summaryrefslogtreecommitdiffstats
path: root/qemu/disas/libvixl/a64/instructions-a64.h
blob: f1d883ccc718972d08ce06d71820a23da4bc81b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// Copyright 2013, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
#define VIXL_A64_INSTRUCTIONS_A64_H_

#include "globals.h"
#include "utils.h"
#include "a64/constants-a64.h"

namespace vixl {
// ISA constants. --------------------------------------------------------------

typedef uint32_t Instr;
const unsigned kInstructionSize = 4;
const unsigned kInstructionSizeLog2 = 2;
const unsigned kLiteralEntrySize = 4;
const unsigned kLiteralEntrySizeLog2 = 2;
const unsigned kMaxLoadLiteralRange = 1 * MBytes;

// This is the nominal page size (as used by the adrp instruction); the actual
// size of the memory pages allocated by the kernel is likely to differ.
const unsigned kPageSize = 4 * KBytes;
const unsigned kPageSizeLog2 = 12;

const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
const unsigned kXRegSize = 64;
const unsigned kXRegSizeLog2 = 6;
const unsigned kXRegSizeInBytes = kXRegSize / 8;
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
const unsigned kSRegSize = 32;
const unsigned kSRegSizeLog2 = 5;
const unsigned kSRegSizeInBytes = kSRegSize / 8;
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
const unsigned kDRegSize = 64;
const unsigned kDRegSizeLog2 = 6;
const unsigned kDRegSizeInBytes = kDRegSize / 8;
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
const uint64_t kWRegMask = UINT64_C(0xffffffff);
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSRegMask = UINT64_C(0xffffffff);
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSSignMask = UINT64_C(0x80000000);
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
const uint64_t kWSignMask = UINT64_C(0x80000000);
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
const uint64_t kByteMask = UINT64_C(0xff);
const uint64_t kHalfWordMask = UINT64_C(0xffff);
const uint64_t kWordMask = UINT64_C(0xffffffff);
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
const int64_t kXMinInt = INT64_C(0x8000000000000000);
const int32_t kWMaxInt = INT32_C(0x7fffffff);
const int32_t kWMinInt = INT32_C(0x80000000);
const unsigned kLinkRegCode = 30;
const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
const unsigned kRegCodeMask = 0x1f;

const unsigned kAddressTagOffset = 56;
const unsigned kAddressTagWidth = 8;
const uint64_t kAddressTagMask =
    ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));

// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;

// Floating-point infinity values.
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;

// The default NaN values (for FPCR.DN=1).
extern const double kFP64DefaultNaN;
extern const float kFP32DefaultNaN;


enum LSDataSize {
  LSByte        = 0,
  LSHalfword    = 1,
  LSWord        = 2,
  LSDoubleWord  = 3
};

LSDataSize CalcLSPairDataSize(LoadStorePairOp op);

enum ImmBranchType {
  UnknownBranchType = 0,
  CondBranchType    = 1,
  UncondBranchType  = 2,
  CompareBranchType = 3,
  TestBranchType    = 4
};

enum AddrMode {
  Offset,
  PreIndex,
  PostIndex
};

enum FPRounding {
  // The first four values are encodable directly by FPCR<RMode>.
  FPTieEven = 0x0,
  FPPositiveInfinity = 0x1,
  FPNegativeInfinity = 0x2,
  FPZero = 0x3,

  // The final rounding mode is only available when explicitly specified by the
  // instruction (such as with fcvta). It cannot be set in FPCR.
  FPTieAway
};

enum Reg31Mode {
  Reg31IsStackPointer,
  Reg31IsZeroRegister
};

// Instructions. ---------------------------------------------------------------

class Instruction {
 public:
  Instr InstructionBits() const {
    return *(reinterpret_cast<const Instr*>(this));
  }

  void SetInstructionBits(Instr new_instr) {
    *(reinterpret_cast<Instr*>(this)) = new_instr;
  }

  int Bit(int pos) const {
    return (InstructionBits() >> pos) & 1;
  }

  uint32_t Bits(int msb, int lsb) const {
    return unsigned_bitextract_32(msb, lsb, InstructionBits());
  }

  int32_t SignedBits(int msb, int lsb) const {
    int32_t bits = *(reinterpret_cast<const int32_t*>(this));
    return signed_bitextract_32(msb, lsb, bits);
  }

  Instr Mask(uint32_t mask) const {
    return InstructionBits() & mask;
  }

  #define DEFINE_GETTER(Name, HighBit, LowBit, Func)             \
  int64_t Name() const { return Func(HighBit, LowBit); }
  INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
  #undef DEFINE_GETTER

  // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
  // formed from ImmPCRelLo and ImmPCRelHi.
  int ImmPCRel() const {
    int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
    int const width = ImmPCRelLo_width + ImmPCRelHi_width;
    return signed_bitextract_32(width-1, 0, offset);
  }

  uint64_t ImmLogical() const;
  float ImmFP32() const;
  double ImmFP64() const;

  LSDataSize SizeLSPair() const {
    return CalcLSPairDataSize(
             static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
  }

  // Helpers.
  bool IsCondBranchImm() const {
    return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
  }

  bool IsUncondBranchImm() const {
    return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
  }

  bool IsCompareBranch() const {
    return Mask(CompareBranchFMask) == CompareBranchFixed;
  }

  bool IsTestBranch() const {
    return Mask(TestBranchFMask) == TestBranchFixed;
  }

  bool IsPCRelAddressing() const {
    return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
  }

  bool IsLogicalImmediate() const {
    return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
  }

  bool IsAddSubImmediate() const {
    return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
  }

  bool IsAddSubExtended() const {
    return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
  }

  bool IsLoadOrStore() const {
    return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
  }

  bool IsLoad() const;
  bool IsStore() const;

  bool IsLoadLiteral() const {
    // This includes PRFM_lit.
    return Mask(LoadLiteralFMask) == LoadLiteralFixed;
  }

  bool IsMovn() const {
    return (Mask(MoveWideImmediateMask) == MOVN_x) ||
           (Mask(MoveWideImmediateMask) == MOVN_w);
  }

  // Indicate whether Rd can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rd field.
  Reg31Mode RdMode() const {
    // The following instructions use sp or wsp as Rd:
    //  Add/sub (immediate) when not setting the flags.
    //  Add/sub (extended) when not setting the flags.
    //  Logical (immediate) when not setting the flags.
    // Otherwise, r31 is the zero register.
    if (IsAddSubImmediate() || IsAddSubExtended()) {
      if (Mask(AddSubSetFlagsBit)) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    if (IsLogicalImmediate()) {
      // Of the logical (immediate) instructions, only ANDS (and its aliases)
      // can set the flags. The others can all write into sp.
      // Note that some logical operations are not available to
      // immediate-operand instructions, so we have to combine two masks here.
      if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
        return Reg31IsZeroRegister;
      } else {
        return Reg31IsStackPointer;
      }
    }
    return Reg31IsZeroRegister;
  }

  // Indicate whether Rn can be the stack pointer or the zero register. This
  // does not check that the instruction actually has an Rn field.
  Reg31Mode RnMode() const {
    // The following instructions use sp or wsp as Rn:
    //  All loads and stores.
    //  Add/sub (immediate).
    //  Add/sub (extended).
    // Otherwise, r31 is the zero register.
    if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
      return Reg31IsStackPointer;
    }
    return Reg31IsZeroRegister;
  }

  ImmBranchType BranchType() const {
    if (IsCondBranchImm()) {
      return CondBranchType;
    } else if (IsUncondBranchImm()) {
      return UncondBranchType;
    } else if (IsCompareBranch()) {
      return CompareBranchType;
    } else if (IsTestBranch()) {
      return TestBranchType;
    } else {
      return UnknownBranchType;
    }
  }

  // Find the target of this instruction. 'this' may be a branch or a
  // PC-relative addressing instruction.
  const Instruction* ImmPCOffsetTarget() const;

  // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
  // a PC-relative addressing instruction.
  void SetImmPCOffsetTarget(const Instruction* target);
  // Patch a literal load instruction to load from 'source'.
  void SetImmLLiteral(const Instruction* source);

  // Calculate the address of a literal referred to by a load-literal
  // instruction, and return it as the specified type.
  //
  // The literal itself is safely mutable only if the backing buffer is safely
  // mutable.
  template <typename T>
  T LiteralAddress() const {
    uint64_t base_raw = reinterpret_cast<uintptr_t>(this);
    ptrdiff_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
    uint64_t address_raw = base_raw + offset;

    // Cast the address using a C-style cast. A reinterpret_cast would be
    // appropriate, but it can't cast one integral type to another.
    T address = (T)(address_raw);

    // Assert that the address can be represented by the specified type.
    VIXL_ASSERT((uint64_t)(address) == address_raw);

    return address;
  }

  uint32_t Literal32() const {
    uint32_t literal;
    memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
    return literal;
  }

  uint64_t Literal64() const {
    uint64_t literal;
    memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
    return literal;
  }

  float LiteralFP32() const {
    return rawbits_to_float(Literal32());
  }

  double LiteralFP64() const {
    return rawbits_to_double(Literal64());
  }

  const Instruction* NextInstruction() const {
    return this + kInstructionSize;
  }

  const Instruction* InstructionAtOffset(int64_t offset) const {
    VIXL_ASSERT(IsWordAligned(this + offset));
    return this + offset;
  }

  template<typename T> static Instruction* Cast(T src) {
    return reinterpret_cast<Instruction*>(src);
  }

  template<typename T> static const Instruction* CastConst(T src) {
    return reinterpret_cast<const Instruction*>(src);
  }

 private:
  int ImmBranch() const;

  void SetPCRelImmTarget(const Instruction* target);
  void SetBranchImmTarget(const Instruction* target);
};
}  // namespace vixl

#endif  // VIXL_A64_INSTRUCTIONS_A64_H_