1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_DISASM_A64_H
#define VIXL_A64_DISASM_A64_H
#include "vixl/globals.h"
#include "vixl/utils.h"
#include "vixl/a64/instructions-a64.h"
#include "vixl/a64/decoder-a64.h"
#include "vixl/a64/assembler-a64.h"
namespace vixl {
class Disassembler: public DecoderVisitor {
public:
Disassembler();
Disassembler(char* text_buffer, int buffer_size);
virtual ~Disassembler();
char* GetOutput();
// Declare all Visitor functions.
#define DECLARE(A) virtual void Visit##A(const Instruction* instr);
VISITOR_LIST(DECLARE)
#undef DECLARE
protected:
virtual void ProcessOutput(const Instruction* instr);
// Default output functions. The functions below implement a default way of
// printing elements in the disassembly. A sub-class can override these to
// customize the disassembly output.
// Prints the name of a register.
// TODO: This currently doesn't allow renaming of V registers.
virtual void AppendRegisterNameToOutput(const Instruction* instr,
const CPURegister& reg);
// Prints a PC-relative offset. This is used for example when disassembling
// branches to immediate offsets.
virtual void AppendPCRelativeOffsetToOutput(const Instruction* instr,
int64_t offset);
// Prints an address, in the general case. It can be code or data. This is
// used for example to print the target address of an ADR instruction.
virtual void AppendCodeRelativeAddressToOutput(const Instruction* instr,
const void* addr);
// Prints the address of some code.
// This is used for example to print the target address of a branch to an
// immediate offset.
// A sub-class can for example override this method to lookup the address and
// print an appropriate name.
virtual void AppendCodeRelativeCodeAddressToOutput(const Instruction* instr,
const void* addr);
// Prints the address of some data.
// This is used for example to print the source address of a load literal
// instruction.
virtual void AppendCodeRelativeDataAddressToOutput(const Instruction* instr,
const void* addr);
// Same as the above, but for addresses that are not relative to the code
// buffer. They are currently not used by VIXL.
virtual void AppendAddressToOutput(const Instruction* instr,
const void* addr);
virtual void AppendCodeAddressToOutput(const Instruction* instr,
const void* addr);
virtual void AppendDataAddressToOutput(const Instruction* instr,
const void* addr);
public:
// Get/Set the offset that should be added to code addresses when printing
// code-relative addresses in the AppendCodeRelative<Type>AddressToOutput()
// helpers.
// Below is an example of how a branch immediate instruction in memory at
// address 0xb010200 would disassemble with different offsets.
// Base address | Disassembly
// 0x0 | 0xb010200: b #+0xcc (addr 0xb0102cc)
// 0x10000 | 0xb000200: b #+0xcc (addr 0xb0002cc)
// 0xb010200 | 0x0: b #+0xcc (addr 0xcc)
void MapCodeAddress(int64_t base_address, const Instruction* instr_address);
int64_t CodeRelativeAddress(const void* instr);
private:
void Format(
const Instruction* instr, const char* mnemonic, const char* format);
void Substitute(const Instruction* instr, const char* string);
int SubstituteField(const Instruction* instr, const char* format);
int SubstituteRegisterField(const Instruction* instr, const char* format);
int SubstituteImmediateField(const Instruction* instr, const char* format);
int SubstituteLiteralField(const Instruction* instr, const char* format);
int SubstituteBitfieldImmediateField(
const Instruction* instr, const char* format);
int SubstituteShiftField(const Instruction* instr, const char* format);
int SubstituteExtendField(const Instruction* instr, const char* format);
int SubstituteConditionField(const Instruction* instr, const char* format);
int SubstitutePCRelAddressField(const Instruction* instr, const char* format);
int SubstituteBranchTargetField(const Instruction* instr, const char* format);
int SubstituteLSRegOffsetField(const Instruction* instr, const char* format);
int SubstitutePrefetchField(const Instruction* instr, const char* format);
int SubstituteBarrierField(const Instruction* instr, const char* format);
int SubstituteSysOpField(const Instruction* instr, const char* format);
int SubstituteCrField(const Instruction* instr, const char* format);
bool RdIsZROrSP(const Instruction* instr) const {
return (instr->Rd() == kZeroRegCode);
}
bool RnIsZROrSP(const Instruction* instr) const {
return (instr->Rn() == kZeroRegCode);
}
bool RmIsZROrSP(const Instruction* instr) const {
return (instr->Rm() == kZeroRegCode);
}
bool RaIsZROrSP(const Instruction* instr) const {
return (instr->Ra() == kZeroRegCode);
}
bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
int64_t code_address_offset() const { return code_address_offset_; }
protected:
void ResetOutput();
void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
void set_code_address_offset(int64_t code_address_offset) {
code_address_offset_ = code_address_offset;
}
char* buffer_;
uint32_t buffer_pos_;
uint32_t buffer_size_;
bool own_buffer_;
int64_t code_address_offset_;
};
class PrintDisassembler: public Disassembler {
public:
explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
protected:
virtual void ProcessOutput(const Instruction* instr);
private:
FILE *stream_;
};
} // namespace vixl
#endif // VIXL_A64_DISASM_A64_H
|