corporation
 * With help from the mpc8xxx SPI driver
 * With more help from omap3_spi SPI driver
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch/pinmux.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra20/tegra20_sflash.h>
#include <spi.h>
#include <fdtdec.h>

DECLARE_GLOBAL_DATA_PTR;

#define SPI_CMD_GO			(1 << 30)
#define SPI_CMD_ACTIVE_SCLK_SHIFT	26
#define SPI_CMD_ACTIVE_SCLK_MASK	(3 << SPI_CMD_ACTIVE_SCLK_SHIFT)
#define SPI_CMD_CK_SDA			(1 << 21)
#define SPI_CMD_ACTIVE_SDA_SHIFT	18
#define SPI_CMD_ACTIVE_SDA_MASK		(3 << SPI_CMD_ACTIVE_SDA_SHIFT)
#define SPI_CMD_CS_POL			(1 << 16)
#define SPI_CMD_TXEN			(1 << 15)
#define SPI_CMD_RXEN			(1 << 14)
#define SPI_CMD_CS_VAL			(1 << 13)
#define SPI_CMD_CS_SOFT			(1 << 12)
#define SPI_CMD_CS_DELAY		(1 << 9)
#define SPI_CMD_CS3_EN			(1 << 8)
#define SPI_CMD_CS2_EN			(1 << 7)
#define SPI_CMD_CS1_EN			(1 << 6)
#define SPI_CMD_CS0_EN			(1 << 5)
#define SPI_CMD_BIT_LENGTH		(1 << 4)
#define SPI_CMD_BIT_LENGTH_MASK		0x0000001F

#define SPI_STAT_BSY			(1 << 31)
#define SPI_STAT_RDY			(1 << 30)
#define SPI_STAT_RXF_FLUSH		(1 << 29)
#define SPI_STAT_TXF_FLUSH		(1 << 28)
#define SPI_STAT_RXF_UNR		(1 << 27)
#define SPI_STAT_TXF_OVF		(1 << 26)
#define SPI_STAT_RXF_EMPTY		(1 << 25)
#define SPI_STAT_RXF_FULL		(1 << 24)
#define SPI_STAT_TXF_EMPTY		(1 << 23)
#define SPI_STAT_TXF_FULL		(1 << 22)
#define SPI_STAT_SEL_TXRX_N		(1 << 16)
#define SPI_STAT_CUR_BLKCNT		(1 << 15)

#define SPI_TIMEOUT		1000
#define TEGRA_SPI_MAX_FREQ	52000000

struct spi_regs {
	u32 command;	/* SPI_COMMAND_0 register  */
	u32 status;	/* SPI_STATUS_0 register */
	u32 rx_cmp;	/* SPI_RX_CMP_0 register  */
	u32 dma_ctl;	/* SPI_DMA_CTL_0 register */
	u32 tx_fifo;	/* SPI_TX_FIFO_0 register */
	u32 rsvd[3];	/* offsets 0x14 to 0x1F reserved */
	u32 rx_fifo;	/* SPI_RX_FIFO_0 register */
};

struct tegra_spi_ctrl {
	struct spi_regs *regs;
	unsigned int freq;
	unsigned int mode;
	int periph_id;
	int valid;
};

struct tegra_spi_slave {
	struct spi_slave slave;
	struct tegra_spi_ctrl *ctrl;
};

/* tegra20 only supports one SFLASH controller */
static struct tegra_spi_ctrl spi_ctrls[1];

static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
{
	return container_of(slave, struct tegra_spi_slave, slave);
}

int tegra20_spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
	/* Tegra20 SPI-Flash - only 1 device ('bus/cs') */
	if (bus != 0 || cs != 0)
		return 0;
	else
		return 1;
}

struct spi_slave *tegra20_spi_setup_slave(unsigned int bus, unsigned int cs,
				  unsigned int max_hz, unsigned int mode)
{
	struct tegra_spi_slave *spi;

	if (!spi_cs_is_valid(bus, cs)) {
		printf("SPI error: unsupported bus %d / chip select %d\n",
		       bus, cs);
		return NULL;
	}

	if (max_hz > TEGRA_SPI_MAX_FREQ) {
		printf("SPI error: unsupported frequency %d Hz. Max frequency"
			" is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
		return NULL;
	}

	spi = spi_alloc_slave(struct tegra_spi_slave, bus, cs);
	if (!spi) {
		printf("SPI error: malloc of SPI structure failed\n");
		return NULL;
	}
	spi->ctrl = &spi_ctrls[bus];
	if (!spi->ctrl) {
		printf("SPI error: could not find controller for bus %d\n",
		       bus);
		return NULL;
	}

	if (max_hz < spi->ctrl->freq) {
		debug("%s: limiting frequency from %u to %u\n", __func__,
		      spi->ctrl->freq, max_hz);
		spi->ctrl->freq = max_hz;
	}
	spi->ctrl->mode = mode;

	return &spi->slave;
}

void tegra20_spi_free_slave(struct spi_slave *slave)
{
	struct tegra_spi_slave *spi = to_tegra_spi(slave);

	free(spi);
}

int tegra20_spi_init(int *node_list, int count)
{
	struct tegra_spi_ctrl *ctrl;
	int i;
	int node = 0;
	int found = 0;

	for (i = 0; i < count; i++) {
		ctrl = &spi_ctrls[i];
		node = node_list[i];

		ctrl->regs = (struct spi_regs *)fdtdec_get_addr(gd->fdt_blob,
								node, "reg");
		if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
			debug("%s: no slink register found\n", __func__);
			continue;
		}
		ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
					    "spi-max-frequency", 0);
		if (!ctrl->freq) {
			debug("%s: no slink max frequency found\n", __func__);
			continue;
		}

		ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
		if (ctrl->periph_id == PERIPH_ID_NONE) {
			debug("%s: could not decode periph id\n", __func__);
			continue;
		}
		ctrl->valid = 1;
		found = 1;

		debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
		      __func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
	}
	return !found;
}

int tegra20_spi_claim_bus(struct spi_slave *slave)
{
	struct tegra_spi_slave *spi = to_tegra_spi(slave);
	struct spi_regs *regs = spi->ctrl->regs;
	u32 reg;

	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
	clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
			       spi->ctrl->freq);

	/* Clear stale status here */
	reg = SPI_STAT_RDY | SPI_STAT_RXF_FLUSH | SPI_STAT_TXF_FLUSH | \
		SPI_STAT_RXF_UNR | SPI_STAT_TXF_OVF;
	writel(reg, &regs->status);
	debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));

	/*
	 * Use sw-controlled CS, so we can clock in data after ReadID, etc.
	 */
	reg = (spi->ctrl->mode & 1) << SPI_CMD_ACTIVE_SDA_SHIFT;
	if (spi->ctrl->mode & 2)
		reg |= 1 << SPI_CMD_ACTIVE_SCLK_SHIFT;
	clrsetbits_le32(&regs->command, SPI_CMD_ACTIVE_SCLK_MASK |
		SPI_CMD_ACTIVE_SDA_MASK, SPI_CMD_CS_SOFT | reg);
	debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));

	/*
	 * SPI pins on Tegra20 are muxed - change pinmux later due to UART
	 * issue.
	 */
	pinmux_set_func(PMUX_PINGRP_GMD, PMUX_FUNC_SFLASH);
	pinmux_tristate_disable(PMUX_PINGRP_LSPI);
	pinmux_set_func(PMUX_PINGRP_GMC, PMUX_FUNC_SFLASH);

	return 0;
}

void tegra20_spi_cs_activate(struct spi_slave *slave)
{
	struct tegra_spi_slave *spi = to_tegra_spi(slave);
	struct spi_regs *regs = spi->ctrl->regs;

	/* CS is negated on Tegra, so drive a 1 to get a 0 */
	setbits_le32(&regs->command, SPI_CMD_CS_VAL);
}

void tegra20_spi_cs_deactivate(struct spi_slave *slave)
{
	struct tegra_spi_slave *spi = to_tegra_spi(slave);
	struct spi_regs *regs = spi->ctrl->regs;

	/* CS is negated on Tegra, so drive a 0 to get a 1 */
	clrbits_le32(&regs->command, SPI_CMD_CS_VAL);
}

int tegra20_spi_xfer(struct spi_slave *slave, unsigned int bitlen,
		const void *data_out, void *data_in, unsigned long flags)
{
	struct tegra_spi_slave *spi = to_tegra_spi(slave);
	struct spi_regs *regs = spi->ctrl->regs;
	u32 reg, tmpdout, tmpdin = 0;
	const u8 *dout = data_out;
	u8 *din = data_in;
	int num_bytes;
	int ret;

	debug("spi_xfer: slave %u:%u dout %08X din %08X bitlen %u\n",
	      slave->bus, slave->cs, *(u8 *)dout, *(u8 *)din, bitlen);
	if (bitlen % 8)
		return -1;
	num_bytes = bitlen / 8;

	ret = 0;

	reg = readl(&regs->status);
	writel(reg, &regs->status);	/* Clear all SPI events via R/W */
	debug("spi_xfer entry: STATUS = %08x\n", reg);

	reg = readl(&regs->command);
	reg |= SPI_CMD_TXEN | SPI_CMD_RXEN;
	writel(reg, &regs->command);
	debug("spi_xfer: COMMAND = %08x\n", readl(&regs->command));

	if (flags & SPI_XFER_BEGIN)
		spi_cs_activate(slave);

	/* handle data in 32-bit chunks */
	while (num_bytes > 0) {
		int bytes;
		int is_read = 0;
		int tm, i;

		tmpdout = 0;
		bytes = (num_bytes > 4) ?  4 : num_bytes;

		if (dout != NULL) {
			for (i = 0; i < bytes; ++i)
				tmpdout = (tmpdout << 8) | dout[i];
		}

		num_bytes -= bytes;
		if (dout)
			dout += bytes;

		clrsetbits_le32(&regs->command, SPI_CMD_BIT_LENGTH_MASK,
				bytes * 8 - 1);
		writel(tmpdout, &regs->tx_fifo);
		setbits_le32(&regs->command, SPI_CMD_GO);

		/*
		 * Wait for SPI transmit FIFO to empty, or to time out.
		 * The RX FIFO status will be read and cleared last
		 */
		for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
			u32 status;

			status = readl(&regs->status);

			/* We can exit when we've had both RX and TX activity */
			if (is_read && (status & SPI_STAT_TXF_EMPTY))
				break;

			if ((status & (SPI_STAT_BSY | SPI_STAT_RDY)) !=
					SPI_STAT_RDY)
				tm++;

			else if (!(status & SPI_STAT_RXF_EMPTY)) {
				tmpdin = readl(&regs->rx_fifo);
				is_read = 1;

				/* swap bytes read in */
				if (din != NULL) {
					for (i = bytes - 1; i >= 0; --i) {
						din[i] = tmpdin & 0xff;
						tmpdin >>= 8;
					}
					din += bytes;
				}
			}
		}

		if (tm >= SPI_TIMEOUT)
			ret = tm;

		/* clear ACK RDY, etc. bits */
		writel(readl(&regs->status), &regs->status);
	}

	if (flags & SPI_XFER_END)
		spi_cs_deactivate(slave);

	debug("spi_xfer: transfer ended. Value=%08x, status = %08x\n",
		tmpdin, readl(&regs->status));

	if (ret) {
		printf("spi_xfer: timeout during SPI transfer, tm %d\n", ret);
		return -1;
	}

	return 0;
}