summaryrefslogtreecommitdiffstats
path: root/qemu/roms/u-boot/board/prodrive/alpr/nand.c
blob: 50e8d82b4b38efcbe9af59981fd05a1fbbe3650b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
 * (C) Copyright 2006
 * Heiko Schocher, DENX Software Engineering, hs@denx.de
 *
 * (C) Copyright 2006
 * Stefan Roese, DENX Software Engineering, sr@denx.de.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>

#if defined(CONFIG_CMD_NAND)

#include <asm/processor.h>
#include <nand.h>

struct alpr_ndfc_regs {
	u8 cmd[4];
	u8 addr_wait;
	u8 term;
	u8 dummy;
	u8 dummy2;
	u8 data;
};

static u8 hwctl;
static struct alpr_ndfc_regs *alpr_ndfc = NULL;

#define readb(addr)	(u8)(*(volatile u8 *)(addr))
#define writeb(d,addr)	*(volatile u8 *)(addr) = ((u8)(d))

/*
 * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
 * the NAND devices.  The NDFC has command, address and data registers that
 * when accessed will set up the NAND flash pins appropriately.  We'll use the
 * hwcontrol function to save the configuration in a global variable.
 * We can then use this information in the read and write functions to
 * determine which NDFC register to access.
 *
 * There are 2 NAND devices on the board, a Hynix HY27US08561A (1 GByte).
 */
static void alpr_nand_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
	struct nand_chip *this = mtd->priv;

	if (ctrl & NAND_CTRL_CHANGE) {
		if ( ctrl & NAND_CLE )
			hwctl |= 0x1;
		else
			hwctl &= ~0x1;
		if ( ctrl & NAND_ALE )
			hwctl |= 0x2;
		else
			hwctl &= ~0x2;
		if ( (ctrl & NAND_NCE) != NAND_NCE)
			writeb(0x00, &(alpr_ndfc->term));
	}
	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

static u_char alpr_nand_read_byte(struct mtd_info *mtd)
{
	return readb(&(alpr_ndfc->data));
}

static void alpr_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *nand = mtd->priv;
	int i;

	for (i = 0; i < len; i++) {
		if (hwctl & 0x1)
			 /*
			  * IO_ADDR_W used as CMD[i] reg to support multiple NAND
			  * chips.
			  */
			writeb(buf[i], nand->IO_ADDR_W);
		else if (hwctl & 0x2)
			writeb(buf[i], &(alpr_ndfc->addr_wait));
		else
			writeb(buf[i], &(alpr_ndfc->data));
	}
}

static void alpr_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++) {
		buf[i] = readb(&(alpr_ndfc->data));
	}
}

static int alpr_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		if (buf[i] != readb(&(alpr_ndfc->data)))
			return i;

	return 0;
}

static int alpr_nand_dev_ready(struct mtd_info *mtd)
{
	/*
	 * Blocking read to wait for NAND to be ready
	 */
	(void)readb(&(alpr_ndfc->addr_wait));

	/*
	 * Return always true
	 */
	return 1;
}

int board_nand_init(struct nand_chip *nand)
{
	alpr_ndfc = (struct alpr_ndfc_regs *)CONFIG_SYS_NAND_BASE;

	nand->ecc.mode = NAND_ECC_SOFT;

	/* Reference hardware control function */
	nand->cmd_ctrl  = alpr_nand_hwcontrol;
	nand->read_byte  = alpr_nand_read_byte;
	nand->write_buf  = alpr_nand_write_buf;
	nand->read_buf   = alpr_nand_read_buf;
	nand->verify_buf = alpr_nand_verify_buf;
	nand->dev_ready  = alpr_nand_dev_ready;

	return 0;
}
#endif