summaryrefslogtreecommitdiffstats
path: root/qemu/roms/ipxe/src/crypto/deflate.c
blob: 91a4899610c60bb9d4635dfb28d7a7a0d65c4f9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/*
 * Copyright (C) 2014 Michael Brown <mbrown@fensystems.co.uk>.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 */

FILE_LICENCE ( GPL2_OR_LATER );

#include <string.h>
#include <strings.h>
#include <errno.h>
#include <assert.h>
#include <ctype.h>
#include <ipxe/uaccess.h>
#include <ipxe/deflate.h>

/** @file
 *
 * DEFLATE decompression algorithm
 *
 * This file implements the decompression half of the DEFLATE
 * algorithm specified in RFC 1951.
 *
 * Portions of this code are derived from wimboot's xca.c.
 *
 */

/**
 * Byte reversal table
 *
 * For some insane reason, the DEFLATE format stores some values in
 * bit-reversed order.
 */
static uint8_t deflate_reverse[256];

/** Literal/length base values
 *
 * We include entries only for literal/length codes 257-284.  Code 285
 * does not fit the pattern (it represents a length of 258; following
 * the pattern from the earlier codes would give a length of 259), and
 * has no extra bits.  Codes 286-287 are invalid, but can occur.  We
 * treat any code greater than 284 as meaning "length 285, no extra
 * bits".
 */
static uint8_t deflate_litlen_base[28];

/** Distance base values
 *
 * We include entries for all possible codes 0-31, avoiding the need
 * to check for undefined codes 30 and 31 before performing the
 * lookup.  Codes 30 and 31 are never initialised, and will therefore
 * be treated as meaning "14 extra bits, base distance 0".
 */
static uint16_t deflate_distance_base[32];

/** Code length map */
static uint8_t deflate_codelen_map[19] = {
	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};

/** Static Huffman alphabet length patterns */
static struct deflate_static_length_pattern deflate_static_length_patterns[] = {
	/* Literal/length code lengths */
	{ 0x88, ( ( ( 143 -   0 ) + 1 ) / 2 ) },
	{ 0x99, ( ( ( 255 - 144 ) + 1 ) / 2 ) },
	{ 0x77, ( ( ( 279 - 256 ) + 1 ) / 2 ) },
	{ 0x88, ( ( ( 287 - 280 ) + 1 ) / 2 ) },
	/* Distance code lengths */
	{ 0x55, ( ( (  31 -   0 ) + 1 ) / 2 ) },
	/* End marker */
	{ 0, 0 }
};

/**
 * Transcribe binary value (for debugging)
 *
 * @v value		Value
 * @v bits		Length of value (in bits)
 * @ret string		Transcribed value
 */
static const char * deflate_bin ( unsigned long value, unsigned int bits ) {
	static char buf[ ( 8 * sizeof ( value ) ) + 1 /* NUL */ ];
	char *out = buf;

	/* Sanity check */
	assert ( bits < sizeof ( buf ) );

	/* Transcribe value */
	while ( bits-- )
		*(out++) = ( ( value & ( 1 << bits ) ) ? '1' : '0' );
	*out = '\0';

	return buf;
}

/**
 * Set Huffman symbol length
 *
 * @v deflate		Decompressor
 * @v index		Index within lengths
 * @v bits		Symbol length (in bits)
 */
static void deflate_set_length ( struct deflate *deflate, unsigned int index,
				 unsigned int bits ) {

	deflate->lengths[ index / 2 ] |= ( bits << ( 4 * ( index % 2 ) ) );
}

/**
 * Get Huffman symbol length
 *
 * @v deflate		Decompressor
 * @v index		Index within lengths
 * @ret bits		Symbol length (in bits)
 */
static unsigned int deflate_length ( struct deflate *deflate,
				     unsigned int index ) {

	return ( ( deflate->lengths[ index / 2 ] >> ( 4 * ( index % 2 ) ) )
		 & 0x0f );
}

/**
 * Determine Huffman alphabet name (for debugging)
 *
 * @v deflate		Decompressor
 * @v alphabet		Huffman alphabet
 * @ret name		Alphabet name
 */
static const char * deflate_alphabet_name ( struct deflate *deflate,
					    struct deflate_alphabet *alphabet ){

	if ( alphabet == &deflate->litlen ) {
		return "litlen";
	} else if ( alphabet == &deflate->distance_codelen ) {
		return "distance/codelen";
	} else {
		return "<UNKNOWN>";
	}
}

/**
 * Dump Huffman alphabet (for debugging)
 *
 * @v deflate		Decompressor
 * @v alphabet		Huffman alphabet
 */
static void deflate_dump_alphabet ( struct deflate *deflate,
				    struct deflate_alphabet *alphabet ) {
	struct deflate_huf_symbols *huf_sym;
	unsigned int bits;
	unsigned int huf;
	unsigned int i;

	/* Do nothing unless debugging is enabled */
	if ( ! DBG_EXTRA )
		return;

	/* Dump symbol table for each utilised length */
	for ( bits = 1 ; bits <= ( sizeof ( alphabet->huf ) /
				   sizeof ( alphabet->huf[0] ) ) ; bits++ ) {
		huf_sym = &alphabet->huf[ bits - 1 ];
		if ( huf_sym->freq == 0 )
			continue;
		huf = ( huf_sym->start >> huf_sym->shift );
		DBGC2 ( alphabet, "DEFLATE %p \"%s\" length %d start \"%s\" "
			"freq %d:", deflate,
			deflate_alphabet_name ( deflate, alphabet ), bits,
			deflate_bin ( huf, huf_sym->bits ), huf_sym->freq );
		for ( i = 0 ; i < huf_sym->freq ; i++ ) {
			DBGC2 ( alphabet, " %03x",
				huf_sym->raw[ huf + i ] );
		}
		DBGC2 ( alphabet, "\n" );
	}

	/* Dump quick lookup table */
	DBGC2 ( alphabet, "DEFLATE %p \"%s\" quick lookup:", deflate,
		deflate_alphabet_name ( deflate, alphabet ) );
	for ( i = 0 ; i < ( sizeof ( alphabet->lookup ) /
			    sizeof ( alphabet->lookup[0] ) ) ; i++ ) {
		DBGC2 ( alphabet, " %d", ( alphabet->lookup[i] + 1 ) );
	}
	DBGC2 ( alphabet, "\n" );
}

/**
 * Construct Huffman alphabet
 *
 * @v deflate		Decompressor
 * @v alphabet		Huffman alphabet
 * @v count		Number of symbols
 * @v offset		Starting offset within length table
 * @ret rc		Return status code
 */
static int deflate_alphabet ( struct deflate *deflate,
			      struct deflate_alphabet *alphabet,
			      unsigned int count, unsigned int offset ) {
	struct deflate_huf_symbols *huf_sym;
	unsigned int huf;
	unsigned int cum_freq;
	unsigned int bits;
	unsigned int raw;
	unsigned int adjustment;
	unsigned int prefix;
	int complete;

	/* Clear symbol table */
	memset ( alphabet->huf, 0, sizeof ( alphabet->huf ) );

	/* Count number of symbols with each Huffman-coded length */
	for ( raw = 0 ; raw < count ; raw++ ) {
		bits = deflate_length ( deflate, ( raw + offset ) );
		if ( bits )
			alphabet->huf[ bits - 1 ].freq++;
	}

	/* Populate Huffman-coded symbol table */
	huf = 0;
	cum_freq = 0;
	for ( bits = 1 ; bits <= ( sizeof ( alphabet->huf ) /
				   sizeof ( alphabet->huf[0] ) ) ; bits++ ) {
		huf_sym = &alphabet->huf[ bits - 1 ];
		huf_sym->bits = bits;
		huf_sym->shift = ( 16 - bits );
		huf_sym->start = ( huf << huf_sym->shift );
		huf_sym->raw = &alphabet->raw[cum_freq];
		huf += huf_sym->freq;
		if ( huf > ( 1U << bits ) ) {
			DBGC ( alphabet, "DEFLATE %p \"%s\" has too many "
			       "symbols with lengths <=%d\n", deflate,
			       deflate_alphabet_name ( deflate, alphabet ),
			       bits );
			return -EINVAL;
		}
		huf <<= 1;
		cum_freq += huf_sym->freq;
	}
	complete = ( huf == ( 1U << bits ) );

	/* Populate raw symbol table */
	for ( raw = 0 ; raw < count ; raw++ ) {
		bits = deflate_length ( deflate, ( raw + offset ) );
		if ( bits ) {
			huf_sym = &alphabet->huf[ bits - 1 ];
			*(huf_sym->raw++) = raw;
		}
	}

	/* Adjust Huffman-coded symbol table raw pointers and populate
	 * quick lookup table.
	 */
	for ( bits = 1 ; bits <= ( sizeof ( alphabet->huf ) /
				   sizeof ( alphabet->huf[0] ) ) ; bits++ ) {
		huf_sym = &alphabet->huf[ bits - 1 ];

		/* Adjust raw pointer */
		huf_sym->raw -= huf_sym->freq; /* Reset to first symbol */
		adjustment = ( huf_sym->start >> huf_sym->shift );
		huf_sym->raw -= adjustment; /* Adjust for quick indexing */

		/* Populate quick lookup table */
		for ( prefix = ( huf_sym->start >> DEFLATE_HUFFMAN_QL_SHIFT ) ;
		      prefix < ( 1 << DEFLATE_HUFFMAN_QL_BITS ) ; prefix++ ) {
			alphabet->lookup[prefix] = ( bits - 1 );
		}
	}

	/* Dump alphabet (for debugging) */
	deflate_dump_alphabet ( deflate, alphabet );

	/* Check that there are no invalid codes */
	if ( ! complete ) {
		DBGC ( alphabet, "DEFLATE %p \"%s\" is incomplete\n", deflate,
		       deflate_alphabet_name ( deflate, alphabet ) );
		return -EINVAL;
	}

	return 0;
}

/**
 * Attempt to accumulate bits from input stream
 *
 * @v deflate		Decompressor
 * @v in		Compressed input data
 * @v target		Number of bits to accumulate
 * @ret excess		Number of excess bits accumulated (may be negative)
 */
static int deflate_accumulate ( struct deflate *deflate,
				struct deflate_chunk *in,
				unsigned int target ) {
	uint8_t byte;

	while ( deflate->bits < target ) {

		/* Check for end of input */
		if ( in->offset >= in->len )
			break;

		/* Acquire byte from input */
		copy_from_user ( &byte, in->data, in->offset++,
				 sizeof ( byte ) );
		deflate->accumulator = ( deflate->accumulator |
					 ( byte << deflate->bits ) );
		deflate->rotalumucca = ( deflate->rotalumucca |
					 ( deflate_reverse[byte] <<
					   ( 24 - deflate->bits ) ) );
		deflate->bits += 8;

		/* Sanity check */
		assert ( deflate->bits <=
			 ( 8 * sizeof ( deflate->accumulator ) ) );
	}

	return ( deflate->bits - target );
}

/**
 * Consume accumulated bits from the input stream
 *
 * @v deflate		Decompressor
 * @v count		Number of accumulated bits to consume
 * @ret data		Consumed bits
 */
static int deflate_consume ( struct deflate *deflate, unsigned int count ) {
	int data;

	/* Sanity check */
	assert ( count <= deflate->bits );

	/* Extract data and consume bits */
	data = ( deflate->accumulator & ( ( 1 << count ) - 1 ) );
	deflate->accumulator >>= count;
	deflate->rotalumucca <<= count;
	deflate->bits -= count;

	return data;
}

/**
 * Attempt to extract a fixed number of bits from input stream
 *
 * @v deflate		Decompressor
 * @v in		Compressed input data
 * @v target		Number of bits to extract
 * @ret data		Extracted bits (or negative if not yet accumulated)
 */
static int deflate_extract ( struct deflate *deflate, struct deflate_chunk *in,
			     unsigned int target ) {
	int excess;
	int data;

	/* Return immediately if we are attempting to extract zero bits */
	if ( target == 0 )
		return 0;

	/* Attempt to accumulate bits */
	excess = deflate_accumulate ( deflate, in, target );
	if ( excess < 0 )
		return excess;

	/* Extract data and consume bits */
	data = deflate_consume ( deflate, target );
	DBGCP ( deflate, "DEFLATE %p extracted %s = %#x = %d\n", deflate,
		deflate_bin ( data, target ), data, data );

	return data;
}

/**
 * Attempt to decode a Huffman-coded symbol from input stream
 *
 * @v deflate		Decompressor
 * @v in		Compressed input data
 * @v alphabet		Huffman alphabet
 * @ret code		Raw code (or negative if not yet accumulated)
 */
static int deflate_decode ( struct deflate *deflate,
			    struct deflate_chunk *in,
			    struct deflate_alphabet *alphabet ) {
	struct deflate_huf_symbols *huf_sym;
	uint16_t huf;
	unsigned int lookup_index;
	int excess;
	unsigned int raw;

	/* Attempt to accumulate maximum required number of bits.
	 * There may be fewer bits than this remaining in the stream,
	 * even if the stream still contains some complete
	 * Huffman-coded symbols.
	 */
	deflate_accumulate ( deflate, in, DEFLATE_HUFFMAN_BITS );

	/* Normalise the bit-reversed accumulated value to 16 bits */
	huf = ( deflate->rotalumucca >> 16 );

	/* Find symbol set for this length */
	lookup_index = ( huf >> DEFLATE_HUFFMAN_QL_SHIFT );
	huf_sym = &alphabet->huf[ alphabet->lookup[ lookup_index ] ];
	while ( huf < huf_sym->start )
		huf_sym--;

	/* Calculate number of excess bits, and return if not yet complete */
	excess = ( deflate->bits - huf_sym->bits );
	if ( excess < 0 )
		return excess;

	/* Consume bits */
	deflate_consume ( deflate, huf_sym->bits );

	/* Look up raw symbol */
	raw = huf_sym->raw[ huf >> huf_sym->shift ];
	DBGCP ( deflate, "DEFLATE %p decoded %s = %#x = %d\n", deflate,
		deflate_bin ( ( huf >> huf_sym->shift ), huf_sym->bits ),
		raw, raw );

	return raw;
}

/**
 * Discard bits up to the next byte boundary
 *
 * @v deflate		Decompressor
 */
static void deflate_discard_to_byte ( struct deflate *deflate ) {

	deflate_consume ( deflate, ( deflate->bits & 7 ) );
}

/**
 * Copy data to output buffer (if available)
 *
 * @v out		Output data buffer
 * @v start		Source data
 * @v offset		Starting offset within source data
 * @v len		Length to copy
 */
static void deflate_copy ( struct deflate_chunk *out,
			   userptr_t start, size_t offset, size_t len ) {
	size_t out_offset = out->offset;
	size_t copy_len;

	/* Copy data one byte at a time, to allow for overlap */
	if ( out_offset < out->len ) {
		copy_len = ( out->len - out_offset );
		if ( copy_len > len )
			copy_len = len;
		while ( copy_len-- ) {
			memcpy_user ( out->data, out_offset++,
				      start, offset++, 1 );
		}
	}
	out->offset += len;
}

/**
 * Inflate compressed data
 *
 * @v deflate		Decompressor
 * @v in		Compressed input data
 * @v out		Output data buffer
 * @ret rc		Return status code
 *
 * The caller can use deflate_finished() to determine whether a
 * successful return indicates that the decompressor is merely waiting
 * for more input.
 *
 * Data will not be written beyond the specified end of the output
 * data buffer, but the offset within the output data buffer will be
 * updated to reflect the amount that should have been written.  The
 * caller can use this to find the length of the decompressed data
 * before allocating the output data buffer.
 */
int deflate_inflate ( struct deflate *deflate,
		      struct deflate_chunk *in,
		      struct deflate_chunk *out ) {

	/* This could be implemented more neatly if gcc offered a
	 * means for enforcing tail recursion.
	 */
	if ( deflate->resume ) {
		goto *(deflate->resume);
	} else switch ( deflate->format ) {
		case DEFLATE_RAW:	goto block_header;
		case DEFLATE_ZLIB:	goto zlib_header;
		default:		assert ( 0 );
	}

 zlib_header: {
		int header;
		int cm;

		/* Extract header */
		header = deflate_extract ( deflate, in, ZLIB_HEADER_BITS );
		if ( header < 0 ) {
			deflate->resume = &&zlib_header;
			return 0;
		}

		/* Parse header */
		cm = ( ( header >> ZLIB_HEADER_CM_LSB ) & ZLIB_HEADER_CM_MASK );
		if ( cm != ZLIB_HEADER_CM_DEFLATE ) {
			DBGC ( deflate, "DEFLATE %p unsupported ZLIB "
			       "compression method %d\n", deflate, cm );
			return -ENOTSUP;
		}
		if ( header & ( 1 << ZLIB_HEADER_FDICT_BIT ) ) {
			DBGC ( deflate, "DEFLATE %p unsupported ZLIB preset "
			       "dictionary\n", deflate );
			return -ENOTSUP;
		}

		/* Process first block header */
		goto block_header;
	}

 block_header: {
		int header;
		int bfinal;
		int btype;

		/* Extract block header */
		header = deflate_extract ( deflate, in, DEFLATE_HEADER_BITS );
		if ( header < 0 ) {
			deflate->resume = &&block_header;
			return 0;
		}

		/* Parse header */
		deflate->header = header;
		bfinal = ( header & ( 1 << DEFLATE_HEADER_BFINAL_BIT ) );
		btype = ( header >> DEFLATE_HEADER_BTYPE_LSB );
		DBGC ( deflate, "DEFLATE %p found %sblock type %#x\n",
		       deflate, ( bfinal ? "final " : "" ), btype );
		switch ( btype ) {
		case DEFLATE_HEADER_BTYPE_LITERAL:
			goto literal_block;
		case DEFLATE_HEADER_BTYPE_STATIC:
			goto static_block;
		case DEFLATE_HEADER_BTYPE_DYNAMIC:
			goto dynamic_block;
		default:
			DBGC ( deflate, "DEFLATE %p unsupported block type "
			       "%#x\n", deflate, btype );
			return -ENOTSUP;
		}
	}

 literal_block: {

		/* Discard any bits up to the next byte boundary */
		deflate_discard_to_byte ( deflate );
	}

 literal_len: {
		int len;

		/* Extract LEN field */
		len = deflate_extract ( deflate, in, DEFLATE_LITERAL_LEN_BITS );
		if ( len < 0 ) {
			deflate->resume = &&literal_len;
			return 0;
		}

		/* Record length of literal data */
		deflate->remaining = len;
		DBGC2 ( deflate, "DEFLATE %p literal block length %#04zx\n",
			deflate, deflate->remaining );
	}

 literal_nlen: {
		int nlen;

		/* Extract NLEN field */
		nlen = deflate_extract ( deflate, in, DEFLATE_LITERAL_LEN_BITS);
		if ( nlen < 0 ) {
			deflate->resume = &&literal_nlen;
			return 0;
		}

		/* Verify NLEN */
		if ( ( ( deflate->remaining ^ ~nlen ) &
		       ( ( 1 << DEFLATE_LITERAL_LEN_BITS ) - 1 ) ) != 0 ) {
			DBGC ( deflate, "DEFLATE %p invalid len/nlen "
			       "%#04zx/%#04x\n", deflate,
			       deflate->remaining, nlen );
			return -EINVAL;
		}
	}

 literal_data: {
		size_t in_remaining;
		size_t len;

		/* Calculate available amount of literal data */
		in_remaining = ( in->len - in->offset );
		len = deflate->remaining;
		if ( len > in_remaining )
			len = in_remaining;

		/* Copy data to output buffer */
		deflate_copy ( out, in->data, in->offset, len );

		/* Consume data from input buffer */
		in->offset += len;
		deflate->remaining -= len;

		/* Finish processing if we are blocked */
		if ( deflate->remaining ) {
			deflate->resume = &&literal_data;
			return 0;
		}

		/* Otherwise, finish block */
		goto block_done;
	}

 static_block: {
		struct deflate_static_length_pattern *pattern;
		uint8_t *lengths = deflate->lengths;

		/* Construct static Huffman lengths as per RFC 1950 */
		for ( pattern = deflate_static_length_patterns ;
		      pattern->count ; pattern++ ) {
			memset ( lengths, pattern->fill, pattern->count );
			lengths += pattern->count;
		}
		deflate->litlen_count = 288;
		deflate->distance_count = 32;
		goto construct_alphabets;
	}

 dynamic_block:

 dynamic_header: {
		int header;
		unsigned int hlit;
		unsigned int hdist;
		unsigned int hclen;

		/* Extract block header */
		header = deflate_extract ( deflate, in, DEFLATE_DYNAMIC_BITS );
		if ( header < 0 ) {
			deflate->resume = &&dynamic_header;
			return 0;
		}

		/* Parse header */
		hlit = ( ( header >> DEFLATE_DYNAMIC_HLIT_LSB ) &
			 DEFLATE_DYNAMIC_HLIT_MASK );
		hdist = ( ( header >> DEFLATE_DYNAMIC_HDIST_LSB ) &
			  DEFLATE_DYNAMIC_HDIST_MASK );
		hclen = ( ( header >> DEFLATE_DYNAMIC_HCLEN_LSB ) &
			  DEFLATE_DYNAMIC_HCLEN_MASK );
		deflate->litlen_count = ( hlit + 257 );
		deflate->distance_count = ( hdist + 1 );
		deflate->length_index = 0;
		deflate->length_target = ( hclen + 4 );
		DBGC2 ( deflate, "DEFLATE %p dynamic block %d codelen, %d "
			"litlen, %d distance\n", deflate,
			deflate->length_target, deflate->litlen_count,
			deflate->distance_count );

		/* Prepare for decoding code length code lengths */
		memset ( &deflate->lengths, 0, sizeof ( deflate->lengths ) );
	}

 dynamic_codelen: {
		int len;
		unsigned int index;
		int rc;

		/* Extract all code lengths */
		while ( deflate->length_index < deflate->length_target ) {

			/* Extract code length length */
			len = deflate_extract ( deflate, in,
						DEFLATE_CODELEN_BITS );
			if ( len < 0 ) {
				deflate->resume = &&dynamic_codelen;
				return 0;
			}

			/* Store code length */
			index = deflate_codelen_map[deflate->length_index++];
			deflate_set_length ( deflate, index, len );
			DBGCP ( deflate, "DEFLATE %p codelen for %d is %d\n",
				deflate, index, len );
		}

		/* Generate code length alphabet */
		if ( ( rc = deflate_alphabet ( deflate,
					       &deflate->distance_codelen,
					       ( DEFLATE_CODELEN_MAX_CODE + 1 ),
					       0 ) ) != 0 )
			return rc;

		/* Prepare for decoding literal/length/distance code lengths */
		memset ( &deflate->lengths, 0, sizeof ( deflate->lengths ) );
		deflate->length_index = 0;
		deflate->length_target = ( deflate->litlen_count +
					   deflate->distance_count );
		deflate->length = 0;
	}

 dynamic_litlen_distance: {
		int len;
		int index;

		/* Decode literal/length/distance code length */
		len = deflate_decode ( deflate, in, &deflate->distance_codelen);
		if ( len < 0 ) {
			deflate->resume = &&dynamic_litlen_distance;
			return 0;
		}

		/* Prepare for extra bits */
		if ( len < 16 ) {
			deflate->length = len;
			deflate->extra_bits = 0;
			deflate->dup_len = 1;
		} else {
			static const uint8_t dup_len[3] = { 3, 3, 11 };
			static const uint8_t extra_bits[3] = { 2, 3, 7 };
			index = ( len - 16 );
			deflate->dup_len = dup_len[index];
			deflate->extra_bits = extra_bits[index];
			if ( index )
				deflate->length = 0;
		}
	}

 dynamic_litlen_distance_extra: {
		int extra;
		unsigned int dup_len;

		/* Extract extra bits */
		extra = deflate_extract ( deflate, in, deflate->extra_bits );
		if ( extra < 0 ) {
			deflate->resume = &&dynamic_litlen_distance_extra;
			return 0;
		}

		/* Store code lengths */
		dup_len = ( deflate->dup_len + extra );
		while ( ( deflate->length_index < deflate->length_target ) &&
			dup_len-- ) {
			deflate_set_length ( deflate, deflate->length_index++,
					     deflate->length );
		}

		/* Process next literal/length or distance code
		 * length, if more are required.
		 */
		if ( deflate->length_index < deflate->length_target )
			goto dynamic_litlen_distance;

		/* Construct alphabets */
		goto construct_alphabets;
	}

 construct_alphabets: {
		unsigned int distance_offset = deflate->litlen_count;
		unsigned int distance_count = deflate->distance_count;
		int rc;

		/* Generate literal/length alphabet */
		if ( ( rc = deflate_alphabet ( deflate, &deflate->litlen,
					       deflate->litlen_count, 0 ) ) !=0)
			return rc;

		/* Handle degenerate case of a single distance code
		 * (for which it is impossible to construct a valid,
		 * complete Huffman alphabet).  RFC 1951 states:
		 *
		 *   If only one distance code is used, it is encoded
		 *   using one bit, not zero bits; in this case there
		 *   is a single code length of one, with one unused
		 *   code.  One distance code of zero bits means that
		 *   there are no distance codes used at all (the data
		 *   is all literals).
		 *
		 * If we have only a single distance code, then we
		 * instead use two distance codes both with length 1.
		 * This results in a valid Huffman alphabet.  The code
		 * "0" will mean distance code 0 (which is either
		 * correct or irrelevant), and the code "1" will mean
		 * distance code 1 (which is always irrelevant).
		 */
		if ( deflate->distance_count == 1 ) {

			deflate->lengths[0] = 0x11;
			distance_offset = 0;
			distance_count = 2;
		}

		/* Generate distance alphabet */
		if ( ( rc = deflate_alphabet ( deflate,
					       &deflate->distance_codelen,
					       distance_count,
					       distance_offset ) ) != 0 )
			return rc;
	}

 lzhuf_litlen: {
		int code;
		uint8_t byte;
		unsigned int extra;
		unsigned int bits;

		/* Decode Huffman codes */
		while ( 1 ) {

			/* Decode Huffman code */
			code = deflate_decode ( deflate, in, &deflate->litlen );
			if ( code < 0 ) {
				deflate->resume = &&lzhuf_litlen;
				return 0;
			}

			/* Handle according to code type */
			if ( code < DEFLATE_LITLEN_END ) {

				/* Literal value: copy to output buffer */
				byte = code;
				DBGCP ( deflate, "DEFLATE %p literal %#02x "
					"('%c')\n", deflate, byte,
					( isprint ( byte ) ? byte : '.' ) );
				deflate_copy ( out, virt_to_user ( &byte ), 0,
					       sizeof ( byte ) );

			} else if ( code == DEFLATE_LITLEN_END ) {

				/* End of block */
				goto block_done;

			} else {

				/* Length code: process extra bits */
				extra = ( code - DEFLATE_LITLEN_END - 1 );
				if ( extra < 28 ) {
					bits = ( extra / 4 );
					if ( bits )
						bits--;
					deflate->extra_bits = bits;
					deflate->dup_len =
						deflate_litlen_base[extra];
				} else {
					deflate->extra_bits = 0;
					deflate->dup_len = 258;
				}
				goto lzhuf_litlen_extra;
			}
		}
	}

 lzhuf_litlen_extra: {
		int extra;

		/* Extract extra bits */
		extra = deflate_extract ( deflate, in, deflate->extra_bits );
		if ( extra < 0 ) {
			deflate->resume = &&lzhuf_litlen_extra;
			return 0;
		}

		/* Update duplicate length */
		deflate->dup_len += extra;
	}

 lzhuf_distance: {
		int code;
		unsigned int extra;
		unsigned int bits;

		/* Decode Huffman code */
		code = deflate_decode ( deflate, in,
					&deflate->distance_codelen );
		if ( code < 0 ) {
			deflate->resume = &&lzhuf_distance;
			return 0;
		}

		/* Process extra bits */
		extra = code;
		bits = ( extra / 2 );
		if ( bits )
			bits--;
		deflate->extra_bits = bits;
		deflate->dup_distance = deflate_distance_base[extra];
	}

 lzhuf_distance_extra: {
		int extra;
		size_t dup_len;
		size_t dup_distance;

		/* Extract extra bits */
		extra = deflate_extract ( deflate, in, deflate->extra_bits );
		if ( extra < 0 ) {
			deflate->resume = &&lzhuf_distance_extra;
			return 0;
		}

		/* Update duplicate distance */
		dup_distance = ( deflate->dup_distance + extra );
		dup_len = deflate->dup_len;
		DBGCP ( deflate, "DEFLATE %p duplicate length %zd distance "
			"%zd\n", deflate, dup_len, dup_distance );

		/* Sanity check */
		if ( dup_distance > out->offset ) {
			DBGC ( deflate, "DEFLATE %p bad distance %zd (max "
			       "%zd)\n", deflate, dup_distance, out->offset );
			return -EINVAL;
		}

		/* Copy data, allowing for overlap */
		deflate_copy ( out, out->data, ( out->offset - dup_distance ),
			       dup_len );

		/* Process next literal/length symbol */
		goto lzhuf_litlen;
	}

 block_done: {

		DBGCP ( deflate, "DEFLATE %p end of block\n", deflate );

		/* If this was not the final block, process next block header */
		if ( ! ( deflate->header & ( 1 << DEFLATE_HEADER_BFINAL_BIT ) ))
			goto block_header;

		/* Otherwise, process footer (if any) */
		switch ( deflate->format ) {
		case DEFLATE_RAW:	goto finished;
		case DEFLATE_ZLIB:	goto zlib_footer;
		default:		assert ( 0 );
		}
	}

 zlib_footer: {

		/* Discard any bits up to the next byte boundary */
		deflate_discard_to_byte ( deflate );
	}

 zlib_adler32: {
		int excess;

		/* Accumulate the 32 bits of checksum.  We don't check
		 * the value, stop processing immediately afterwards,
		 * and so don't have to worry about the nasty corner
		 * cases involved in calling deflate_extract() to
		 * obtain a full 32 bits.
		 */
		excess = deflate_accumulate ( deflate, in, ZLIB_ADLER32_BITS );
		if ( excess < 0 ) {
			deflate->resume = &&zlib_adler32;
			return 0;
		}

		/* Finish processing */
		goto finished;
	}

 finished: {
		/* Mark as finished and terminate */
		DBGCP ( deflate, "DEFLATE %p finished\n", deflate );
		deflate->resume = NULL;
		return 0;
	}
}

/**
 * Initialise decompressor
 *
 * @v deflate		Decompressor
 * @v format		Compression format code
 */
void deflate_init ( struct deflate *deflate, enum deflate_format format ) {
	static int global_init_done;
	uint8_t i;
	uint8_t bit;
	uint8_t byte;
	unsigned int base;
	unsigned int bits;

	/* Perform global initialisation if required */
	if ( ! global_init_done ) {

		/* Initialise byte reversal table */
		for ( i = 255 ; i ; i-- ) {
			for ( bit = 1, byte = 0 ; bit ; bit <<= 1 ) {
				byte <<= 1;
				if ( i & bit )
					byte |= 1;
			}
			deflate_reverse[i] = byte;
		}

		/* Initialise literal/length extra bits table */
		base = 3;
		for ( i = 0 ; i < 28 ; i++ ) {
			bits = ( i / 4 );
			if ( bits )
				bits--;
			deflate_litlen_base[i] = base;
			base += ( 1 << bits );
		}
		assert ( base == 259 ); /* sic */

		/* Initialise distance extra bits table */
		base = 1;
		for ( i = 0 ; i < 30 ; i++ ) {
			bits = ( i / 2 );
			if ( bits )
				bits--;
			deflate_distance_base[i] = base;
			base += ( 1 << bits );
		}
		assert ( base == 32769 );

		/* Record global initialisation as complete */
		global_init_done = 1;
	}

	/* Initialise structure */
	memset ( deflate, 0, sizeof ( *deflate ) );
	deflate->format = format;
}