summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/drivers/fpga/zynqpl.c
blob: c066f21d79f323f17227b4001fa55358f9b14735 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
 * (C) Copyright 2012-2013, Xilinx, Michal Simek
 *
 * (C) Copyright 2012
 * Joe Hershberger <joe.hershberger@ni.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/io.h>
#include <zynqpl.h>
#include <linux/sizes.h>
#include <asm/arch/hardware.h>
#include <asm/arch/sys_proto.h>

#define DEVCFG_CTRL_PCFG_PROG_B		0x40000000
#define DEVCFG_ISR_FATAL_ERROR_MASK	0x00740040
#define DEVCFG_ISR_ERROR_FLAGS_MASK	0x00340840
#define DEVCFG_ISR_RX_FIFO_OV		0x00040000
#define DEVCFG_ISR_DMA_DONE		0x00002000
#define DEVCFG_ISR_PCFG_DONE		0x00000004
#define DEVCFG_STATUS_DMA_CMD_Q_F	0x80000000
#define DEVCFG_STATUS_DMA_CMD_Q_E	0x40000000
#define DEVCFG_STATUS_DMA_DONE_CNT_MASK	0x30000000
#define DEVCFG_STATUS_PCFG_INIT		0x00000010
#define DEVCFG_MCTRL_PCAP_LPBK		0x00000010
#define DEVCFG_MCTRL_RFIFO_FLUSH	0x00000002
#define DEVCFG_MCTRL_WFIFO_FLUSH	0x00000001

#ifndef CONFIG_SYS_FPGA_WAIT
#define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100	/* 10 ms */
#endif

#ifndef CONFIG_SYS_FPGA_PROG_TIME
#define CONFIG_SYS_FPGA_PROG_TIME	(CONFIG_SYS_HZ * 4) /* 4 s */
#endif

static int zynq_info(xilinx_desc *desc)
{
	return FPGA_SUCCESS;
}

#define DUMMY_WORD	0xffffffff

/* Xilinx binary format header */
static const u32 bin_format[] = {
	DUMMY_WORD, /* Dummy words */
	DUMMY_WORD,
	DUMMY_WORD,
	DUMMY_WORD,
	DUMMY_WORD,
	DUMMY_WORD,
	DUMMY_WORD,
	DUMMY_WORD,
	0x000000bb, /* Sync word */
	0x11220044, /* Sync word */
	DUMMY_WORD,
	DUMMY_WORD,
	0xaa995566, /* Sync word */
};

#define SWAP_NO		1
#define SWAP_DONE	2

/*
 * Load the whole word from unaligned buffer
 * Keep in your mind that it is byte loading on little-endian system
 */
static u32 load_word(const void *buf, u32 swap)
{
	u32 word = 0;
	u8 *bitc = (u8 *)buf;
	int p;

	if (swap == SWAP_NO) {
		for (p = 0; p < 4; p++) {
			word <<= 8;
			word |= bitc[p];
		}
	} else {
		for (p = 3; p >= 0; p--) {
			word <<= 8;
			word |= bitc[p];
		}
	}

	return word;
}

static u32 check_header(const void *buf)
{
	u32 i, pattern;
	int swap = SWAP_NO;
	u32 *test = (u32 *)buf;

	debug("%s: Let's check bitstream header\n", __func__);

	/* Checking that passing bin is not a bitstream */
	for (i = 0; i < ARRAY_SIZE(bin_format); i++) {
		pattern = load_word(&test[i], swap);

		/*
		 * Bitstreams in binary format are swapped
		 * compare to regular bistream.
		 * Do not swap dummy word but if swap is done assume
		 * that parsing buffer is binary format
		 */
		if ((__swab32(pattern) != DUMMY_WORD) &&
		    (__swab32(pattern) == bin_format[i])) {
			pattern = __swab32(pattern);
			swap = SWAP_DONE;
			debug("%s: data swapped - let's swap\n", __func__);
		}

		debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i,
		      (u32)&test[i], pattern, bin_format[i]);
		if (pattern != bin_format[i]) {
			debug("%s: Bitstream is not recognized\n", __func__);
			return 0;
		}
	}
	debug("%s: Found bitstream header at %x %s swapinng\n", __func__,
	      (u32)buf, swap == SWAP_NO ? "without" : "with");

	return swap;
}

static void *check_data(u8 *buf, size_t bsize, u32 *swap)
{
	u32 word, p = 0; /* possition */

	/* Because buf doesn't need to be aligned let's read it by chars */
	for (p = 0; p < bsize; p++) {
		word = load_word(&buf[p], SWAP_NO);
		debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]);

		/* Find the first bitstream dummy word */
		if (word == DUMMY_WORD) {
			debug("%s: Found dummy word at position %x/%x\n",
			      __func__, p, (u32)&buf[p]);
			*swap = check_header(&buf[p]);
			if (*swap) {
				/* FIXME add full bitstream checking here */
				return &buf[p];
			}
		}
		/* Loop can be huge - support CTRL + C */
		if (ctrlc())
			return NULL;
	}
	return NULL;
}

static int zynq_dma_transfer(u32 srcbuf, u32 srclen, u32 dstbuf, u32 dstlen)
{
	unsigned long ts;
	u32 isr_status;

	/* Set up the transfer */
	writel((u32)srcbuf, &devcfg_base->dma_src_addr);
	writel(dstbuf, &devcfg_base->dma_dst_addr);
	writel(srclen, &devcfg_base->dma_src_len);
	writel(dstlen, &devcfg_base->dma_dst_len);

	isr_status = readl(&devcfg_base->int_sts);

	/* Polling the PCAP_INIT status for Set */
	ts = get_timer(0);
	while (!(isr_status & DEVCFG_ISR_DMA_DONE)) {
		if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) {
			debug("%s: Error: isr = 0x%08X\n", __func__,
			      isr_status);
			debug("%s: Write count = 0x%08X\n", __func__,
			      readl(&devcfg_base->write_count));
			debug("%s: Read count = 0x%08X\n", __func__,
			      readl(&devcfg_base->read_count));

			return FPGA_FAIL;
		}
		if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) {
			printf("%s: Timeout wait for DMA to complete\n",
			       __func__);
			return FPGA_FAIL;
		}
		isr_status = readl(&devcfg_base->int_sts);
	}

	debug("%s: DMA transfer is done\n", __func__);

	/* Clear out the DMA status */
	writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);

	return FPGA_SUCCESS;
}

static int zynq_dma_xfer_init(u32 partialbit)
{
	u32 status, control, isr_status;
	unsigned long ts;

	/* Clear loopback bit */
	clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK);

	if (!partialbit) {
		zynq_slcr_devcfg_disable();

		/* Setting PCFG_PROG_B signal to high */
		control = readl(&devcfg_base->ctrl);
		writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);
		/* Setting PCFG_PROG_B signal to low */
		writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);

		/* Polling the PCAP_INIT status for Reset */
		ts = get_timer(0);
		while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) {
			if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
				printf("%s: Timeout wait for INIT to clear\n",
				       __func__);
				return FPGA_FAIL;
			}
		}

		/* Setting PCFG_PROG_B signal to high */
		writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl);

		/* Polling the PCAP_INIT status for Set */
		ts = get_timer(0);
		while (!(readl(&devcfg_base->status) &
			DEVCFG_STATUS_PCFG_INIT)) {
			if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
				printf("%s: Timeout wait for INIT to set\n",
				       __func__);
				return FPGA_FAIL;
			}
		}
	}

	isr_status = readl(&devcfg_base->int_sts);

	/* Clear it all, so if Boot ROM comes back, it can proceed */
	writel(0xFFFFFFFF, &devcfg_base->int_sts);

	if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) {
		debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status);

		/* If RX FIFO overflow, need to flush RX FIFO first */
		if (isr_status & DEVCFG_ISR_RX_FIFO_OV) {
			writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl);
			writel(0xFFFFFFFF, &devcfg_base->int_sts);
		}
		return FPGA_FAIL;
	}

	status = readl(&devcfg_base->status);

	debug("%s: Status = 0x%08X\n", __func__, status);

	if (status & DEVCFG_STATUS_DMA_CMD_Q_F) {
		debug("%s: Error: device busy\n", __func__);
		return FPGA_FAIL;
	}

	debug("%s: Device ready\n", __func__);

	if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) {
		if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) {
			/* Error state, transfer cannot occur */
			debug("%s: ISR indicates error\n", __func__);
			return FPGA_FAIL;
		} else {
			/* Clear out the status */
			writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts);
		}
	}

	if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) {
		/* Clear the count of completed DMA transfers */
		writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status);
	}

	return FPGA_SUCCESS;
}

static u32 *zynq_align_dma_buffer(u32 *buf, u32 len, u32 swap)
{
	u32 *new_buf;
	u32 i;

	if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) {
		new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN);

		/*
		 * This might be dangerous but permits to flash if
		 * ARCH_DMA_MINALIGN is greater than header size
		 */
		if (new_buf > buf) {
			debug("%s: Aligned buffer is after buffer start\n",
			      __func__);
			new_buf -= ARCH_DMA_MINALIGN;
		}
		printf("%s: Align buffer at %x to %x(swap %d)\n", __func__,
		       (u32)buf, (u32)new_buf, swap);

		for (i = 0; i < (len/4); i++)
			new_buf[i] = load_word(&buf[i], swap);

		buf = new_buf;
	} else if (swap != SWAP_DONE) {
		/* For bitstream which are aligned */
		u32 *new_buf = (u32 *)buf;

		printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__,
		       swap);

		for (i = 0; i < (len/4); i++)
			new_buf[i] = load_word(&buf[i], swap);
	}

	return buf;
}

static int zynq_validate_bitstream(xilinx_desc *desc, const void *buf,
				   size_t bsize, u32 blocksize, u32 *swap,
				   u32 *partialbit)
{
	u32 *buf_start;
	u32 diff;

	/* Detect if we are going working with partial or full bitstream */
	if (bsize != desc->size) {
		printf("%s: Working with partial bitstream\n", __func__);
		*partialbit = 1;
	}
	buf_start = check_data((u8 *)buf, blocksize, swap);

	if (!buf_start)
		return FPGA_FAIL;

	/* Check if data is postpone from start */
	diff = (u32)buf_start - (u32)buf;
	if (diff) {
		printf("%s: Bitstream is not validated yet (diff %x)\n",
		       __func__, diff);
		return FPGA_FAIL;
	}

	if ((u32)buf < SZ_1M) {
		printf("%s: Bitstream has to be placed up to 1MB (%x)\n",
		       __func__, (u32)buf);
		return FPGA_FAIL;
	}

	if (zynq_dma_xfer_init(*partialbit))
		return FPGA_FAIL;

	return 0;
}


static int zynq_load(xilinx_desc *desc, const void *buf, size_t bsize)
{
	unsigned long ts; /* Timestamp */
	u32 partialbit = 0;
	u32 isr_status, swap;

	/*
	 * send bsize inplace of blocksize as it was not a bitstream
	 * in chunks
	 */
	if (zynq_validate_bitstream(desc, buf, bsize, bsize, &swap,
				    &partialbit))
		return FPGA_FAIL;

	buf = zynq_align_dma_buffer((u32 *)buf, bsize, swap);

	debug("%s: Source = 0x%08X\n", __func__, (u32)buf);
	debug("%s: Size = %zu\n", __func__, bsize);

	/* flush(clean & invalidate) d-cache range buf */
	flush_dcache_range((u32)buf, (u32)buf +
			   roundup(bsize, ARCH_DMA_MINALIGN));

	if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0))
		return FPGA_FAIL;

	isr_status = readl(&devcfg_base->int_sts);
	/* Check FPGA configuration completion */
	ts = get_timer(0);
	while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) {
		if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) {
			printf("%s: Timeout wait for FPGA to config\n",
			       __func__);
			return FPGA_FAIL;
		}
		isr_status = readl(&devcfg_base->int_sts);
	}

	debug("%s: FPGA config done\n", __func__);

	if (!partialbit)
		zynq_slcr_devcfg_enable();

	return FPGA_SUCCESS;
}

static int zynq_dump(xilinx_desc *desc, const void *buf, size_t bsize)
{
	return FPGA_FAIL;
}

struct xilinx_fpga_op zynq_op = {
	.load = zynq_load,
	.dump = zynq_dump,
	.info = zynq_info,
};