summaryrefslogtreecommitdiffstats
path: root/kernel/fs/nfs/dir.c
blob: 52ee0b73ab4af00b9a647ca064fdacb90360347f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*
 * Copyright (c) 2014 Anna Schumaker <Anna.Schumaker@Netapp.com>
 */
#ifndef __LINUX_FS_NFS_NFS4_2XDR_H
#define __LINUX_FS_NFS_NFS4_2XDR_H

#include "nfs42.h"

#define encode_fallocate_maxsz		(encode_stateid_maxsz + \
					 2 /* offset */ + \
					 2 /* length */)
#define encode_allocate_maxsz		(op_encode_hdr_maxsz + \
					 encode_fallocate_maxsz)
#define decode_allocate_maxsz		(op_decode_hdr_maxsz)
#define encode_deallocate_maxsz		(op_encode_hdr_maxsz + \
					 encode_fallocate_maxsz)
#define decode_deallocate_maxsz		(op_decode_hdr_maxsz)
#define encode_seek_maxsz		(op_encode_hdr_maxsz + \
					 encode_stateid_maxsz + \
					 2 /* offset */ + \
					 1 /* whence */)
#define decode_seek_maxsz		(op_decode_hdr_maxsz + \
					 1 /* eof */ + \
					 1 /* whence */ + \
					 2 /* offset */ + \
					 2 /* length */)
#define encode_io_info_maxsz		4
#define encode_layoutstats_maxsz	(op_decode_hdr_maxsz + \
					2 /* offset */ + \
					2 /* length */ + \
					encode_stateid_maxsz + \
					encode_io_info_maxsz + \
					encode_io_info_maxsz + \
					1 /* opaque devaddr4 length */ + \
					XDR_QUADLEN(PNFS_LAYOUTSTATS_MAXSIZE))
#define decode_layoutstats_maxsz	(op_decode_hdr_maxsz)
#define encode_clone_maxsz		(encode_stateid_maxsz + \
					encode_stateid_maxsz + \
					2 /* src offset */ + \
					2 /* dst offset */ + \
					2 /* count */)
#define decode_clone_maxsz		(op_decode_hdr_maxsz)

#define NFS4_enc_allocate_sz		(compound_encode_hdr_maxsz + \
					 encode_putfh_maxsz + \
					 encode_allocate_maxsz + \
					 encode_getattr_maxsz)
#define NFS4_dec_allocate_sz		(compound_decode_hdr_maxsz + \
					 decode_putfh_maxsz + \
					 decode_allocate_maxsz + \
					 decode_getattr_maxsz)
#define NFS4_enc_deallocate_sz		(compound_encode_hdr_maxsz + \
					 encode_putfh_maxsz + \
					 encode_deallocate_maxsz + \
					 encode_getattr_maxsz)
#define NFS4_dec_deallocate_sz		(compound_decode_hdr_maxsz + \
					 decode_putfh_maxsz + \
					 decode_deallocate_maxsz + \
					 decode_getattr_maxsz)
#define NFS4_enc_seek_sz		(compound_encode_hdr_maxsz + \
					 encode_putfh_maxsz + \
					 encode_seek_maxsz)
#define NFS4_dec_seek_sz		(compound_decode_hdr_maxsz + \
					 decode_putfh_maxsz + \
					 decode_seek_maxsz)
#define NFS4_enc_layoutstats_sz		(compound_encode_hdr_maxsz + \
					 encode_sequence_maxsz + \
					 encode_putfh_maxsz + \
					 PNFS_LAYOUTSTATS_MAXDEV * encode_layoutstats_maxsz)
#define NFS4_dec_layoutstats_sz		(compound_decode_hdr_maxsz + \
					 decode_sequence_maxsz + \
					 decode_putfh_maxsz + \
					 PNFS_LAYOUTSTATS_MAXDEV * decode_layoutstats_maxsz)
#define NFS4_enc_clone_sz		(compound_encode_hdr_maxsz + \
					 encode_sequence_maxsz + \
					 encode_putfh_maxsz + \
					 encode_savefh_maxsz + \
					 encode_putfh_maxsz + \
					 encode_clone_maxsz + \
					 encode_getattr_maxsz)
#define NFS4_dec_clone_sz		(compound_decode_hdr_maxsz + \
					 decode_sequence_maxsz + \
					 decode_putfh_maxsz + \
					 decode_savefh_maxsz + \
					 decode_putfh_maxsz + \
					 decode_clone_maxsz + \
					 decode_getattr_maxsz)

static void encode_fallocate(struct xdr_stream *xdr,
			     struct nfs42_falloc_args *args)
{
	encode_nfs4_stateid(xdr, &args->falloc_stateid);
	encode_uint64(xdr, args->falloc_offset);
	encode_uint64(xdr, args->falloc_length);
}

static void encode_allocate(struct xdr_stream *xdr,
			    struct nfs42_falloc_args *args,
			    struct compound_hdr *hdr)
{
	encode_op_hdr(xdr, OP_ALLOCATE, decode_allocate_maxsz, hdr);
	encode_fallocate(xdr, args);
}

static void encode_deallocate(struct xdr_stream *xdr,
			      struct nfs42_falloc_args *args,
			      struct compound_hdr *hdr)
{
	encode_op_hdr(xdr, OP_DEALLOCATE, decode_deallocate_maxsz, hdr);
	encode_fallocate(xdr, args);
}

static void encode_seek(struct xdr_stream *xdr,
			struct nfs42_seek_args *args,
			struct compound_hdr *hdr)
{
	encode_op_hdr(xdr, OP_SEEK, decode_seek_maxsz, hdr);
	encode_nfs4_stateid(xdr, &args->sa_stateid);
	encode_uint64(xdr, args->sa_offset);
	encode_uint32(xdr, args->sa_what);
}

static void encode_layoutstats(struct xdr_stream *xdr,
			       struct nfs42_layoutstat_args *args,
			       struct nfs42_layoutstat_devinfo *devinfo,
			       struct compound_hdr *hdr)
{
	__be32 *p;

	encode_op_hdr(xdr, OP_LAYOUTSTATS, decode_layoutstats_maxsz, hdr);
	p = reserve_space(xdr, 8 + 8);
	p = xdr_encode_hyper(p, devinfo->offset);
	p = xdr_encode_hyper(p, devinfo->length);
	encode_nfs4_stateid(xdr, &args->stateid);
	p = reserve_space(xdr, 4*8 + NFS4_DEVICEID4_SIZE + 4);
	p = xdr_encode_hyper(p, devinfo->read_count);
	p = xdr_encode_hyper(p, devinfo->read_bytes);
	p = xdr_encode_hyper(p, devinfo->write_count);
	p = xdr_encode_hyper(p, devinfo->write_bytes);
	p = xdr_encode_opaque_fixed(p, devinfo->dev_id.data,
			NFS4_DEVICEID4_SIZE);
	/* Encode layoutupdate4 */
	*p++ = cpu_to_be32(devinfo->layout_type);
	if (devinfo->layoutstats_encode != NULL)
		devinfo->layoutstats_encode(xdr, args, devinfo);
	else
		encode_uint32(xdr, 0);
}

static void encode_clone(struct xdr_stream *xdr,
			 struct nfs42_clone_args *args,
			 struct compound_hdr *hdr)
{
	__be32 *p;

	encode_op_hdr(xdr, OP_CLONE, decode_clone_maxsz, hdr);
	encode_nfs4_stateid(xdr, &args->src_stateid);
	encode_nfs4_stateid(xdr, &args->dst_stateid);
	p = reserve_space(xdr, 3*8);
	p = xdr_encode_hyper(p, args->src_offset);
	p = xdr_encode_hyper(p, args->dst_offset);
	xdr_encode_hyper(p, args->count);
}

/*
 * Encode ALLOCATE request
 */
static void nfs4_xdr_enc_allocate(struct rpc_rqst *req,
				  struct xdr_stream *xdr,
				  struct nfs42_falloc_args *args)
{
	struct compound_hdr hdr = {
		.minorversion = nfs4_xdr_minorversion(&args->seq_args),
	};

	encode_compound_hdr(xdr, req, &hdr);
	encode_sequence(xdr, &args->seq_args, &hdr);
	encode_putfh(xdr, args->falloc_fh, &hdr);
	encode_allocate(xdr, args, &hdr);
	encode_getfattr(xdr, args->falloc_bitmask, &hdr);
	encode_nops(&hdr);
}

/*
 * Encode DEALLOCATE request
 */
static void nfs4_xdr_enc_deallocate(struct rpc_rqst *req,
				    struct xdr_stream *xdr,
				    struct nfs42_falloc_args *args)
{
	struct compound_hdr hdr = {
		.minorversion = nfs4_xdr_minorversion(&args->seq_args),
	};

	encode_compound_hdr(xdr, req, &hdr);
	encode_sequence(xdr, &args->seq_args, &hdr);
	encode_putfh(xdr, args->falloc_fh, &hdr);
	encode_deallocate(xdr, args, &hdr);
	encode_getfattr(xdr, args->falloc_bitmask, &hdr);
	encode_nops(&hdr);
}

/*
 * Encode SEEK request
 */
static void nfs4_xdr_enc_seek(struct rpc_rqst *req,
			      struct xdr_stream *xdr,
			      struct nfs42_seek_args *args)
{
	struct compound_hdr hdr = {
		.minorversion = nfs4_xdr_minorversion(&args->seq_args),
	};

	encode_compound_hdr(xdr, req, &hdr);
	encode_sequence(xdr, &args->seq_args, &hdr);
	encode_putfh(xdr, args->sa_fh, &hdr);
	encode_seek(xdr, args, &hdr);
	encode_nops(&hdr);
}

/*
 * Encode LAYOUTSTATS request
 */
static void nfs4_xdr_enc_layoutstats(struct rpc_rqst *req,
				     struct xdr_stream *xdr,
				     struct nfs42_layoutstat_args *args)
{
	int i;

	struct compound_hdr hdr = {
		.minorversion = nfs4_xdr_minorversion(&args->seq_args),
	};

	encode_compound_hdr(xdr, req, &hdr);
	encode_sequence(xdr, &args->seq_args, &hdr);
	encode_putfh(xdr, args->fh, &hdr);
	WARN_ON(args->num_dev > PNFS_LAYOUTSTATS_MAXDEV);
	for (i = 0; i < args->num_dev; i++)
		encode_layoutstats(xdr, args, &args->devinfo[i], &hdr);
	encode_nops(&hdr);
}

/*
 * Encode CLONE request
 */
static void nfs4_xdr_enc_clone(struct rpc_rqst *req,
			       struct xdr_stream *xdr,
			       struct nfs42_clone_args *args)
{
	struct compound_hdr hdr = {
		.minorversion = nfs4_xdr_minorversion(&args->seq_args),
	};

	encode_compound_hdr(xdr, req, &hdr);
	encode_sequence(xdr, &args->seq_args, &hdr);
	encode_putfh(xdr, args->src_fh, &hdr);
	encode_savefh(xdr, &hdr);
	encode_putfh(xdr, args->dst_fh, &hdr);
	encode_clone(xdr, args, &hdr);
	encode_getfattr(xdr, args->dst_bitmask, &hdr);
	encode_nops(&hdr);
}

static int decode_allocate(struct xdr_stream *xdr, struct nfs42_falloc_res *res)
{
	return decode_op_hdr(xdr, OP_ALLOCATE);
}

static int decode_deallocate(struct xdr_stream *xdr, struct nfs42_falloc_res *res)
{
	return decode_op_hdr(xdr, OP_DEALLOCATE);
}

static int decode_seek(struct xdr_stream *xdr, struct nfs42_seek_res *res)
{
	int status;
	__be32 *p;

	status = decode_op_hdr(xdr, OP_SEEK);
	if (status)
		return status;

	p = xdr_inline_decode(xdr, 4 + 8);
	if (unlikely(!p))
		goto out_overflow;

	res->sr_eof = be32_to_cpup(p++);
	p = xdr_decode_hyper(p, &res->sr_offset);
	return 0;

out_overflow:
	print_overflow_msg(__func__, xdr);
	return -EIO;
}

static int decode_layoutstats(struct xdr_stream *xdr)
{
	return decode_op_hdr(xdr, OP_LAYOUTSTATS);
}

static int decode_clone(struct xdr_stream *xdr)
{
	return decode_op_hdr(xdr, OP_CLONE);
}

/*
 * Decode ALLOCATE request
 */
static int nfs4_xdr_dec_allocate(struct rpc_rqst *rqstp,
				 struct xdr_stream *xdr,
				 struct nfs42_falloc_res *res)
{
	struct compound_hdr hdr;
	int status;

	status = decode_compound_hdr(xdr, &hdr);
	if (status)
		goto out;
	status = decode_sequence(xdr, &res->seq_res, rqstp);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	status = decode_allocate(xdr, res);
	if (status)
		goto out;
	decode_getfattr(xdr, res->falloc_fattr, res->falloc_server);
out:
	return status;
}

/*
 * Decode DEALLOCATE request
 */
static int nfs4_xdr_dec_deallocate(struct rpc_rqst *rqstp,
				   struct xdr_stream *xdr,
				   struct nfs42_falloc_res *res)
{
	struct compound_hdr hdr;
	int status;

	status = decode_compound_hdr(xdr, &hdr);
	if (status)
		goto out;
	status = decode_sequence(xdr, &res->seq_res, rqstp);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	status = decode_deallocate(xdr, res);
	if (status)
		goto out;
	decode_getfattr(xdr, res->falloc_fattr, res->falloc_server);
out:
	return status;
}

/*
 * Decode SEEK request
 */
static int nfs4_xdr_dec_seek(struct rpc_rqst *rqstp,
			     struct xdr_stream *xdr,
			     struct nfs42_seek_res *res)
{
	struct compound_hdr hdr;
	int status;

	status = decode_compound_hdr(xdr, &hdr);
	if (status)
		goto out;
	status = decode_sequence(xdr, &res->seq_res, rqstp);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	status = decode_seek(xdr, res);
out:
	return status;
}

/*
 * Decode LAYOUTSTATS request
 */
static int nfs4_xdr_dec_layoutstats(struct rpc_rqst *rqstp,
				    struct xdr_stream *xdr,
				    struct nfs42_layoutstat_res *res)
{
	struct compound_hdr hdr;
	int status, i;

	status = decode_compound_hdr(xdr, &hdr);
	if (status)
		goto out;
	status = decode_sequence(xdr, &res->seq_res, rqstp);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	WARN_ON(res->num_dev > PNFS_LAYOUTSTATS_MAXDEV);
	for (i = 0; i < res->num_dev; i++) {
		status = decode_layoutstats(xdr);
		if (status)
			goto out;
	}
out:
	res->rpc_status = status;
	return status;
}

/*
 * Decode CLONE request
 */
static int nfs4_xdr_dec_clone(struct rpc_rqst *rqstp,
			      struct xdr_stream *xdr,
			      struct nfs42_clone_res *res)
{
	struct compound_hdr hdr;
	int status;

	status = decode_compound_hdr(xdr, &hdr);
	if (status)
		goto out;
	status = decode_sequence(xdr, &res->seq_res, rqstp);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	status = decode_savefh(xdr);
	if (status)
		goto out;
	status = decode_putfh(xdr);
	if (status)
		goto out;
	status = decode_clone(xdr);
	if (status)
		goto out;
	status = decode_getfattr(xdr, res->dst_fattr, res->server);

out:
	res->rpc_status = status;
	return status;
}

#endif /* __LINUX_FS_NFS_NFS4_2XDR_H */
'n2250' href='#n2250'>2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
/*
 *  linux/fs/nfs/dir.c
 *
 *  Copyright (C) 1992  Rick Sladkey
 *
 *  nfs directory handling functions
 *
 * 10 Apr 1996	Added silly rename for unlink	--okir
 * 28 Sep 1996	Improved directory cache --okir
 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
 *              Re-implemented silly rename for unlink, newly implemented
 *              silly rename for nfs_rename() following the suggestions
 *              of Olaf Kirch (okir) found in this file.
 *              Following Linus comments on my original hack, this version
 *              depends only on the dcache stuff and doesn't touch the inode
 *              layer (iput() and friends).
 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
 */

#include <linux/module.h>
#include <linux/time.h>
#include <linux/errno.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/sunrpc/clnt.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_mount.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/swap.h>
#include <linux/sched.h>
#include <linux/kmemleak.h>
#include <linux/xattr.h>

#include "delegation.h"
#include "iostat.h"
#include "internal.h"
#include "fscache.h"

#include "nfstrace.h"

/* #define NFS_DEBUG_VERBOSE 1 */

static int nfs_opendir(struct inode *, struct file *);
static int nfs_closedir(struct inode *, struct file *);
static int nfs_readdir(struct file *, struct dir_context *);
static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
static loff_t nfs_llseek_dir(struct file *, loff_t, int);
static void nfs_readdir_clear_array(struct page*);

const struct file_operations nfs_dir_operations = {
	.llseek		= nfs_llseek_dir,
	.read		= generic_read_dir,
	.iterate	= nfs_readdir,
	.open		= nfs_opendir,
	.release	= nfs_closedir,
	.fsync		= nfs_fsync_dir,
};

const struct address_space_operations nfs_dir_aops = {
	.freepage = nfs_readdir_clear_array,
};

static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
{
	struct nfs_inode *nfsi = NFS_I(dir);
	struct nfs_open_dir_context *ctx;
	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
	if (ctx != NULL) {
		ctx->duped = 0;
		ctx->attr_gencount = nfsi->attr_gencount;
		ctx->dir_cookie = 0;
		ctx->dup_cookie = 0;
		ctx->cred = get_rpccred(cred);
		spin_lock(&dir->i_lock);
		list_add(&ctx->list, &nfsi->open_files);
		spin_unlock(&dir->i_lock);
		return ctx;
	}
	return  ERR_PTR(-ENOMEM);
}

static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
{
	spin_lock(&dir->i_lock);
	list_del(&ctx->list);
	spin_unlock(&dir->i_lock);
	put_rpccred(ctx->cred);
	kfree(ctx);
}

/*
 * Open file
 */
static int
nfs_opendir(struct inode *inode, struct file *filp)
{
	int res = 0;
	struct nfs_open_dir_context *ctx;
	struct rpc_cred *cred;

	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);

	nfs_inc_stats(inode, NFSIOS_VFSOPEN);

	cred = rpc_lookup_cred();
	if (IS_ERR(cred))
		return PTR_ERR(cred);
	ctx = alloc_nfs_open_dir_context(inode, cred);
	if (IS_ERR(ctx)) {
		res = PTR_ERR(ctx);
		goto out;
	}
	filp->private_data = ctx;
	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
		/* This is a mountpoint, so d_revalidate will never
		 * have been called, so we need to refresh the
		 * inode (for close-open consistency) ourselves.
		 */
		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
	}
out:
	put_rpccred(cred);
	return res;
}

static int
nfs_closedir(struct inode *inode, struct file *filp)
{
	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
	return 0;
}

struct nfs_cache_array_entry {
	u64 cookie;
	u64 ino;
	struct qstr string;
	unsigned char d_type;
};

struct nfs_cache_array {
	int size;
	int eof_index;
	u64 last_cookie;
	struct nfs_cache_array_entry array[0];
};

typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
typedef struct {
	struct file	*file;
	struct page	*page;
	struct dir_context *ctx;
	unsigned long	page_index;
	u64		*dir_cookie;
	u64		last_cookie;
	loff_t		current_index;
	decode_dirent_t	decode;

	unsigned long	timestamp;
	unsigned long	gencount;
	unsigned int	cache_entry_index;
	unsigned int	plus:1;
	unsigned int	eof:1;
} nfs_readdir_descriptor_t;

/*
 * The caller is responsible for calling nfs_readdir_release_array(page)
 */
static
struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
{
	void *ptr;
	if (page == NULL)
		return ERR_PTR(-EIO);
	ptr = kmap(page);
	if (ptr == NULL)
		return ERR_PTR(-ENOMEM);
	return ptr;
}

static
void nfs_readdir_release_array(struct page *page)
{
	kunmap(page);
}

/*
 * we are freeing strings created by nfs_add_to_readdir_array()
 */
static
void nfs_readdir_clear_array(struct page *page)
{
	struct nfs_cache_array *array;
	int i;

	array = kmap_atomic(page);
	for (i = 0; i < array->size; i++)
		kfree(array->array[i].string.name);
	kunmap_atomic(array);
}

/*
 * the caller is responsible for freeing qstr.name
 * when called by nfs_readdir_add_to_array, the strings will be freed in
 * nfs_clear_readdir_array()
 */
static
int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
{
	string->len = len;
	string->name = kmemdup(name, len, GFP_KERNEL);
	if (string->name == NULL)
		return -ENOMEM;
	/*
	 * Avoid a kmemleak false positive. The pointer to the name is stored
	 * in a page cache page which kmemleak does not scan.
	 */
	kmemleak_not_leak(string->name);
	string->hash = full_name_hash(name, len);
	return 0;
}

static
int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
{
	struct nfs_cache_array *array = nfs_readdir_get_array(page);
	struct nfs_cache_array_entry *cache_entry;
	int ret;

	if (IS_ERR(array))
		return PTR_ERR(array);

	cache_entry = &array->array[array->size];

	/* Check that this entry lies within the page bounds */
	ret = -ENOSPC;
	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
		goto out;

	cache_entry->cookie = entry->prev_cookie;
	cache_entry->ino = entry->ino;
	cache_entry->d_type = entry->d_type;
	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
	if (ret)
		goto out;
	array->last_cookie = entry->cookie;
	array->size++;
	if (entry->eof != 0)
		array->eof_index = array->size;
out:
	nfs_readdir_release_array(page);
	return ret;
}

static
int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
{
	loff_t diff = desc->ctx->pos - desc->current_index;
	unsigned int index;

	if (diff < 0)
		goto out_eof;
	if (diff >= array->size) {
		if (array->eof_index >= 0)
			goto out_eof;
		return -EAGAIN;
	}

	index = (unsigned int)diff;
	*desc->dir_cookie = array->array[index].cookie;
	desc->cache_entry_index = index;
	return 0;
out_eof:
	desc->eof = 1;
	return -EBADCOOKIE;
}

static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
{
	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
		return false;
	smp_rmb();
	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
}

static
int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
{
	int i;
	loff_t new_pos;
	int status = -EAGAIN;

	for (i = 0; i < array->size; i++) {
		if (array->array[i].cookie == *desc->dir_cookie) {
			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
			struct nfs_open_dir_context *ctx = desc->file->private_data;

			new_pos = desc->current_index + i;
			if (ctx->attr_gencount != nfsi->attr_gencount ||
			    !nfs_readdir_inode_mapping_valid(nfsi)) {
				ctx->duped = 0;
				ctx->attr_gencount = nfsi->attr_gencount;
			} else if (new_pos < desc->ctx->pos) {
				if (ctx->duped > 0
				    && ctx->dup_cookie == *desc->dir_cookie) {
					if (printk_ratelimit()) {
						pr_notice("NFS: directory %pD2 contains a readdir loop."
								"Please contact your server vendor.  "
								"The file: %.*s has duplicate cookie %llu\n",
								desc->file, array->array[i].string.len,
								array->array[i].string.name, *desc->dir_cookie);
					}
					status = -ELOOP;
					goto out;
				}
				ctx->dup_cookie = *desc->dir_cookie;
				ctx->duped = -1;
			}
			desc->ctx->pos = new_pos;
			desc->cache_entry_index = i;
			return 0;
		}
	}
	if (array->eof_index >= 0) {
		status = -EBADCOOKIE;
		if (*desc->dir_cookie == array->last_cookie)
			desc->eof = 1;
	}
out:
	return status;
}

static
int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
{
	struct nfs_cache_array *array;
	int status;

	array = nfs_readdir_get_array(desc->page);
	if (IS_ERR(array)) {
		status = PTR_ERR(array);
		goto out;
	}

	if (*desc->dir_cookie == 0)
		status = nfs_readdir_search_for_pos(array, desc);
	else
		status = nfs_readdir_search_for_cookie(array, desc);

	if (status == -EAGAIN) {
		desc->last_cookie = array->last_cookie;
		desc->current_index += array->size;
		desc->page_index++;
	}
	nfs_readdir_release_array(desc->page);
out:
	return status;
}

/* Fill a page with xdr information before transferring to the cache page */
static
int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
			struct nfs_entry *entry, struct file *file, struct inode *inode)
{
	struct nfs_open_dir_context *ctx = file->private_data;
	struct rpc_cred	*cred = ctx->cred;
	unsigned long	timestamp, gencount;
	int		error;

 again:
	timestamp = jiffies;
	gencount = nfs_inc_attr_generation_counter();
	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
					  NFS_SERVER(inode)->dtsize, desc->plus);
	if (error < 0) {
		/* We requested READDIRPLUS, but the server doesn't grok it */
		if (error == -ENOTSUPP && desc->plus) {
			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
			desc->plus = 0;
			goto again;
		}
		goto error;
	}
	desc->timestamp = timestamp;
	desc->gencount = gencount;
error:
	return error;
}

static int xdr_decode(nfs_readdir_descriptor_t *desc,
		      struct nfs_entry *entry, struct xdr_stream *xdr)
{
	int error;

	error = desc->decode(xdr, entry, desc->plus);
	if (error)
		return error;
	entry->fattr->time_start = desc->timestamp;
	entry->fattr->gencount = desc->gencount;
	return 0;
}

/* Match file and dirent using either filehandle or fileid
 * Note: caller is responsible for checking the fsid
 */
static
int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
{
	struct nfs_inode *nfsi;

	if (d_really_is_negative(dentry))
		return 0;

	nfsi = NFS_I(d_inode(dentry));
	if (entry->fattr->fileid == nfsi->fileid)
		return 1;
	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
		return 1;
	return 0;
}

static
bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
{
	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
		return false;
	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
		return true;
	if (ctx->pos == 0)
		return true;
	return false;
}

/*
 * This function is called by the lookup code to request the use of
 * readdirplus to accelerate any future lookups in the same
 * directory.
 */
static
void nfs_advise_use_readdirplus(struct inode *dir)
{
	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
}

/*
 * This function is mainly for use by nfs_getattr().
 *
 * If this is an 'ls -l', we want to force use of readdirplus.
 * Do this by checking if there is an active file descriptor
 * and calling nfs_advise_use_readdirplus, then forcing a
 * cache flush.
 */
void nfs_force_use_readdirplus(struct inode *dir)
{
	if (!list_empty(&NFS_I(dir)->open_files)) {
		nfs_advise_use_readdirplus(dir);
		invalidate_mapping_pages(dir->i_mapping, 0, -1);
	}
}

static
void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
{
	struct qstr filename = QSTR_INIT(entry->name, entry->len);
	struct dentry *dentry;
	struct dentry *alias;
	struct inode *dir = d_inode(parent);
	struct inode *inode;
	int status;

	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
		return;
	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
		return;
	if (filename.name[0] == '.') {
		if (filename.len == 1)
			return;
		if (filename.len == 2 && filename.name[1] == '.')
			return;
	}
	filename.hash = full_name_hash(filename.name, filename.len);

	dentry = d_lookup(parent, &filename);
	if (dentry != NULL) {
		/* Is there a mountpoint here? If so, just exit */
		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
					&entry->fattr->fsid))
			goto out;
		if (nfs_same_file(dentry, entry)) {
			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
			if (!status)
				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
			goto out;
		} else {
			d_invalidate(dentry);
			dput(dentry);
		}
	}

	dentry = d_alloc(parent, &filename);
	if (dentry == NULL)
		return;

	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
	if (IS_ERR(inode))
		goto out;

	alias = d_splice_alias(inode, dentry);
	if (IS_ERR(alias))
		goto out;
	else if (alias) {
		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
		dput(alias);
	} else
		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));

out:
	dput(dentry);
}

/* Perform conversion from xdr to cache array */
static
int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
				struct page **xdr_pages, struct page *page, unsigned int buflen)
{
	struct xdr_stream stream;
	struct xdr_buf buf;
	struct page *scratch;
	struct nfs_cache_array *array;
	unsigned int count = 0;
	int status;

	scratch = alloc_page(GFP_KERNEL);
	if (scratch == NULL)
		return -ENOMEM;

	if (buflen == 0)
		goto out_nopages;

	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);

	do {
		status = xdr_decode(desc, entry, &stream);
		if (status != 0) {
			if (status == -EAGAIN)
				status = 0;
			break;
		}

		count++;

		if (desc->plus != 0)
			nfs_prime_dcache(file_dentry(desc->file), entry);

		status = nfs_readdir_add_to_array(entry, page);
		if (status != 0)
			break;
	} while (!entry->eof);

out_nopages:
	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
		array = nfs_readdir_get_array(page);
		if (!IS_ERR(array)) {
			array->eof_index = array->size;
			status = 0;
			nfs_readdir_release_array(page);
		} else
			status = PTR_ERR(array);
	}

	put_page(scratch);
	return status;
}

static
void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
{
	unsigned int i;
	for (i = 0; i < npages; i++)
		put_page(pages[i]);
}

/*
 * nfs_readdir_large_page will allocate pages that must be freed with a call
 * to nfs_readdir_free_pagearray
 */
static
int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
{
	unsigned int i;

	for (i = 0; i < npages; i++) {
		struct page *page = alloc_page(GFP_KERNEL);
		if (page == NULL)
			goto out_freepages;
		pages[i] = page;
	}
	return 0;

out_freepages:
	nfs_readdir_free_pages(pages, i);
	return -ENOMEM;
}

static
int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
{
	struct page *pages[NFS_MAX_READDIR_PAGES];
	struct nfs_entry entry;
	struct file	*file = desc->file;
	struct nfs_cache_array *array;
	int status = -ENOMEM;
	unsigned int array_size = ARRAY_SIZE(pages);

	entry.prev_cookie = 0;
	entry.cookie = desc->last_cookie;
	entry.eof = 0;
	entry.fh = nfs_alloc_fhandle();
	entry.fattr = nfs_alloc_fattr();
	entry.server = NFS_SERVER(inode);
	if (entry.fh == NULL || entry.fattr == NULL)
		goto out;

	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
	if (IS_ERR(entry.label)) {
		status = PTR_ERR(entry.label);
		goto out;
	}

	array = nfs_readdir_get_array(page);
	if (IS_ERR(array)) {
		status = PTR_ERR(array);
		goto out_label_free;
	}
	memset(array, 0, sizeof(struct nfs_cache_array));
	array->eof_index = -1;

	status = nfs_readdir_alloc_pages(pages, array_size);
	if (status < 0)
		goto out_release_array;
	do {
		unsigned int pglen;
		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);

		if (status < 0)
			break;
		pglen = status;
		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
		if (status < 0) {
			if (status == -ENOSPC)
				status = 0;
			break;
		}
	} while (array->eof_index < 0);

	nfs_readdir_free_pages(pages, array_size);
out_release_array:
	nfs_readdir_release_array(page);
out_label_free:
	nfs4_label_free(entry.label);
out:
	nfs_free_fattr(entry.fattr);
	nfs_free_fhandle(entry.fh);
	return status;
}

/*
 * Now we cache directories properly, by converting xdr information
 * to an array that can be used for lookups later.  This results in
 * fewer cache pages, since we can store more information on each page.
 * We only need to convert from xdr once so future lookups are much simpler
 */
static
int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
{
	struct inode	*inode = file_inode(desc->file);
	int ret;

	ret = nfs_readdir_xdr_to_array(desc, page, inode);
	if (ret < 0)
		goto error;
	SetPageUptodate(page);

	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
		/* Should never happen */
		nfs_zap_mapping(inode, inode->i_mapping);
	}
	unlock_page(page);
	return 0;
 error:
	unlock_page(page);
	return ret;
}

static
void cache_page_release(nfs_readdir_descriptor_t *desc)
{
	if (!desc->page->mapping)
		nfs_readdir_clear_array(desc->page);
	page_cache_release(desc->page);
	desc->page = NULL;
}

static
struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
{
	return read_cache_page(file_inode(desc->file)->i_mapping,
			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
}

/*
 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 */
static
int find_cache_page(nfs_readdir_descriptor_t *desc)
{
	int res;

	desc->page = get_cache_page(desc);
	if (IS_ERR(desc->page))
		return PTR_ERR(desc->page);

	res = nfs_readdir_search_array(desc);
	if (res != 0)
		cache_page_release(desc);
	return res;
}

/* Search for desc->dir_cookie from the beginning of the page cache */
static inline
int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
{
	int res;

	if (desc->page_index == 0) {
		desc->current_index = 0;
		desc->last_cookie = 0;
	}
	do {
		res = find_cache_page(desc);
	} while (res == -EAGAIN);
	return res;
}

/*
 * Once we've found the start of the dirent within a page: fill 'er up...
 */
static 
int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
{
	struct file	*file = desc->file;
	int i = 0;
	int res = 0;
	struct nfs_cache_array *array = NULL;
	struct nfs_open_dir_context *ctx = file->private_data;

	array = nfs_readdir_get_array(desc->page);
	if (IS_ERR(array)) {
		res = PTR_ERR(array);
		goto out;
	}

	for (i = desc->cache_entry_index; i < array->size; i++) {
		struct nfs_cache_array_entry *ent;

		ent = &array->array[i];
		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
			desc->eof = 1;
			break;
		}
		desc->ctx->pos++;
		if (i < (array->size-1))
			*desc->dir_cookie = array->array[i+1].cookie;
		else
			*desc->dir_cookie = array->last_cookie;
		if (ctx->duped != 0)
			ctx->duped = 1;
	}
	if (array->eof_index >= 0)
		desc->eof = 1;

	nfs_readdir_release_array(desc->page);
out:
	cache_page_release(desc);
	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
			(unsigned long long)*desc->dir_cookie, res);
	return res;
}

/*
 * If we cannot find a cookie in our cache, we suspect that this is
 * because it points to a deleted file, so we ask the server to return
 * whatever it thinks is the next entry. We then feed this to filldir.
 * If all goes well, we should then be able to find our way round the
 * cache on the next call to readdir_search_pagecache();
 *
 * NOTE: we cannot add the anonymous page to the pagecache because
 *	 the data it contains might not be page aligned. Besides,
 *	 we should already have a complete representation of the
 *	 directory in the page cache by the time we get here.
 */
static inline
int uncached_readdir(nfs_readdir_descriptor_t *desc)
{
	struct page	*page = NULL;
	int		status;
	struct inode *inode = file_inode(desc->file);
	struct nfs_open_dir_context *ctx = desc->file->private_data;

	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
			(unsigned long long)*desc->dir_cookie);

	page = alloc_page(GFP_HIGHUSER);
	if (!page) {
		status = -ENOMEM;
		goto out;
	}

	desc->page_index = 0;
	desc->last_cookie = *desc->dir_cookie;
	desc->page = page;
	ctx->duped = 0;

	status = nfs_readdir_xdr_to_array(desc, page, inode);
	if (status < 0)
		goto out_release;

	status = nfs_do_filldir(desc);

 out:
	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
			__func__, status);
	return status;
 out_release:
	cache_page_release(desc);
	goto out;
}

/* The file offset position represents the dirent entry number.  A
   last cookie cache takes care of the common case of reading the
   whole directory.
 */
static int nfs_readdir(struct file *file, struct dir_context *ctx)
{
	struct dentry	*dentry = file_dentry(file);
	struct inode	*inode = d_inode(dentry);
	nfs_readdir_descriptor_t my_desc,
			*desc = &my_desc;
	struct nfs_open_dir_context *dir_ctx = file->private_data;
	int res = 0;

	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
			file, (long long)ctx->pos);
	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);

	/*
	 * ctx->pos points to the dirent entry number.
	 * *desc->dir_cookie has the cookie for the next entry. We have
	 * to either find the entry with the appropriate number or
	 * revalidate the cookie.
	 */
	memset(desc, 0, sizeof(*desc));

	desc->file = file;
	desc->ctx = ctx;
	desc->dir_cookie = &dir_ctx->dir_cookie;
	desc->decode = NFS_PROTO(inode)->decode_dirent;
	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;

	nfs_block_sillyrename(dentry);
	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
		res = nfs_revalidate_mapping(inode, file->f_mapping);
	if (res < 0)
		goto out;

	do {
		res = readdir_search_pagecache(desc);

		if (res == -EBADCOOKIE) {
			res = 0;
			/* This means either end of directory */
			if (*desc->dir_cookie && desc->eof == 0) {
				/* Or that the server has 'lost' a cookie */
				res = uncached_readdir(desc);
				if (res == 0)
					continue;
			}
			break;
		}
		if (res == -ETOOSMALL && desc->plus) {
			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
			nfs_zap_caches(inode);
			desc->page_index = 0;
			desc->plus = 0;
			desc->eof = 0;
			continue;
		}
		if (res < 0)
			break;

		res = nfs_do_filldir(desc);
		if (res < 0)
			break;
	} while (!desc->eof);
out:
	nfs_unblock_sillyrename(dentry);
	if (res > 0)
		res = 0;
	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
	return res;
}

static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
{
	struct inode *inode = file_inode(filp);
	struct nfs_open_dir_context *dir_ctx = filp->private_data;

	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
			filp, offset, whence);

	mutex_lock(&inode->i_mutex);
	switch (whence) {
		case 1:
			offset += filp->f_pos;
		case 0:
			if (offset >= 0)
				break;
		default:
			offset = -EINVAL;
			goto out;
	}
	if (offset != filp->f_pos) {
		filp->f_pos = offset;
		dir_ctx->dir_cookie = 0;
		dir_ctx->duped = 0;
	}
out:
	mutex_unlock(&inode->i_mutex);
	return offset;
}

/*
 * All directory operations under NFS are synchronous, so fsync()
 * is a dummy operation.
 */
static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
			 int datasync)
{
	struct inode *inode = file_inode(filp);

	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);

	mutex_lock(&inode->i_mutex);
	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
	mutex_unlock(&inode->i_mutex);
	return 0;
}

/**
 * nfs_force_lookup_revalidate - Mark the directory as having changed
 * @dir - pointer to directory inode
 *
 * This forces the revalidation code in nfs_lookup_revalidate() to do a
 * full lookup on all child dentries of 'dir' whenever a change occurs
 * on the server that might have invalidated our dcache.
 *
 * The caller should be holding dir->i_lock
 */
void nfs_force_lookup_revalidate(struct inode *dir)
{
	NFS_I(dir)->cache_change_attribute++;
}
EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);

/*
 * A check for whether or not the parent directory has changed.
 * In the case it has, we assume that the dentries are untrustworthy
 * and may need to be looked up again.
 * If rcu_walk prevents us from performing a full check, return 0.
 */
static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
			      int rcu_walk)
{
	int ret;

	if (IS_ROOT(dentry))
		return 1;
	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
		return 0;
	if (!nfs_verify_change_attribute(dir, dentry->d_time))
		return 0;
	/* Revalidate nfsi->cache_change_attribute before we declare a match */
	if (rcu_walk)
		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
	else
		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
	if (ret < 0)
		return 0;
	if (!nfs_verify_change_attribute(dir, dentry->d_time))
		return 0;
	return 1;
}

/*
 * Use intent information to check whether or not we're going to do
 * an O_EXCL create using this path component.
 */
static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
{
	if (NFS_PROTO(dir)->version == 2)
		return 0;
	return flags & LOOKUP_EXCL;
}

/*
 * Inode and filehandle revalidation for lookups.
 *
 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
 * or if the intent information indicates that we're about to open this
 * particular file and the "nocto" mount flag is not set.
 *
 */
static
int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
{
	struct nfs_server *server = NFS_SERVER(inode);
	int ret;

	if (IS_AUTOMOUNT(inode))
		return 0;
	/* VFS wants an on-the-wire revalidation */
	if (flags & LOOKUP_REVAL)
		goto out_force;
	/* This is an open(2) */
	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
		goto out_force;
out:
	return (inode->i_nlink == 0) ? -ENOENT : 0;
out_force:
	if (flags & LOOKUP_RCU)
		return -ECHILD;
	ret = __nfs_revalidate_inode(server, inode);
	if (ret != 0)
		return ret;
	goto out;
}

/*
 * We judge how long we want to trust negative
 * dentries by looking at the parent inode mtime.
 *
 * If parent mtime has changed, we revalidate, else we wait for a
 * period corresponding to the parent's attribute cache timeout value.
 *
 * If LOOKUP_RCU prevents us from performing a full check, return 1
 * suggesting a reval is needed.
 */
static inline
int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
		       unsigned int flags)
{
	/* Don't revalidate a negative dentry if we're creating a new file */
	if (flags & LOOKUP_CREATE)
		return 0;
	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
		return 1;
	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
}

/*
 * This is called every time the dcache has a lookup hit,
 * and we should check whether we can really trust that
 * lookup.
 *
 * NOTE! The hit can be a negative hit too, don't assume
 * we have an inode!
 *
 * If the parent directory is seen to have changed, we throw out the
 * cached dentry and do a new lookup.
 */
static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
{
	struct inode *dir;
	struct inode *inode;
	struct dentry *parent;
	struct nfs_fh *fhandle = NULL;
	struct nfs_fattr *fattr = NULL;
	struct nfs4_label *label = NULL;
	int error;

	if (flags & LOOKUP_RCU) {
		parent = ACCESS_ONCE(dentry->d_parent);
		dir = d_inode_rcu(parent);
		if (!dir)
			return -ECHILD;
	} else {
		parent = dget_parent(dentry);
		dir = d_inode(parent);
	}
	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
	inode = d_inode(dentry);

	if (!inode) {
		if (nfs_neg_need_reval(dir, dentry, flags)) {
			if (flags & LOOKUP_RCU)
				return -ECHILD;
			goto out_bad;
		}
		goto out_valid_noent;
	}

	if (is_bad_inode(inode)) {
		if (flags & LOOKUP_RCU)
			return -ECHILD;
		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
				__func__, dentry);
		goto out_bad;
	}

	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
		goto out_set_verifier;

	/* Force a full look up iff the parent directory has changed */
	if (!nfs_is_exclusive_create(dir, flags) &&
	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {

		if (nfs_lookup_verify_inode(inode, flags)) {
			if (flags & LOOKUP_RCU)
				return -ECHILD;
			goto out_zap_parent;
		}
		goto out_valid;
	}

	if (flags & LOOKUP_RCU)
		return -ECHILD;

	if (NFS_STALE(inode))
		goto out_bad;

	error = -ENOMEM;
	fhandle = nfs_alloc_fhandle();
	fattr = nfs_alloc_fattr();
	if (fhandle == NULL || fattr == NULL)
		goto out_error;

	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
	if (IS_ERR(label))
		goto out_error;

	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
	if (error)
		goto out_bad;
	if (nfs_compare_fh(NFS_FH(inode), fhandle))
		goto out_bad;
	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
		goto out_bad;

	nfs_setsecurity(inode, fattr, label);

	nfs_free_fattr(fattr);
	nfs_free_fhandle(fhandle);
	nfs4_label_free(label);

out_set_verifier:
	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 out_valid:
	/* Success: notify readdir to use READDIRPLUS */
	nfs_advise_use_readdirplus(dir);
 out_valid_noent:
	if (flags & LOOKUP_RCU) {
		if (parent != ACCESS_ONCE(dentry->d_parent))
			return -ECHILD;
	} else
		dput(parent);
	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
			__func__, dentry);
	return 1;
out_zap_parent:
	nfs_zap_caches(dir);
 out_bad:
	WARN_ON(flags & LOOKUP_RCU);
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fhandle);
	nfs4_label_free(label);
	nfs_mark_for_revalidate(dir);
	if (inode && S_ISDIR(inode->i_mode)) {
		/* Purge readdir caches. */
		nfs_zap_caches(inode);
		/*
		 * We can't d_drop the root of a disconnected tree:
		 * its d_hash is on the s_anon list and d_drop() would hide
		 * it from shrink_dcache_for_unmount(), leading to busy
		 * inodes on unmount and further oopses.
		 */
		if (IS_ROOT(dentry))
			goto out_valid;
	}
	dput(parent);
	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
			__func__, dentry);
	return 0;
out_error:
	WARN_ON(flags & LOOKUP_RCU);
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fhandle);
	nfs4_label_free(label);
	dput(parent);
	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
			__func__, dentry, error);
	return error;
}

/*
 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
 * when we don't really care about the dentry name. This is called when a
 * pathwalk ends on a dentry that was not found via a normal lookup in the
 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
 *
 * In this situation, we just want to verify that the inode itself is OK
 * since the dentry might have changed on the server.
 */
static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
{
	int error;
	struct inode *inode = d_inode(dentry);

	/*
	 * I believe we can only get a negative dentry here in the case of a
	 * procfs-style symlink. Just assume it's correct for now, but we may
	 * eventually need to do something more here.
	 */
	if (!inode) {
		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
				__func__, dentry);
		return 1;
	}

	if (is_bad_inode(inode)) {
		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
				__func__, dentry);
		return 0;
	}

	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
			__func__, inode->i_ino, error ? "invalid" : "valid");
	return !error;
}

/*
 * This is called from dput() when d_count is going to 0.
 */
static int nfs_dentry_delete(const struct dentry *dentry)
{
	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
		dentry, dentry->d_flags);

	/* Unhash any dentry with a stale inode */
	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
		return 1;

	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		/* Unhash it, so that ->d_iput() would be called */
		return 1;
	}
	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
		/* Unhash it, so that ancestors of killed async unlink
		 * files will be cleaned up during umount */
		return 1;
	}
	return 0;

}

/* Ensure that we revalidate inode->i_nlink */
static void nfs_drop_nlink(struct inode *inode)
{
	spin_lock(&inode->i_lock);
	/* drop the inode if we're reasonably sure this is the last link */
	if (inode->i_nlink == 1)
		clear_nlink(inode);
	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
	spin_unlock(&inode->i_lock);
}

/*
 * Called when the dentry loses inode.
 * We use it to clean up silly-renamed files.
 */
static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
{
	if (S_ISDIR(inode->i_mode))
		/* drop any readdir cache as it could easily be old */
		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;

	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		nfs_complete_unlink(dentry, inode);
		nfs_drop_nlink(inode);
	}
	iput(inode);
}

static void nfs_d_release(struct dentry *dentry)
{
	/* free cached devname value, if it survived that far */
	if (unlikely(dentry->d_fsdata)) {
		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
			WARN_ON(1);
		else
			kfree(dentry->d_fsdata);
	}
}

const struct dentry_operations nfs_dentry_operations = {
	.d_revalidate	= nfs_lookup_revalidate,
	.d_weak_revalidate	= nfs_weak_revalidate,
	.d_delete	= nfs_dentry_delete,
	.d_iput		= nfs_dentry_iput,
	.d_automount	= nfs_d_automount,
	.d_release	= nfs_d_release,
};
EXPORT_SYMBOL_GPL(nfs_dentry_operations);

struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
{
	struct dentry *res;
	struct dentry *parent;
	struct inode *inode = NULL;
	struct nfs_fh *fhandle = NULL;
	struct nfs_fattr *fattr = NULL;
	struct nfs4_label *label = NULL;
	int error;

	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);

	res = ERR_PTR(-ENAMETOOLONG);
	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
		goto out;

	/*
	 * If we're doing an exclusive create, optimize away the lookup
	 * but don't hash the dentry.
	 */
	if (nfs_is_exclusive_create(dir, flags)) {
		d_instantiate(dentry, NULL);
		res = NULL;
		goto out;
	}

	res = ERR_PTR(-ENOMEM);
	fhandle = nfs_alloc_fhandle();
	fattr = nfs_alloc_fattr();
	if (fhandle == NULL || fattr == NULL)
		goto out;

	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
	if (IS_ERR(label))
		goto out;

	parent = dentry->d_parent;
	/* Protect against concurrent sillydeletes */
	trace_nfs_lookup_enter(dir, dentry, flags);
	nfs_block_sillyrename(parent);
	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
	if (error == -ENOENT)
		goto no_entry;
	if (error < 0) {
		res = ERR_PTR(error);
		goto out_unblock_sillyrename;
	}
	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
	res = ERR_CAST(inode);
	if (IS_ERR(res))
		goto out_unblock_sillyrename;

	/* Success: notify readdir to use READDIRPLUS */
	nfs_advise_use_readdirplus(dir);

no_entry:
	res = d_splice_alias(inode, dentry);
	if (res != NULL) {
		if (IS_ERR(res))
			goto out_unblock_sillyrename;
		dentry = res;
	}
	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
out_unblock_sillyrename:
	nfs_unblock_sillyrename(parent);
	trace_nfs_lookup_exit(dir, dentry, flags, error);
	nfs4_label_free(label);
out:
	nfs_free_fattr(fattr);
	nfs_free_fhandle(fhandle);
	return res;
}
EXPORT_SYMBOL_GPL(nfs_lookup);

#if IS_ENABLED(CONFIG_NFS_V4)
static int nfs4_lookup_revalidate(struct dentry *, unsigned int);

const struct dentry_operations nfs4_dentry_operations = {
	.d_revalidate	= nfs4_lookup_revalidate,
	.d_delete	= nfs_dentry_delete,
	.d_iput		= nfs_dentry_iput,
	.d_automount	= nfs_d_automount,
	.d_release	= nfs_d_release,
};
EXPORT_SYMBOL_GPL(nfs4_dentry_operations);

static fmode_t flags_to_mode(int flags)
{
	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
	if ((flags & O_ACCMODE) != O_WRONLY)
		res |= FMODE_READ;
	if ((flags & O_ACCMODE) != O_RDONLY)
		res |= FMODE_WRITE;
	return res;
}

static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
{
	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
}

static int do_open(struct inode *inode, struct file *filp)
{
	nfs_fscache_open_file(inode, filp);
	return 0;
}

static int nfs_finish_open(struct nfs_open_context *ctx,
			   struct dentry *dentry,
			   struct file *file, unsigned open_flags,
			   int *opened)
{
	int err;

	err = finish_open(file, dentry, do_open, opened);
	if (err)
		goto out;
	nfs_file_set_open_context(file, ctx);

out:
	return err;
}

int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
		    struct file *file, unsigned open_flags,
		    umode_t mode, int *opened)
{
	struct nfs_open_context *ctx;
	struct dentry *res;
	struct iattr attr = { .ia_valid = ATTR_OPEN };
	struct inode *inode;
	unsigned int lookup_flags = 0;
	int err;

	/* Expect a negative dentry */
	BUG_ON(d_inode(dentry));

	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
			dir->i_sb->s_id, dir->i_ino, dentry);

	err = nfs_check_flags(open_flags);
	if (err)
		return err;

	/* NFS only supports OPEN on regular files */
	if ((open_flags & O_DIRECTORY)) {
		if (!d_unhashed(dentry)) {
			/*
			 * Hashed negative dentry with O_DIRECTORY: dentry was
			 * revalidated and is fine, no need to perform lookup
			 * again
			 */
			return -ENOENT;
		}
		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
		goto no_open;
	}

	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
		return -ENAMETOOLONG;

	if (open_flags & O_CREAT) {
		attr.ia_valid |= ATTR_MODE;
		attr.ia_mode = mode & ~current_umask();
	}
	if (open_flags & O_TRUNC) {
		attr.ia_valid |= ATTR_SIZE;
		attr.ia_size = 0;
	}

	ctx = create_nfs_open_context(dentry, open_flags);
	err = PTR_ERR(ctx);
	if (IS_ERR(ctx))
		goto out;

	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
	nfs_block_sillyrename(dentry->d_parent);
	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
	nfs_unblock_sillyrename(dentry->d_parent);
	if (IS_ERR(inode)) {
		err = PTR_ERR(inode);
		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
		put_nfs_open_context(ctx);
		d_drop(dentry);
		switch (err) {
		case -ENOENT:
			d_add(dentry, NULL);
			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
			break;
		case -EISDIR:
		case -ENOTDIR:
			goto no_open;
		case -ELOOP:
			if (!(open_flags & O_NOFOLLOW))
				goto no_open;
			break;
			/* case -EINVAL: */
		default:
			break;
		}
		goto out;
	}

	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
	put_nfs_open_context(ctx);
out:
	return err;

no_open:
	res = nfs_lookup(dir, dentry, lookup_flags);
	err = PTR_ERR(res);
	if (IS_ERR(res))
		goto out;

	return finish_no_open(file, res);
}
EXPORT_SYMBOL_GPL(nfs_atomic_open);

static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
{
	struct inode *inode;
	int ret = 0;

	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
		goto no_open;
	if (d_mountpoint(dentry))
		goto no_open;
	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
		goto no_open;

	inode = d_inode(dentry);

	/* We can't create new files in nfs_open_revalidate(), so we
	 * optimize away revalidation of negative dentries.
	 */
	if (inode == NULL) {
		struct dentry *parent;
		struct inode *dir;

		if (flags & LOOKUP_RCU) {
			parent = ACCESS_ONCE(dentry->d_parent);
			dir = d_inode_rcu(parent);
			if (!dir)
				return -ECHILD;
		} else {
			parent = dget_parent(dentry);
			dir = d_inode(parent);
		}
		if (!nfs_neg_need_reval(dir, dentry, flags))
			ret = 1;
		else if (flags & LOOKUP_RCU)
			ret = -ECHILD;
		if (!(flags & LOOKUP_RCU))
			dput(parent);
		else if (parent != ACCESS_ONCE(dentry->d_parent))
			return -ECHILD;
		goto out;
	}

	/* NFS only supports OPEN on regular files */
	if (!S_ISREG(inode->i_mode))
		goto no_open;
	/* We cannot do exclusive creation on a positive dentry */
	if (flags & LOOKUP_EXCL)
		goto no_open;

	/* Let f_op->open() actually open (and revalidate) the file */
	ret = 1;

out:
	return ret;

no_open:
	return nfs_lookup_revalidate(dentry, flags);
}

#endif /* CONFIG_NFSV4 */

/*
 * Code common to create, mkdir, and mknod.
 */
int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
				struct nfs_fattr *fattr,
				struct nfs4_label *label)
{
	struct dentry *parent = dget_parent(dentry);
	struct inode *dir = d_inode(parent);
	struct inode *inode;
	int error = -EACCES;

	d_drop(dentry);

	/* We may have been initialized further down */
	if (d_really_is_positive(dentry))
		goto out;
	if (fhandle->size == 0) {
		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
		if (error)
			goto out_error;
	}
	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
	if (!(fattr->valid & NFS_ATTR_FATTR)) {
		struct nfs_server *server = NFS_SB(dentry->d_sb);
		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
		if (error < 0)
			goto out_error;
	}
	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
	error = PTR_ERR(inode);
	if (IS_ERR(inode))
		goto out_error;
	d_add(dentry, inode);
out:
	dput(parent);
	return 0;
out_error:
	nfs_mark_for_revalidate(dir);
	dput(parent);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_instantiate);

/*
 * Following a failed create operation, we drop the dentry rather
 * than retain a negative dentry. This avoids a problem in the event
 * that the operation succeeded on the server, but an error in the
 * reply path made it appear to have failed.
 */
int nfs_create(struct inode *dir, struct dentry *dentry,
		umode_t mode, bool excl)
{
	struct iattr attr;
	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
	int error;

	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
			dir->i_sb->s_id, dir->i_ino, dentry);

	attr.ia_mode = mode;
	attr.ia_valid = ATTR_MODE;

	trace_nfs_create_enter(dir, dentry, open_flags);
	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
	trace_nfs_create_exit(dir, dentry, open_flags, error);
	if (error != 0)
		goto out_err;
	return 0;
out_err:
	d_drop(dentry);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_create);

/*
 * See comments for nfs_proc_create regarding failed operations.
 */
int
nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
{
	struct iattr attr;
	int status;

	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
			dir->i_sb->s_id, dir->i_ino, dentry);

	attr.ia_mode = mode;
	attr.ia_valid = ATTR_MODE;

	trace_nfs_mknod_enter(dir, dentry);
	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
	trace_nfs_mknod_exit(dir, dentry, status);
	if (status != 0)
		goto out_err;
	return 0;
out_err:
	d_drop(dentry);
	return status;
}
EXPORT_SYMBOL_GPL(nfs_mknod);

/*
 * See comments for nfs_proc_create regarding failed operations.
 */
int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
	struct iattr attr;
	int error;

	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
			dir->i_sb->s_id, dir->i_ino, dentry);

	attr.ia_valid = ATTR_MODE;
	attr.ia_mode = mode | S_IFDIR;

	trace_nfs_mkdir_enter(dir, dentry);
	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
	trace_nfs_mkdir_exit(dir, dentry, error);
	if (error != 0)
		goto out_err;
	return 0;
out_err:
	d_drop(dentry);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_mkdir);

static void nfs_dentry_handle_enoent(struct dentry *dentry)
{
	if (simple_positive(dentry))
		d_delete(dentry);
}

int nfs_rmdir(struct inode *dir, struct dentry *dentry)
{
	int error;

	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
			dir->i_sb->s_id, dir->i_ino, dentry);

	trace_nfs_rmdir_enter(dir, dentry);
	if (d_really_is_positive(dentry)) {
		nfs_wait_on_sillyrename(dentry);
		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
		/* Ensure the VFS deletes this inode */
		switch (error) {
		case 0:
			clear_nlink(d_inode(dentry));
			break;
		case -ENOENT:
			nfs_dentry_handle_enoent(dentry);
		}
	} else
		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
	trace_nfs_rmdir_exit(dir, dentry, error);

	return error;
}
EXPORT_SYMBOL_GPL(nfs_rmdir);

/*
 * Remove a file after making sure there are no pending writes,
 * and after checking that the file has only one user. 
 *
 * We invalidate the attribute cache and free the inode prior to the operation
 * to avoid possible races if the server reuses the inode.
 */
static int nfs_safe_remove(struct dentry *dentry)
{
	struct inode *dir = d_inode(dentry->d_parent);
	struct inode *inode = d_inode(dentry);
	int error = -EBUSY;
		
	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);

	/* If the dentry was sillyrenamed, we simply call d_delete() */
	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
		error = 0;
		goto out;
	}

	trace_nfs_remove_enter(dir, dentry);
	if (inode != NULL) {
		NFS_PROTO(inode)->return_delegation(inode);
		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
		if (error == 0)
			nfs_drop_nlink(inode);
	} else
		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
	if (error == -ENOENT)
		nfs_dentry_handle_enoent(dentry);
	trace_nfs_remove_exit(dir, dentry, error);
out:
	return error;
}

/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
 *  belongs to an active ".nfs..." file and we return -EBUSY.
 *
 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
 */
int nfs_unlink(struct inode *dir, struct dentry *dentry)
{
	int error;
	int need_rehash = 0;

	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
		dir->i_ino, dentry);

	trace_nfs_unlink_enter(dir, dentry);
	spin_lock(&dentry->d_lock);
	if (d_count(dentry) > 1) {
		spin_unlock(&dentry->d_lock);
		/* Start asynchronous writeout of the inode */
		write_inode_now(d_inode(dentry), 0);
		error = nfs_sillyrename(dir, dentry);
		goto out;
	}
	if (!d_unhashed(dentry)) {
		__d_drop(dentry);
		need_rehash = 1;
	}
	spin_unlock(&dentry->d_lock);
	error = nfs_safe_remove(dentry);
	if (!error || error == -ENOENT) {
		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
	} else if (need_rehash)
		d_rehash(dentry);
out:
	trace_nfs_unlink_exit(dir, dentry, error);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_unlink);

/*
 * To create a symbolic link, most file systems instantiate a new inode,
 * add a page to it containing the path, then write it out to the disk
 * using prepare_write/commit_write.
 *
 * Unfortunately the NFS client can't create the in-core inode first
 * because it needs a file handle to create an in-core inode (see
 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
 * symlink request has completed on the server.
 *
 * So instead we allocate a raw page, copy the symname into it, then do
 * the SYMLINK request with the page as the buffer.  If it succeeds, we
 * now have a new file handle and can instantiate an in-core NFS inode
 * and move the raw page into its mapping.
 */
int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
{
	struct page *page;
	char *kaddr;
	struct iattr attr;
	unsigned int pathlen = strlen(symname);
	int error;

	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
		dir->i_ino, dentry, symname);

	if (pathlen > PAGE_SIZE)
		return -ENAMETOOLONG;

	attr.ia_mode = S_IFLNK | S_IRWXUGO;
	attr.ia_valid = ATTR_MODE;

	page = alloc_page(GFP_HIGHUSER);
	if (!page)
		return -ENOMEM;

	kaddr = kmap_atomic(page);
	memcpy(kaddr, symname, pathlen);
	if (pathlen < PAGE_SIZE)
		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
	kunmap_atomic(kaddr);

	trace_nfs_symlink_enter(dir, dentry);
	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
	trace_nfs_symlink_exit(dir, dentry, error);
	if (error != 0) {
		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
			dir->i_sb->s_id, dir->i_ino,
			dentry, symname, error);
		d_drop(dentry);
		__free_page(page);
		return error;
	}

	/*
	 * No big deal if we can't add this page to the page cache here.
	 * READLINK will get the missing page from the server if needed.
	 */
	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
							GFP_KERNEL)) {
		SetPageUptodate(page);
		unlock_page(page);
		/*
		 * add_to_page_cache_lru() grabs an extra page refcount.
		 * Drop it here to avoid leaking this page later.
		 */
		page_cache_release(page);
	} else
		__free_page(page);

	return 0;
}
EXPORT_SYMBOL_GPL(nfs_symlink);

int
nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
{
	struct inode *inode = d_inode(old_dentry);
	int error;

	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
		old_dentry, dentry);

	trace_nfs_link_enter(inode, dir, dentry);
	NFS_PROTO(inode)->return_delegation(inode);

	d_drop(dentry);
	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
	if (error == 0) {
		ihold(inode);
		d_add(dentry, inode);
	}
	trace_nfs_link_exit(inode, dir, dentry, error);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_link);

/*
 * RENAME
 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
 * different file handle for the same inode after a rename (e.g. when
 * moving to a different directory). A fail-safe method to do so would
 * be to look up old_dir/old_name, create a link to new_dir/new_name and
 * rename the old file using the sillyrename stuff. This way, the original
 * file in old_dir will go away when the last process iput()s the inode.
 *
 * FIXED.
 * 
 * It actually works quite well. One needs to have the possibility for
 * at least one ".nfs..." file in each directory the file ever gets
 * moved or linked to which happens automagically with the new
 * implementation that only depends on the dcache stuff instead of
 * using the inode layer
 *
 * Unfortunately, things are a little more complicated than indicated
 * above. For a cross-directory move, we want to make sure we can get
 * rid of the old inode after the operation.  This means there must be
 * no pending writes (if it's a file), and the use count must be 1.
 * If these conditions are met, we can drop the dentries before doing
 * the rename.
 */
int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
		      struct inode *new_dir, struct dentry *new_dentry)
{
	struct inode *old_inode = d_inode(old_dentry);
	struct inode *new_inode = d_inode(new_dentry);
	struct dentry *dentry = NULL, *rehash = NULL;
	struct rpc_task *task;
	int error = -EBUSY;

	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
		 old_dentry, new_dentry,
		 d_count(new_dentry));

	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
	/*
	 * For non-directories, check whether the target is busy and if so,
	 * make a copy of the dentry and then do a silly-rename. If the
	 * silly-rename succeeds, the copied dentry is hashed and becomes
	 * the new target.
	 */
	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
		/*
		 * To prevent any new references to the target during the
		 * rename, we unhash the dentry in advance.
		 */
		if (!d_unhashed(new_dentry)) {
			d_drop(new_dentry);
			rehash = new_dentry;
		}

		if (d_count(new_dentry) > 2) {
			int err;

			/* copy the target dentry's name */
			dentry = d_alloc(new_dentry->d_parent,
					 &new_dentry->d_name);
			if (!dentry)
				goto out;

			/* silly-rename the existing target ... */
			err = nfs_sillyrename(new_dir, new_dentry);
			if (err)
				goto out;

			new_dentry = dentry;
			rehash = NULL;
			new_inode = NULL;
		}
	}

	NFS_PROTO(old_inode)->return_delegation(old_inode);
	if (new_inode != NULL)
		NFS_PROTO(new_inode)->return_delegation(new_inode);

	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
	if (IS_ERR(task)) {
		error = PTR_ERR(task);
		goto out;
	}

	error = rpc_wait_for_completion_task(task);
	if (error == 0)
		error = task->tk_status;
	rpc_put_task(task);
	nfs_mark_for_revalidate(old_inode);
out:
	if (rehash)
		d_rehash(rehash);
	trace_nfs_rename_exit(old_dir, old_dentry,
			new_dir, new_dentry, error);
	if (!error) {
		if (new_inode != NULL)
			nfs_drop_nlink(new_inode);
		d_move(old_dentry, new_dentry);
		nfs_set_verifier(new_dentry,
					nfs_save_change_attribute(new_dir));
	} else if (error == -ENOENT)
		nfs_dentry_handle_enoent(old_dentry);

	/* new dentry created? */
	if (dentry)
		dput(dentry);
	return error;
}
EXPORT_SYMBOL_GPL(nfs_rename);

static DEFINE_SPINLOCK(nfs_access_lru_lock);
static LIST_HEAD(nfs_access_lru_list);
static atomic_long_t nfs_access_nr_entries;

static unsigned long nfs_access_max_cachesize = ULONG_MAX;
module_param(nfs_access_max_cachesize, ulong, 0644);
MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");

static void nfs_access_free_entry(struct nfs_access_entry *entry)
{
	put_rpccred(entry->cred);
	kfree_rcu(entry, rcu_head);
	smp_mb__before_atomic();
	atomic_long_dec(&nfs_access_nr_entries);
	smp_mb__after_atomic();
}

static void nfs_access_free_list(struct list_head *head)
{
	struct nfs_access_entry *cache;

	while (!list_empty(head)) {
		cache = list_entry(head->next, struct nfs_access_entry, lru);
		list_del(&cache->lru);
		nfs_access_free_entry(cache);
	}
}

static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)
{
	LIST_HEAD(head);
	struct nfs_inode *nfsi, *next;
	struct nfs_access_entry *cache;
	long freed = 0;

	spin_lock(&nfs_access_lru_lock);
	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
		struct inode *inode;

		if (nr_to_scan-- == 0)
			break;
		inode = &nfsi->vfs_inode;
		spin_lock(&inode->i_lock);
		if (list_empty(&nfsi->access_cache_entry_lru))
			goto remove_lru_entry;
		cache = list_entry(nfsi->access_cache_entry_lru.next,
				struct nfs_access_entry, lru);
		list_move(&cache->lru, &head);
		rb_erase(&cache->rb_node, &nfsi->access_cache);
		freed++;
		if (!list_empty(&nfsi->access_cache_entry_lru))
			list_move_tail(&nfsi->access_cache_inode_lru,
					&nfs_access_lru_list);
		else {
remove_lru_entry:
			list_del_init(&nfsi->access_cache_inode_lru);
			smp_mb__before_atomic();
			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
			smp_mb__after_atomic();
		}
		spin_unlock(&inode->i_lock);
	}
	spin_unlock(&nfs_access_lru_lock);
	nfs_access_free_list(&head);
	return freed;
}

unsigned long
nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
{
	int nr_to_scan = sc->nr_to_scan;
	gfp_t gfp_mask = sc->gfp_mask;

	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
		return SHRINK_STOP;
	return nfs_do_access_cache_scan(nr_to_scan);
}


unsigned long
nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
{
	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
}

static void
nfs_access_cache_enforce_limit(void)
{
	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
	unsigned long diff;
	unsigned int nr_to_scan;

	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
		return;
	nr_to_scan = 100;
	diff = nr_entries - nfs_access_max_cachesize;
	if (diff < nr_to_scan)
		nr_to_scan = diff;
	nfs_do_access_cache_scan(nr_to_scan);
}

static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
{
	struct rb_root *root_node = &nfsi->access_cache;
	struct rb_node *n;
	struct nfs_access_entry *entry;

	/* Unhook entries from the cache */
	while ((n = rb_first(root_node)) != NULL) {
		entry = rb_entry(n, struct nfs_access_entry, rb_node);
		rb_erase(n, root_node);
		list_move(&entry->lru, head);
	}
	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
}

void nfs_access_zap_cache(struct inode *inode)
{
	LIST_HEAD(head);

	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
		return;
	/* Remove from global LRU init */
	spin_lock(&nfs_access_lru_lock);
	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
		list_del_init(&NFS_I(inode)->access_cache_inode_lru);

	spin_lock(&inode->i_lock);
	__nfs_access_zap_cache(NFS_I(inode), &head);
	spin_unlock(&inode->i_lock);
	spin_unlock(&nfs_access_lru_lock);
	nfs_access_free_list(&head);
}
EXPORT_SYMBOL_GPL(nfs_access_zap_cache);

static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
{
	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
	struct nfs_access_entry *entry;

	while (n != NULL) {
		entry = rb_entry(n, struct nfs_access_entry, rb_node);

		if (cred < entry->cred)
			n = n->rb_left;
		else if (cred > entry->cred)
			n = n->rb_right;
		else
			return entry;
	}
	return NULL;
}

static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
{
	struct nfs_inode *nfsi = NFS_I(inode);
	struct nfs_access_entry *cache;
	int err = -ENOENT;

	spin_lock(&inode->i_lock);
	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
		goto out_zap;
	cache = nfs_access_search_rbtree(inode, cred);
	if (cache == NULL)
		goto out;
	if (!nfs_have_delegated_attributes(inode) &&
	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
		goto out_stale;
	res->jiffies = cache->jiffies;
	res->cred = cache->cred;
	res->mask = cache->mask;
	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
	err = 0;
out:
	spin_unlock(&inode->i_lock);
	return err;
out_stale:
	rb_erase(&cache->rb_node, &nfsi->access_cache);
	list_del(&cache->lru);
	spin_unlock(&inode->i_lock);
	nfs_access_free_entry(cache);
	return -ENOENT;
out_zap:
	spin_unlock(&inode->i_lock);
	nfs_access_zap_cache(inode);
	return -ENOENT;
}

static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
{
	/* Only check the most recently returned cache entry,
	 * but do it without locking.
	 */
	struct nfs_inode *nfsi = NFS_I(inode);
	struct nfs_access_entry *cache;
	int err = -ECHILD;
	struct list_head *lh;

	rcu_read_lock();
	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
		goto out;
	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
	cache = list_entry(lh, struct nfs_access_entry, lru);
	if (lh == &nfsi->access_cache_entry_lru ||
	    cred != cache->cred)
		cache = NULL;
	if (cache == NULL)
		goto out;
	if (!nfs_have_delegated_attributes(inode) &&
	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
		goto out;
	res->jiffies = cache->jiffies;
	res->cred = cache->cred;
	res->mask = cache->mask;
	err = 0;
out:
	rcu_read_unlock();
	return err;
}

static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
{
	struct nfs_inode *nfsi = NFS_I(inode);
	struct rb_root *root_node = &nfsi->access_cache;
	struct rb_node **p = &root_node->rb_node;
	struct rb_node *parent = NULL;
	struct nfs_access_entry *entry;

	spin_lock(&inode->i_lock);
	while (*p != NULL) {
		parent = *p;
		entry = rb_entry(parent, struct nfs_access_entry, rb_node);

		if (set->cred < entry->cred)
			p = &parent->rb_left;
		else if (set->cred > entry->cred)
			p = &parent->rb_right;
		else
			goto found;
	}
	rb_link_node(&set->rb_node, parent, p);
	rb_insert_color(&set->rb_node, root_node);
	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
	spin_unlock(&inode->i_lock);
	return;
found:
	rb_replace_node(parent, &set->rb_node, root_node);
	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
	list_del(&entry->lru);
	spin_unlock(&inode->i_lock);
	nfs_access_free_entry(entry);
}

void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
{
	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
	if (cache == NULL)
		return;
	RB_CLEAR_NODE(&cache->rb_node);
	cache->jiffies = set->jiffies;
	cache->cred = get_rpccred(set->cred);
	cache->mask = set->mask;

	/* The above field assignments must be visible
	 * before this item appears on the lru.  We cannot easily
	 * use rcu_assign_pointer, so just force the memory barrier.
	 */
	smp_wmb();
	nfs_access_add_rbtree(inode, cache);

	/* Update accounting */
	smp_mb__before_atomic();
	atomic_long_inc(&nfs_access_nr_entries);
	smp_mb__after_atomic();

	/* Add inode to global LRU list */
	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
		spin_lock(&nfs_access_lru_lock);
		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
					&nfs_access_lru_list);
		spin_unlock(&nfs_access_lru_lock);
	}
	nfs_access_cache_enforce_limit();
}
EXPORT_SYMBOL_GPL(nfs_access_add_cache);

void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
{
	entry->mask = 0;
	if (access_result & NFS4_ACCESS_READ)
		entry->mask |= MAY_READ;
	if (access_result &
	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
		entry->mask |= MAY_WRITE;
	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
		entry->mask |= MAY_EXEC;
}
EXPORT_SYMBOL_GPL(nfs_access_set_mask);

static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
{
	struct nfs_access_entry cache;
	int status;

	trace_nfs_access_enter(inode);

	status = nfs_access_get_cached_rcu(inode, cred, &cache);
	if (status != 0)
		status = nfs_access_get_cached(inode, cred, &cache);
	if (status == 0)
		goto out_cached;

	status = -ECHILD;
	if (mask & MAY_NOT_BLOCK)
		goto out;

	/* Be clever: ask server to check for all possible rights */
	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
	cache.cred = cred;
	cache.jiffies = jiffies;
	status = NFS_PROTO(inode)->access(inode, &cache);
	if (status != 0) {
		if (status == -ESTALE) {
			nfs_zap_caches(inode);
			if (!S_ISDIR(inode->i_mode))
				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
		}
		goto out;
	}
	nfs_access_add_cache(inode, &cache);
out_cached:
	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
		status = -EACCES;
out:
	trace_nfs_access_exit(inode, status);
	return status;
}

static int nfs_open_permission_mask(int openflags)
{
	int mask = 0;

	if (openflags & __FMODE_EXEC) {
		/* ONLY check exec rights */
		mask = MAY_EXEC;
	} else {
		if ((openflags & O_ACCMODE) != O_WRONLY)
			mask |= MAY_READ;
		if ((openflags & O_ACCMODE) != O_RDONLY)
			mask |= MAY_WRITE;
	}

	return mask;
}

int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
{
	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
}
EXPORT_SYMBOL_GPL(nfs_may_open);

int nfs_permission(struct inode *inode, int mask)
{
	struct rpc_cred *cred;
	int res = 0;

	nfs_inc_stats(inode, NFSIOS_VFSACCESS);

	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
		goto out;
	/* Is this sys_access() ? */
	if (mask & (MAY_ACCESS | MAY_CHDIR))
		goto force_lookup;

	switch (inode->i_mode & S_IFMT) {
		case S_IFLNK:
			goto out;
		case S_IFREG:
			break;
		case S_IFDIR:
			/*
			 * Optimize away all write operations, since the server
			 * will check permissions when we perform the op.
			 */
			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
				goto out;
	}

force_lookup:
	if (!NFS_PROTO(inode)->access)
		goto out_notsup;

	/* Always try fast lookups first */
	rcu_read_lock();
	cred = rpc_lookup_cred_nonblock();
	if (!IS_ERR(cred))
		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
	else
		res = PTR_ERR(cred);
	rcu_read_unlock();
	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
		/* Fast lookup failed, try the slow way */
		cred = rpc_lookup_cred();
		if (!IS_ERR(cred)) {
			res = nfs_do_access(inode, cred, mask);
			put_rpccred(cred);
		} else
			res = PTR_ERR(cred);
	}
out:
	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
		res = -EACCES;

	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
		inode->i_sb->s_id, inode->i_ino, mask, res);
	return res;
out_notsup:
	if (mask & MAY_NOT_BLOCK)
		return -ECHILD;

	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
	if (res == 0)
		res = generic_permission(inode, mask);
	goto out;
}
EXPORT_SYMBOL_GPL(nfs_permission);

/*
 * Local variables:
 *  version-control: t
 *  kept-new-versions: 5
 * End:
 */