summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/iommu/exynos-iommu.c
blob: 29a31eb9ace3ed2c1369fcd6f1284a440474ca32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
/* linux/drivers/iommu/exynos_iommu.c
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
#define DEBUG
#endif

#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/of_iommu.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>

#include <asm/cacheflush.h>
#include <asm/dma-iommu.h>
#include <asm/pgtable.h>

typedef u32 sysmmu_iova_t;
typedef u32 sysmmu_pte_t;

/* We do not consider super section mapping (16MB) */
#define SECT_ORDER 20
#define LPAGE_ORDER 16
#define SPAGE_ORDER 12

#define SECT_SIZE (1 << SECT_ORDER)
#define LPAGE_SIZE (1 << LPAGE_ORDER)
#define SPAGE_SIZE (1 << SPAGE_ORDER)

#define SECT_MASK (~(SECT_SIZE - 1))
#define LPAGE_MASK (~(LPAGE_SIZE - 1))
#define SPAGE_MASK (~(SPAGE_SIZE - 1))

#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
			  ((*(sent) & 3) == 1))
#define lv1ent_section(sent) ((*(sent) & 3) == 2)

#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
#define lv2ent_small(pent) ((*(pent) & 2) == 2)
#define lv2ent_large(pent) ((*(pent) & 3) == 1)

static u32 sysmmu_page_offset(sysmmu_iova_t iova, u32 size)
{
	return iova & (size - 1);
}

#define section_phys(sent) (*(sent) & SECT_MASK)
#define section_offs(iova) sysmmu_page_offset((iova), SECT_SIZE)
#define lpage_phys(pent) (*(pent) & LPAGE_MASK)
#define lpage_offs(iova) sysmmu_page_offset((iova), LPAGE_SIZE)
#define spage_phys(pent) (*(pent) & SPAGE_MASK)
#define spage_offs(iova) sysmmu_page_offset((iova), SPAGE_SIZE)

#define NUM_LV1ENTRIES 4096
#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)

static u32 lv1ent_offset(sysmmu_iova_t iova)
{
	return iova >> SECT_ORDER;
}

static u32 lv2ent_offset(sysmmu_iova_t iova)
{
	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
}

#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))

#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)

#define lv2table_base(sent) (*(sent) & 0xFFFFFC00)

#define mk_lv1ent_sect(pa) ((pa) | 2)
#define mk_lv1ent_page(pa) ((pa) | 1)
#define mk_lv2ent_lpage(pa) ((pa) | 1)
#define mk_lv2ent_spage(pa) ((pa) | 2)

#define CTRL_ENABLE	0x5
#define CTRL_BLOCK	0x7
#define CTRL_DISABLE	0x0

#define CFG_LRU		0x1
#define CFG_QOS(n)	((n & 0xF) << 7)
#define CFG_MASK	0x0150FFFF /* Selecting bit 0-15, 20, 22 and 24 */
#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */

#define REG_MMU_CTRL		0x000
#define REG_MMU_CFG		0x004
#define REG_MMU_STATUS		0x008
#define REG_MMU_FLUSH		0x00C
#define REG_MMU_FLUSH_ENTRY	0x010
#define REG_PT_BASE_ADDR	0x014
#define REG_INT_STATUS		0x018
#define REG_INT_CLEAR		0x01C

#define REG_PAGE_FAULT_ADDR	0x024
#define REG_AW_FAULT_ADDR	0x028
#define REG_AR_FAULT_ADDR	0x02C
#define REG_DEFAULT_SLAVE_ADDR	0x030

#define REG_MMU_VERSION		0x034

#define MMU_MAJ_VER(val)	((val) >> 7)
#define MMU_MIN_VER(val)	((val) & 0x7F)
#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */

#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))

#define REG_PB0_SADDR		0x04C
#define REG_PB0_EADDR		0x050
#define REG_PB1_SADDR		0x054
#define REG_PB1_EADDR		0x058

#define has_sysmmu(dev)		(dev->archdata.iommu != NULL)

static struct kmem_cache *lv2table_kmem_cache;
static sysmmu_pte_t *zero_lv2_table;
#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))

static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
{
	return pgtable + lv1ent_offset(iova);
}

static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
{
	return (sysmmu_pte_t *)phys_to_virt(
				lv2table_base(sent)) + lv2ent_offset(iova);
}

enum exynos_sysmmu_inttype {
	SYSMMU_PAGEFAULT,
	SYSMMU_AR_MULTIHIT,
	SYSMMU_AW_MULTIHIT,
	SYSMMU_BUSERROR,
	SYSMMU_AR_SECURITY,
	SYSMMU_AR_ACCESS,
	SYSMMU_AW_SECURITY,
	SYSMMU_AW_PROTECTION, /* 7 */
	SYSMMU_FAULT_UNKNOWN,
	SYSMMU_FAULTS_NUM
};

static unsigned short fault_reg_offset[SYSMMU_FAULTS_NUM] = {
	REG_PAGE_FAULT_ADDR,
	REG_AR_FAULT_ADDR,
	REG_AW_FAULT_ADDR,
	REG_DEFAULT_SLAVE_ADDR,
	REG_AR_FAULT_ADDR,
	REG_AR_FAULT_ADDR,
	REG_AW_FAULT_ADDR,
	REG_AW_FAULT_ADDR
};

static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
	"PAGE FAULT",
	"AR MULTI-HIT FAULT",
	"AW MULTI-HIT FAULT",
	"BUS ERROR",
	"AR SECURITY PROTECTION FAULT",
	"AR ACCESS PROTECTION FAULT",
	"AW SECURITY PROTECTION FAULT",
	"AW ACCESS PROTECTION FAULT",
	"UNKNOWN FAULT"
};

/*
 * This structure is attached to dev.archdata.iommu of the master device
 * on device add, contains a list of SYSMMU controllers defined by device tree,
 * which are bound to given master device. It is usually referenced by 'owner'
 * pointer.
*/
struct exynos_iommu_owner {
	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
};

/*
 * This structure exynos specific generalization of struct iommu_domain.
 * It contains list of SYSMMU controllers from all master devices, which has
 * been attached to this domain and page tables of IO address space defined by
 * it. It is usually referenced by 'domain' pointer.
 */
struct exynos_iommu_domain {
	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
	short *lv2entcnt;	/* free lv2 entry counter for each section */
	spinlock_t lock;	/* lock for modyfying list of clients */
	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
	struct iommu_domain domain; /* generic domain data structure */
};

/*
 * This structure hold all data of a single SYSMMU controller, this includes
 * hw resources like registers and clocks, pointers and list nodes to connect
 * it to all other structures, internal state and parameters read from device
 * tree. It is usually referenced by 'data' pointer.
 */
struct sysmmu_drvdata {
	struct device *sysmmu;		/* SYSMMU controller device */
	struct device *master;		/* master device (owner) */
	void __iomem *sfrbase;		/* our registers */
	struct clk *clk;		/* SYSMMU's clock */
	struct clk *clk_master;		/* master's device clock */
	int activations;		/* number of calls to sysmmu_enable */
	spinlock_t lock;		/* lock for modyfying state */
	struct exynos_iommu_domain *domain; /* domain we belong to */
	struct list_head domain_node;	/* node for domain clients list */
	struct list_head owner_node;	/* node for owner controllers list */
	phys_addr_t pgtable;		/* assigned page table structure */
	unsigned int version;		/* our version */
};

static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
{
	return container_of(dom, struct exynos_iommu_domain, domain);
}

static bool set_sysmmu_active(struct sysmmu_drvdata *data)
{
	/* return true if the System MMU was not active previously
	   and it needs to be initialized */
	return ++data->activations == 1;
}

static bool set_sysmmu_inactive(struct sysmmu_drvdata *data)
{
	/* return true if the System MMU is needed to be disabled */
	BUG_ON(data->activations < 1);
	return --data->activations == 0;
}

static bool is_sysmmu_active(struct sysmmu_drvdata *data)
{
	return data->activations > 0;
}

static void sysmmu_unblock(void __iomem *sfrbase)
{
	__raw_writel(CTRL_ENABLE, sfrbase + REG_MMU_CTRL);
}

static bool sysmmu_block(void __iomem *sfrbase)
{
	int i = 120;

	__raw_writel(CTRL_BLOCK, sfrbase + REG_MMU_CTRL);
	while ((i > 0) && !(__raw_readl(sfrbase + REG_MMU_STATUS) & 1))
		--i;

	if (!(__raw_readl(sfrbase + REG_MMU_STATUS) & 1)) {
		sysmmu_unblock(sfrbase);
		return false;
	}

	return true;
}

static void __sysmmu_tlb_invalidate(void __iomem *sfrbase)
{
	__raw_writel(0x1, sfrbase + REG_MMU_FLUSH);
}

static void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase,
				sysmmu_iova_t iova, unsigned int num_inv)
{
	unsigned int i;

	for (i = 0; i < num_inv; i++) {
		__raw_writel((iova & SPAGE_MASK) | 1,
				sfrbase + REG_MMU_FLUSH_ENTRY);
		iova += SPAGE_SIZE;
	}
}

static void __sysmmu_set_ptbase(void __iomem *sfrbase,
				       phys_addr_t pgd)
{
	__raw_writel(pgd, sfrbase + REG_PT_BASE_ADDR);

	__sysmmu_tlb_invalidate(sfrbase);
}

static void show_fault_information(const char *name,
		enum exynos_sysmmu_inttype itype,
		phys_addr_t pgtable_base, sysmmu_iova_t fault_addr)
{
	sysmmu_pte_t *ent;

	if ((itype >= SYSMMU_FAULTS_NUM) || (itype < SYSMMU_PAGEFAULT))
		itype = SYSMMU_FAULT_UNKNOWN;

	pr_err("%s occurred at %#x by %s(Page table base: %pa)\n",
		sysmmu_fault_name[itype], fault_addr, name, &pgtable_base);

	ent = section_entry(phys_to_virt(pgtable_base), fault_addr);
	pr_err("\tLv1 entry: %#x\n", *ent);

	if (lv1ent_page(ent)) {
		ent = page_entry(ent, fault_addr);
		pr_err("\t Lv2 entry: %#x\n", *ent);
	}
}

static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
{
	/* SYSMMU is in blocked state when interrupt occurred. */
	struct sysmmu_drvdata *data = dev_id;
	enum exynos_sysmmu_inttype itype;
	sysmmu_iova_t addr = -1;
	int ret = -ENOSYS;

	WARN_ON(!is_sysmmu_active(data));

	spin_lock(&data->lock);

	if (!IS_ERR(data->clk_master))
		clk_enable(data->clk_master);

	itype = (enum exynos_sysmmu_inttype)
		__ffs(__raw_readl(data->sfrbase + REG_INT_STATUS));
	if (WARN_ON(!((itype >= 0) && (itype < SYSMMU_FAULT_UNKNOWN))))
		itype = SYSMMU_FAULT_UNKNOWN;
	else
		addr = __raw_readl(data->sfrbase + fault_reg_offset[itype]);

	if (itype == SYSMMU_FAULT_UNKNOWN) {
		pr_err("%s: Fault is not occurred by System MMU '%s'!\n",
			__func__, dev_name(data->sysmmu));
		pr_err("%s: Please check if IRQ is correctly configured.\n",
			__func__);
		BUG();
	} else {
		unsigned int base =
				__raw_readl(data->sfrbase + REG_PT_BASE_ADDR);
		show_fault_information(dev_name(data->sysmmu),
					itype, base, addr);
		if (data->domain)
			ret = report_iommu_fault(&data->domain->domain,
					data->master, addr, itype);
	}

	/* fault is not recovered by fault handler */
	BUG_ON(ret != 0);

	__raw_writel(1 << itype, data->sfrbase + REG_INT_CLEAR);

	sysmmu_unblock(data->sfrbase);

	if (!IS_ERR(data->clk_master))
		clk_disable(data->clk_master);

	spin_unlock(&data->lock);

	return IRQ_HANDLED;
}

static void __sysmmu_disable_nocount(struct sysmmu_drvdata *data)
{
	if (!IS_ERR(data->clk_master))
		clk_enable(data->clk_master);

	__raw_writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
	__raw_writel(0, data->sfrbase + REG_MMU_CFG);

	clk_disable(data->clk);
	if (!IS_ERR(data->clk_master))
		clk_disable(data->clk_master);
}

static bool __sysmmu_disable(struct sysmmu_drvdata *data)
{
	bool disabled;
	unsigned long flags;

	spin_lock_irqsave(&data->lock, flags);

	disabled = set_sysmmu_inactive(data);

	if (disabled) {
		data->pgtable = 0;
		data->domain = NULL;

		__sysmmu_disable_nocount(data);

		dev_dbg(data->sysmmu, "Disabled\n");
	} else  {
		dev_dbg(data->sysmmu, "%d times left to disable\n",
					data->activations);
	}

	spin_unlock_irqrestore(&data->lock, flags);

	return disabled;
}

static void __sysmmu_init_config(struct sysmmu_drvdata *data)
{
	unsigned int cfg = CFG_LRU | CFG_QOS(15);
	unsigned int ver;

	ver = MMU_RAW_VER(__raw_readl(data->sfrbase + REG_MMU_VERSION));
	if (MMU_MAJ_VER(ver) == 3) {
		if (MMU_MIN_VER(ver) >= 2) {
			cfg |= CFG_FLPDCACHE;
			if (MMU_MIN_VER(ver) == 3) {
				cfg |= CFG_ACGEN;
				cfg &= ~CFG_LRU;
			} else {
				cfg |= CFG_SYSSEL;
			}
		}
	}

	__raw_writel(cfg, data->sfrbase + REG_MMU_CFG);
	data->version = ver;
}

static void __sysmmu_enable_nocount(struct sysmmu_drvdata *data)
{
	if (!IS_ERR(data->clk_master))
		clk_enable(data->clk_master);
	clk_enable(data->clk);

	__raw_writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);

	__sysmmu_init_config(data);

	__sysmmu_set_ptbase(data->sfrbase, data->pgtable);

	__raw_writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);

	if (!IS_ERR(data->clk_master))
		clk_disable(data->clk_master);
}

static int __sysmmu_enable(struct sysmmu_drvdata *data, phys_addr_t pgtable,
			   struct exynos_iommu_domain *domain)
{
	int ret = 0;
	unsigned long flags;

	spin_lock_irqsave(&data->lock, flags);
	if (set_sysmmu_active(data)) {
		data->pgtable = pgtable;
		data->domain = domain;

		__sysmmu_enable_nocount(data);

		dev_dbg(data->sysmmu, "Enabled\n");
	} else {
		ret = (pgtable == data->pgtable) ? 1 : -EBUSY;

		dev_dbg(data->sysmmu, "already enabled\n");
	}

	if (WARN_ON(ret < 0))
		set_sysmmu_inactive(data); /* decrement count */

	spin_unlock_irqrestore(&data->lock, flags);

	return ret;
}

static void __sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
					      sysmmu_iova_t iova)
{
	if (data->version == MAKE_MMU_VER(3, 3))
		__raw_writel(iova | 0x1, data->sfrbase + REG_MMU_FLUSH_ENTRY);
}

static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
					    sysmmu_iova_t iova)
{
	unsigned long flags;

	if (!IS_ERR(data->clk_master))
		clk_enable(data->clk_master);

	spin_lock_irqsave(&data->lock, flags);
	if (is_sysmmu_active(data))
		__sysmmu_tlb_invalidate_flpdcache(data, iova);
	spin_unlock_irqrestore(&data->lock, flags);

	if (!IS_ERR(data->clk_master))
		clk_disable(data->clk_master);
}

static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
					sysmmu_iova_t iova, size_t size)
{
	unsigned long flags;

	spin_lock_irqsave(&data->lock, flags);
	if (is_sysmmu_active(data)) {
		unsigned int num_inv = 1;

		if (!IS_ERR(data->clk_master))
			clk_enable(data->clk_master);

		/*
		 * L2TLB invalidation required
		 * 4KB page: 1 invalidation
		 * 64KB page: 16 invalidations
		 * 1MB page: 64 invalidations
		 * because it is set-associative TLB
		 * with 8-way and 64 sets.
		 * 1MB page can be cached in one of all sets.
		 * 64KB page can be one of 16 consecutive sets.
		 */
		if (MMU_MAJ_VER(data->version) == 2)
			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);

		if (sysmmu_block(data->sfrbase)) {
			__sysmmu_tlb_invalidate_entry(
				data->sfrbase, iova, num_inv);
			sysmmu_unblock(data->sfrbase);
		}
		if (!IS_ERR(data->clk_master))
			clk_disable(data->clk_master);
	} else {
		dev_dbg(data->master,
			"disabled. Skipping TLB invalidation @ %#x\n", iova);
	}
	spin_unlock_irqrestore(&data->lock, flags);
}

static int __init exynos_sysmmu_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct device *dev = &pdev->dev;
	struct sysmmu_drvdata *data;
	struct resource *res;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	data->sfrbase = devm_ioremap_resource(dev, res);
	if (IS_ERR(data->sfrbase))
		return PTR_ERR(data->sfrbase);

	irq = platform_get_irq(pdev, 0);
	if (irq <= 0) {
		dev_err(dev, "Unable to find IRQ resource\n");
		return irq;
	}

	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
				dev_name(dev), data);
	if (ret) {
		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
		return ret;
	}

	data->clk = devm_clk_get(dev, "sysmmu");
	if (IS_ERR(data->clk)) {
		dev_err(dev, "Failed to get clock!\n");
		return PTR_ERR(data->clk);
	} else  {
		ret = clk_prepare(data->clk);
		if (ret) {
			dev_err(dev, "Failed to prepare clk\n");
			return ret;
		}
	}

	data->clk_master = devm_clk_get(dev, "master");
	if (!IS_ERR(data->clk_master)) {
		ret = clk_prepare(data->clk_master);
		if (ret) {
			clk_unprepare(data->clk);
			dev_err(dev, "Failed to prepare master's clk\n");
			return ret;
		}
	}

	data->sysmmu = dev;
	spin_lock_init(&data->lock);

	platform_set_drvdata(pdev, data);

	pm_runtime_enable(dev);

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int exynos_sysmmu_suspend(struct device *dev)
{
	struct sysmmu_drvdata *data = dev_get_drvdata(dev);

	dev_dbg(dev, "suspend\n");
	if (is_sysmmu_active(data)) {
		__sysmmu_disable_nocount(data);
		pm_runtime_put(dev);
	}
	return 0;
}

static int exynos_sysmmu_resume(struct device *dev)
{
	struct sysmmu_drvdata *data = dev_get_drvdata(dev);

	dev_dbg(dev, "resume\n");
	if (is_sysmmu_active(data)) {
		pm_runtime_get_sync(dev);
		__sysmmu_enable_nocount(data);
	}
	return 0;
}
#endif

static const struct dev_pm_ops sysmmu_pm_ops = {
	SET_LATE_SYSTEM_SLEEP_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume)
};

static const struct of_device_id sysmmu_of_match[] __initconst = {
	{ .compatible	= "samsung,exynos-sysmmu", },
	{ },
};

static struct platform_driver exynos_sysmmu_driver __refdata = {
	.probe	= exynos_sysmmu_probe,
	.driver	= {
		.name		= "exynos-sysmmu",
		.of_match_table	= sysmmu_of_match,
		.pm		= &sysmmu_pm_ops,
		.suppress_bind_attrs = true,
	}
};

static inline void pgtable_flush(void *vastart, void *vaend)
{
	dmac_flush_range(vastart, vaend);
	outer_flush_range(virt_to_phys(vastart),
				virt_to_phys(vaend));
}

static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
{
	struct exynos_iommu_domain *domain;
	int i;

	if (type != IOMMU_DOMAIN_UNMANAGED)
		return NULL;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
		return NULL;

	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
	if (!domain->pgtable)
		goto err_pgtable;

	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
	if (!domain->lv2entcnt)
		goto err_counter;

	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
	for (i = 0; i < NUM_LV1ENTRIES; i += 8) {
		domain->pgtable[i + 0] = ZERO_LV2LINK;
		domain->pgtable[i + 1] = ZERO_LV2LINK;
		domain->pgtable[i + 2] = ZERO_LV2LINK;
		domain->pgtable[i + 3] = ZERO_LV2LINK;
		domain->pgtable[i + 4] = ZERO_LV2LINK;
		domain->pgtable[i + 5] = ZERO_LV2LINK;
		domain->pgtable[i + 6] = ZERO_LV2LINK;
		domain->pgtable[i + 7] = ZERO_LV2LINK;
	}

	pgtable_flush(domain->pgtable, domain->pgtable + NUM_LV1ENTRIES);

	spin_lock_init(&domain->lock);
	spin_lock_init(&domain->pgtablelock);
	INIT_LIST_HEAD(&domain->clients);

	domain->domain.geometry.aperture_start = 0;
	domain->domain.geometry.aperture_end   = ~0UL;
	domain->domain.geometry.force_aperture = true;

	return &domain->domain;

err_counter:
	free_pages((unsigned long)domain->pgtable, 2);
err_pgtable:
	kfree(domain);
	return NULL;
}

static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	struct sysmmu_drvdata *data, *next;
	unsigned long flags;
	int i;

	WARN_ON(!list_empty(&domain->clients));

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
		if (__sysmmu_disable(data))
			data->master = NULL;
		list_del_init(&data->domain_node);
	}

	spin_unlock_irqrestore(&domain->lock, flags);

	for (i = 0; i < NUM_LV1ENTRIES; i++)
		if (lv1ent_page(domain->pgtable + i))
			kmem_cache_free(lv2table_kmem_cache,
				phys_to_virt(lv2table_base(domain->pgtable + i)));

	free_pages((unsigned long)domain->pgtable, 2);
	free_pages((unsigned long)domain->lv2entcnt, 1);
	kfree(domain);
}

static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
				   struct device *dev)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	struct sysmmu_drvdata *data;
	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
	unsigned long flags;
	int ret = -ENODEV;

	if (!has_sysmmu(dev))
		return -ENODEV;

	list_for_each_entry(data, &owner->controllers, owner_node) {
		pm_runtime_get_sync(data->sysmmu);
		ret = __sysmmu_enable(data, pagetable, domain);
		if (ret >= 0) {
			data->master = dev;

			spin_lock_irqsave(&domain->lock, flags);
			list_add_tail(&data->domain_node, &domain->clients);
			spin_unlock_irqrestore(&domain->lock, flags);
		}
	}

	if (ret < 0) {
		dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
					__func__, &pagetable);
		return ret;
	}

	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa %s\n",
		__func__, &pagetable, (ret == 0) ? "" : ", again");

	return ret;
}

static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
				    struct device *dev)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
	struct sysmmu_drvdata *data, *next;
	unsigned long flags;
	bool found = false;

	if (!has_sysmmu(dev))
		return;

	spin_lock_irqsave(&domain->lock, flags);
	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
		if (data->master == dev) {
			if (__sysmmu_disable(data)) {
				data->master = NULL;
				list_del_init(&data->domain_node);
			}
			pm_runtime_put(data->sysmmu);
			found = true;
		}
	}
	spin_unlock_irqrestore(&domain->lock, flags);

	if (found)
		dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n",
					__func__, &pagetable);
	else
		dev_err(dev, "%s: No IOMMU is attached\n", __func__);
}

static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
{
	if (lv1ent_section(sent)) {
		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
		return ERR_PTR(-EADDRINUSE);
	}

	if (lv1ent_fault(sent)) {
		sysmmu_pte_t *pent;
		bool need_flush_flpd_cache = lv1ent_zero(sent);

		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
		BUG_ON((unsigned int)pent & (LV2TABLE_SIZE - 1));
		if (!pent)
			return ERR_PTR(-ENOMEM);

		*sent = mk_lv1ent_page(virt_to_phys(pent));
		kmemleak_ignore(pent);
		*pgcounter = NUM_LV2ENTRIES;
		pgtable_flush(pent, pent + NUM_LV2ENTRIES);
		pgtable_flush(sent, sent + 1);

		/*
		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
		 * FLPD cache may cache the address of zero_l2_table. This
		 * function replaces the zero_l2_table with new L2 page table
		 * to write valid mappings.
		 * Accessing the valid area may cause page fault since FLPD
		 * cache may still cache zero_l2_table for the valid area
		 * instead of new L2 page table that has the mapping
		 * information of the valid area.
		 * Thus any replacement of zero_l2_table with other valid L2
		 * page table must involve FLPD cache invalidation for System
		 * MMU v3.3.
		 * FLPD cache invalidation is performed with TLB invalidation
		 * by VPN without blocking. It is safe to invalidate TLB without
		 * blocking because the target address of TLB invalidation is
		 * not currently mapped.
		 */
		if (need_flush_flpd_cache) {
			struct sysmmu_drvdata *data;

			spin_lock(&domain->lock);
			list_for_each_entry(data, &domain->clients, domain_node)
				sysmmu_tlb_invalidate_flpdcache(data, iova);
			spin_unlock(&domain->lock);
		}
	}

	return page_entry(sent, iova);
}

static int lv1set_section(struct exynos_iommu_domain *domain,
			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
			  phys_addr_t paddr, short *pgcnt)
{
	if (lv1ent_section(sent)) {
		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
			iova);
		return -EADDRINUSE;
	}

	if (lv1ent_page(sent)) {
		if (*pgcnt != NUM_LV2ENTRIES) {
			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
				iova);
			return -EADDRINUSE;
		}

		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
		*pgcnt = 0;
	}

	*sent = mk_lv1ent_sect(paddr);

	pgtable_flush(sent, sent + 1);

	spin_lock(&domain->lock);
	if (lv1ent_page_zero(sent)) {
		struct sysmmu_drvdata *data;
		/*
		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
		 * entry by speculative prefetch of SLPD which has no mapping.
		 */
		list_for_each_entry(data, &domain->clients, domain_node)
			sysmmu_tlb_invalidate_flpdcache(data, iova);
	}
	spin_unlock(&domain->lock);

	return 0;
}

static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
								short *pgcnt)
{
	if (size == SPAGE_SIZE) {
		if (WARN_ON(!lv2ent_fault(pent)))
			return -EADDRINUSE;

		*pent = mk_lv2ent_spage(paddr);
		pgtable_flush(pent, pent + 1);
		*pgcnt -= 1;
	} else { /* size == LPAGE_SIZE */
		int i;

		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
			if (WARN_ON(!lv2ent_fault(pent))) {
				if (i > 0)
					memset(pent - i, 0, sizeof(*pent) * i);
				return -EADDRINUSE;
			}

			*pent = mk_lv2ent_lpage(paddr);
		}
		pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
		*pgcnt -= SPAGES_PER_LPAGE;
	}

	return 0;
}

/*
 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
 *
 * System MMU v3.x has advanced logic to improve address translation
 * performance with caching more page table entries by a page table walk.
 * However, the logic has a bug that while caching faulty page table entries,
 * System MMU reports page fault if the cached fault entry is hit even though
 * the fault entry is updated to a valid entry after the entry is cached.
 * To prevent caching faulty page table entries which may be updated to valid
 * entries later, the virtual memory manager should care about the workaround
 * for the problem. The following describes the workaround.
 *
 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
 *
 * Precisely, any start address of I/O virtual region must be aligned with
 * the following sizes for System MMU v3.1 and v3.2.
 * System MMU v3.1: 128KiB
 * System MMU v3.2: 256KiB
 *
 * Because System MMU v3.3 caches page table entries more aggressively, it needs
 * more workarounds.
 * - Any two consecutive I/O virtual regions must have a hole of size larger
 *   than or equal to 128KiB.
 * - Start address of an I/O virtual region must be aligned by 128KiB.
 */
static int exynos_iommu_map(struct iommu_domain *iommu_domain,
			    unsigned long l_iova, phys_addr_t paddr, size_t size,
			    int prot)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_pte_t *entry;
	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
	unsigned long flags;
	int ret = -ENOMEM;

	BUG_ON(domain->pgtable == NULL);

	spin_lock_irqsave(&domain->pgtablelock, flags);

	entry = section_entry(domain->pgtable, iova);

	if (size == SECT_SIZE) {
		ret = lv1set_section(domain, entry, iova, paddr,
				     &domain->lv2entcnt[lv1ent_offset(iova)]);
	} else {
		sysmmu_pte_t *pent;

		pent = alloc_lv2entry(domain, entry, iova,
				      &domain->lv2entcnt[lv1ent_offset(iova)]);

		if (IS_ERR(pent))
			ret = PTR_ERR(pent);
		else
			ret = lv2set_page(pent, paddr, size,
				       &domain->lv2entcnt[lv1ent_offset(iova)]);
	}

	if (ret)
		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
			__func__, ret, size, iova);

	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	return ret;
}

static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
					      sysmmu_iova_t iova, size_t size)
{
	struct sysmmu_drvdata *data;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	list_for_each_entry(data, &domain->clients, domain_node)
		sysmmu_tlb_invalidate_entry(data, iova, size);

	spin_unlock_irqrestore(&domain->lock, flags);
}

static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
				 unsigned long l_iova, size_t size)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
	sysmmu_pte_t *ent;
	size_t err_pgsize;
	unsigned long flags;

	BUG_ON(domain->pgtable == NULL);

	spin_lock_irqsave(&domain->pgtablelock, flags);

	ent = section_entry(domain->pgtable, iova);

	if (lv1ent_section(ent)) {
		if (WARN_ON(size < SECT_SIZE)) {
			err_pgsize = SECT_SIZE;
			goto err;
		}

		/* workaround for h/w bug in System MMU v3.3 */
		*ent = ZERO_LV2LINK;
		pgtable_flush(ent, ent + 1);
		size = SECT_SIZE;
		goto done;
	}

	if (unlikely(lv1ent_fault(ent))) {
		if (size > SECT_SIZE)
			size = SECT_SIZE;
		goto done;
	}

	/* lv1ent_page(sent) == true here */

	ent = page_entry(ent, iova);

	if (unlikely(lv2ent_fault(ent))) {
		size = SPAGE_SIZE;
		goto done;
	}

	if (lv2ent_small(ent)) {
		*ent = 0;
		size = SPAGE_SIZE;
		pgtable_flush(ent, ent + 1);
		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
		goto done;
	}

	/* lv1ent_large(ent) == true here */
	if (WARN_ON(size < LPAGE_SIZE)) {
		err_pgsize = LPAGE_SIZE;
		goto err;
	}

	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
	pgtable_flush(ent, ent + SPAGES_PER_LPAGE);

	size = LPAGE_SIZE;
	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
done:
	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	exynos_iommu_tlb_invalidate_entry(domain, iova, size);

	return size;
err:
	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
		__func__, size, iova, err_pgsize);

	return 0;
}

static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
					  dma_addr_t iova)
{
	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
	sysmmu_pte_t *entry;
	unsigned long flags;
	phys_addr_t phys = 0;

	spin_lock_irqsave(&domain->pgtablelock, flags);

	entry = section_entry(domain->pgtable, iova);

	if (lv1ent_section(entry)) {
		phys = section_phys(entry) + section_offs(iova);
	} else if (lv1ent_page(entry)) {
		entry = page_entry(entry, iova);

		if (lv2ent_large(entry))
			phys = lpage_phys(entry) + lpage_offs(iova);
		else if (lv2ent_small(entry))
			phys = spage_phys(entry) + spage_offs(iova);
	}

	spin_unlock_irqrestore(&domain->pgtablelock, flags);

	return phys;
}

static int exynos_iommu_add_device(struct device *dev)
{
	struct iommu_group *group;
	int ret;

	if (!has_sysmmu(dev))
		return -ENODEV;

	group = iommu_group_get(dev);

	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group)) {
			dev_err(dev, "Failed to allocate IOMMU group\n");
			return PTR_ERR(group);
		}
	}

	ret = iommu_group_add_device(group, dev);
	iommu_group_put(group);

	return ret;
}

static void exynos_iommu_remove_device(struct device *dev)
{
	if (!has_sysmmu(dev))
		return;

	iommu_group_remove_device(dev);
}

static int exynos_iommu_of_xlate(struct device *dev,
				 struct of_phandle_args *spec)
{
	struct exynos_iommu_owner *owner = dev->archdata.iommu;
	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
	struct sysmmu_drvdata *data;

	if (!sysmmu)
		return -ENODEV;

	data = platform_get_drvdata(sysmmu);
	if (!data)
		return -ENODEV;

	if (!owner) {
		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
		if (!owner)
			return -ENOMEM;

		INIT_LIST_HEAD(&owner->controllers);
		dev->archdata.iommu = owner;
	}

	list_add_tail(&data->owner_node, &owner->controllers);
	return 0;
}

static struct iommu_ops exynos_iommu_ops = {
	.domain_alloc = exynos_iommu_domain_alloc,
	.domain_free = exynos_iommu_domain_free,
	.attach_dev = exynos_iommu_attach_device,
	.detach_dev = exynos_iommu_detach_device,
	.map = exynos_iommu_map,
	.unmap = exynos_iommu_unmap,
	.map_sg = default_iommu_map_sg,
	.iova_to_phys = exynos_iommu_iova_to_phys,
	.add_device = exynos_iommu_add_device,
	.remove_device = exynos_iommu_remove_device,
	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
	.of_xlate = exynos_iommu_of_xlate,
};

static bool init_done;

static int __init exynos_iommu_init(void)
{
	int ret;

	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
	if (!lv2table_kmem_cache) {
		pr_err("%s: Failed to create kmem cache\n", __func__);
		return -ENOMEM;
	}

	ret = platform_driver_register(&exynos_sysmmu_driver);
	if (ret) {
		pr_err("%s: Failed to register driver\n", __func__);
		goto err_reg_driver;
	}

	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
	if (zero_lv2_table == NULL) {
		pr_err("%s: Failed to allocate zero level2 page table\n",
			__func__);
		ret = -ENOMEM;
		goto err_zero_lv2;
	}

	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
	if (ret) {
		pr_err("%s: Failed to register exynos-iommu driver.\n",
								__func__);
		goto err_set_iommu;
	}

	init_done = true;

	return 0;
err_set_iommu:
	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
err_zero_lv2:
	platform_driver_unregister(&exynos_sysmmu_driver);
err_reg_driver:
	kmem_cache_destroy(lv2table_kmem_cache);
	return ret;
}

static int __init exynos_iommu_of_setup(struct device_node *np)
{
	struct platform_device *pdev;

	if (!init_done)
		exynos_iommu_init();

	pdev = of_platform_device_create(np, NULL, platform_bus_type.dev_root);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	of_iommu_set_ops(np, &exynos_iommu_ops);
	return 0;
}

IOMMU_OF_DECLARE(exynos_iommu_of, "samsung,exynos-sysmmu",
		 exynos_iommu_of_setup);
ss="p">} /* Ring the doorbell for any rings with pending URBs */ static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index) { unsigned int stream_id; struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* A ring has pending URBs if its TD list is not empty */ if (!(ep->ep_state & EP_HAS_STREAMS)) { if (ep->ring && !(list_empty(&ep->ring->td_list))) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); return; } for (stream_id = 1; stream_id < ep->stream_info->num_streams; stream_id++) { struct xhci_stream_info *stream_info = ep->stream_info; if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } } static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id) { struct xhci_virt_ep *ep; ep = &xhci->devs[slot_id]->eps[ep_index]; /* Common case: no streams */ if (!(ep->ep_state & EP_HAS_STREAMS)) return ep->ring; if (stream_id == 0) { xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has streams, " "but URB has no stream ID.\n", slot_id, ep_index); return NULL; } if (stream_id < ep->stream_info->num_streams) return ep->stream_info->stream_rings[stream_id]; xhci_warn(xhci, "WARN: Slot ID %u, ep index %u has " "stream IDs 1 to %u allocated, " "but stream ID %u is requested.\n", slot_id, ep_index, ep->stream_info->num_streams - 1, stream_id); return NULL; } /* Get the right ring for the given URB. * If the endpoint supports streams, boundary check the URB's stream ID. * If the endpoint doesn't support streams, return the singular endpoint ring. */ static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, struct urb *urb) { return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); } /* * Move the xHC's endpoint ring dequeue pointer past cur_td. * Record the new state of the xHC's endpoint ring dequeue segment, * dequeue pointer, and new consumer cycle state in state. * Update our internal representation of the ring's dequeue pointer. * * We do this in three jumps: * - First we update our new ring state to be the same as when the xHC stopped. * - Then we traverse the ring to find the segment that contains * the last TRB in the TD. We toggle the xHC's new cycle state when we pass * any link TRBs with the toggle cycle bit set. * - Finally we move the dequeue state one TRB further, toggling the cycle bit * if we've moved it past a link TRB with the toggle cycle bit set. * * Some of the uses of xhci_generic_trb are grotty, but if they're done * with correct __le32 accesses they should work fine. Only users of this are * in here. */ void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *cur_td, struct xhci_dequeue_state *state) { struct xhci_virt_device *dev = xhci->devs[slot_id]; struct xhci_virt_ep *ep = &dev->eps[ep_index]; struct xhci_ring *ep_ring; struct xhci_segment *new_seg; union xhci_trb *new_deq; dma_addr_t addr; u64 hw_dequeue; bool cycle_found = false; bool td_last_trb_found = false; ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN can't find new dequeue state " "for invalid stream ID %u.\n", stream_id); return; } /* Dig out the cycle state saved by the xHC during the stop ep cmd */ xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Finding endpoint context"); /* 4.6.9 the css flag is written to the stream context for streams */ if (ep->ep_state & EP_HAS_STREAMS) { struct xhci_stream_ctx *ctx = &ep->stream_info->stream_ctx_array[stream_id]; hw_dequeue = le64_to_cpu(ctx->stream_ring); } else { struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); hw_dequeue = le64_to_cpu(ep_ctx->deq); } new_seg = ep_ring->deq_seg; new_deq = ep_ring->dequeue; state->new_cycle_state = hw_dequeue & 0x1; /* * We want to find the pointer, segment and cycle state of the new trb * (the one after current TD's last_trb). We know the cycle state at * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are * found. */ do { if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq) == (dma_addr_t)(hw_dequeue & ~0xf)) { cycle_found = true; if (td_last_trb_found) break; } if (new_deq == cur_td->last_trb) td_last_trb_found = true; if (cycle_found && TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) && new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE)) state->new_cycle_state ^= 0x1; next_trb(xhci, ep_ring, &new_seg, &new_deq); /* Search wrapped around, bail out */ if (new_deq == ep->ring->dequeue) { xhci_err(xhci, "Error: Failed finding new dequeue state\n"); state->new_deq_seg = NULL; state->new_deq_ptr = NULL; return; } } while (!cycle_found || !td_last_trb_found); state->new_deq_seg = new_seg; state->new_deq_ptr = new_deq; /* Don't update the ring cycle state for the producer (us). */ xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Cycle state = 0x%x", state->new_cycle_state); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "New dequeue segment = %p (virtual)", state->new_deq_seg); addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "New dequeue pointer = 0x%llx (DMA)", (unsigned long long) addr); } /* flip_cycle means flip the cycle bit of all but the first and last TRB. * (The last TRB actually points to the ring enqueue pointer, which is not part * of this TD.) This is used to remove partially enqueued isoc TDs from a ring. */ static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, struct xhci_td *cur_td, bool flip_cycle) { struct xhci_segment *cur_seg; union xhci_trb *cur_trb; for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; true; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) { /* Unchain any chained Link TRBs, but * leave the pointers intact. */ cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN); /* Flip the cycle bit (link TRBs can't be the first * or last TRB). */ if (flip_cycle) cur_trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Cancel (unchain) link TRB"); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Address = %p (0x%llx dma); " "in seg %p (0x%llx dma)", cur_trb, (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), cur_seg, (unsigned long long)cur_seg->dma); } else { cur_trb->generic.field[0] = 0; cur_trb->generic.field[1] = 0; cur_trb->generic.field[2] = 0; /* Preserve only the cycle bit of this TRB */ cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE); /* Flip the cycle bit except on the first or last TRB */ if (flip_cycle && cur_trb != cur_td->first_trb && cur_trb != cur_td->last_trb) cur_trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE); cur_trb->generic.field[3] |= cpu_to_le32( TRB_TYPE(TRB_TR_NOOP)); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "TRB to noop at offset 0x%llx", (unsigned long long) xhci_trb_virt_to_dma(cur_seg, cur_trb)); } if (cur_trb == cur_td->last_trb) break; } } static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, struct xhci_virt_ep *ep) { ep->ep_state &= ~EP_HALT_PENDING; /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the * timer is running on another CPU, we don't decrement stop_cmds_pending * (since we didn't successfully stop the watchdog timer). */ if (del_timer(&ep->stop_cmd_timer)) ep->stop_cmds_pending--; } /* Must be called with xhci->lock held in interrupt context */ static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, struct xhci_td *cur_td, int status) { struct usb_hcd *hcd; struct urb *urb; struct urb_priv *urb_priv; urb = cur_td->urb; urb_priv = urb->hcpriv; urb_priv->td_cnt++; hcd = bus_to_hcd(urb->dev->bus); /* Only giveback urb when this is the last td in urb */ if (urb_priv->td_cnt == urb_priv->length) { if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } usb_hcd_unlink_urb_from_ep(hcd, urb); spin_unlock(&xhci->lock); usb_hcd_giveback_urb(hcd, urb, status); xhci_urb_free_priv(urb_priv); spin_lock(&xhci->lock); } } /* * When we get a command completion for a Stop Endpoint Command, we need to * unlink any cancelled TDs from the ring. There are two ways to do that: * * 1. If the HW was in the middle of processing the TD that needs to be * cancelled, then we must move the ring's dequeue pointer past the last TRB * in the TD with a Set Dequeue Pointer Command. * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain * bit cleared) so that the HW will skip over them. */ static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, struct xhci_event_cmd *event) { unsigned int ep_index; struct xhci_ring *ep_ring; struct xhci_virt_ep *ep; struct list_head *entry; struct xhci_td *cur_td = NULL; struct xhci_td *last_unlinked_td; struct xhci_dequeue_state deq_state; if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) { if (!xhci->devs[slot_id]) xhci_warn(xhci, "Stop endpoint command " "completion for disabled slot %u\n", slot_id); return; } memset(&deq_state, 0, sizeof(deq_state)); ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); ep = &xhci->devs[slot_id]->eps[ep_index]; if (list_empty(&ep->cancelled_td_list)) { xhci_stop_watchdog_timer_in_irq(xhci, ep); ep->stopped_td = NULL; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); return; } /* Fix up the ep ring first, so HW stops executing cancelled TDs. * We have the xHCI lock, so nothing can modify this list until we drop * it. We're also in the event handler, so we can't get re-interrupted * if another Stop Endpoint command completes */ list_for_each(entry, &ep->cancelled_td_list) { cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Removing canceled TD starting at 0x%llx (dma).", (unsigned long long)xhci_trb_virt_to_dma( cur_td->start_seg, cur_td->first_trb)); ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); if (!ep_ring) { /* This shouldn't happen unless a driver is mucking * with the stream ID after submission. This will * leave the TD on the hardware ring, and the hardware * will try to execute it, and may access a buffer * that has already been freed. In the best case, the * hardware will execute it, and the event handler will * ignore the completion event for that TD, since it was * removed from the td_list for that endpoint. In * short, don't muck with the stream ID after * submission. */ xhci_warn(xhci, "WARN Cancelled URB %p " "has invalid stream ID %u.\n", cur_td->urb, cur_td->urb->stream_id); goto remove_finished_td; } /* * If we stopped on the TD we need to cancel, then we have to * move the xHC endpoint ring dequeue pointer past this TD. */ if (cur_td == ep->stopped_td) xhci_find_new_dequeue_state(xhci, slot_id, ep_index, cur_td->urb->stream_id, cur_td, &deq_state); else td_to_noop(xhci, ep_ring, cur_td, false); remove_finished_td: /* * The event handler won't see a completion for this TD anymore, * so remove it from the endpoint ring's TD list. Keep it in * the cancelled TD list for URB completion later. */ list_del_init(&cur_td->td_list); } last_unlinked_td = cur_td; xhci_stop_watchdog_timer_in_irq(xhci, ep); /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { xhci_queue_new_dequeue_state(xhci, slot_id, ep_index, ep->stopped_td->urb->stream_id, &deq_state); xhci_ring_cmd_db(xhci); } else { /* Otherwise ring the doorbell(s) to restart queued transfers */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } ep->stopped_td = NULL; /* * Drop the lock and complete the URBs in the cancelled TD list. * New TDs to be cancelled might be added to the end of the list before * we can complete all the URBs for the TDs we already unlinked. * So stop when we've completed the URB for the last TD we unlinked. */ do { cur_td = list_entry(ep->cancelled_td_list.next, struct xhci_td, cancelled_td_list); list_del_init(&cur_td->cancelled_td_list); /* Clean up the cancelled URB */ /* Doesn't matter what we pass for status, since the core will * just overwrite it (because the URB has been unlinked). */ xhci_giveback_urb_in_irq(xhci, cur_td, 0); /* Stop processing the cancelled list if the watchdog timer is * running. */ if (xhci->xhc_state & XHCI_STATE_DYING) return; } while (cur_td != last_unlinked_td); /* Return to the event handler with xhci->lock re-acquired */ } static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring) { struct xhci_td *cur_td; while (!list_empty(&ring->td_list)) { cur_td = list_first_entry(&ring->td_list, struct xhci_td, td_list); list_del_init(&cur_td->td_list); if (!list_empty(&cur_td->cancelled_td_list)) list_del_init(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci, int slot_id, int ep_index) { struct xhci_td *cur_td; struct xhci_virt_ep *ep; struct xhci_ring *ring; ep = &xhci->devs[slot_id]->eps[ep_index]; if ((ep->ep_state & EP_HAS_STREAMS) || (ep->ep_state & EP_GETTING_NO_STREAMS)) { int stream_id; for (stream_id = 0; stream_id < ep->stream_info->num_streams; stream_id++) { xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u, stream %u", slot_id, ep_index, stream_id + 1); xhci_kill_ring_urbs(xhci, ep->stream_info->stream_rings[stream_id]); } } else { ring = ep->ring; if (!ring) return; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Killing URBs for slot ID %u, ep index %u", slot_id, ep_index); xhci_kill_ring_urbs(xhci, ring); } while (!list_empty(&ep->cancelled_td_list)) { cur_td = list_first_entry(&ep->cancelled_td_list, struct xhci_td, cancelled_td_list); list_del_init(&cur_td->cancelled_td_list); xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN); } } /* Watchdog timer function for when a stop endpoint command fails to complete. * In this case, we assume the host controller is broken or dying or dead. The * host may still be completing some other events, so we have to be careful to * let the event ring handler and the URB dequeueing/enqueueing functions know * through xhci->state. * * The timer may also fire if the host takes a very long time to respond to the * command, and the stop endpoint command completion handler cannot delete the * timer before the timer function is called. Another endpoint cancellation may * sneak in before the timer function can grab the lock, and that may queue * another stop endpoint command and add the timer back. So we cannot use a * simple flag to say whether there is a pending stop endpoint command for a * particular endpoint. * * Instead we use a combination of that flag and a counter for the number of * pending stop endpoint commands. If the timer is the tail end of the last * stop endpoint command, and the endpoint's command is still pending, we assume * the host is dying. */ void xhci_stop_endpoint_command_watchdog(unsigned long arg) { struct xhci_hcd *xhci; struct xhci_virt_ep *ep; int ret, i, j; unsigned long flags; ep = (struct xhci_virt_ep *) arg; xhci = ep->xhci; spin_lock_irqsave(&xhci->lock, flags); ep->stop_cmds_pending--; if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Stop EP timer ran, but another timer marked " "xHCI as DYING, exiting."); spin_unlock_irqrestore(&xhci->lock, flags); return; } if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Stop EP timer ran, but no command pending, " "exiting."); spin_unlock_irqrestore(&xhci->lock, flags); return; } xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); xhci_warn(xhci, "Assuming host is dying, halting host.\n"); /* Oops, HC is dead or dying or at least not responding to the stop * endpoint command. */ xhci->xhc_state |= XHCI_STATE_DYING; /* Disable interrupts from the host controller and start halting it */ xhci_quiesce(xhci); spin_unlock_irqrestore(&xhci->lock, flags); ret = xhci_halt(xhci); spin_lock_irqsave(&xhci->lock, flags); if (ret < 0) { /* This is bad; the host is not responding to commands and it's * not allowing itself to be halted. At least interrupts are * disabled. If we call usb_hc_died(), it will attempt to * disconnect all device drivers under this host. Those * disconnect() methods will wait for all URBs to be unlinked, * so we must complete them. */ xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); xhci_warn(xhci, "Completing active URBs anyway.\n"); /* We could turn all TDs on the rings to no-ops. This won't * help if the host has cached part of the ring, and is slow if * we want to preserve the cycle bit. Skip it and hope the host * doesn't touch the memory. */ } for (i = 0; i < MAX_HC_SLOTS; i++) { if (!xhci->devs[i]) continue; for (j = 0; j < 31; j++) xhci_kill_endpoint_urbs(xhci, i, j); } spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Calling usb_hc_died()"); usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "xHCI host controller is dead."); } static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci, struct xhci_virt_device *dev, struct xhci_ring *ep_ring, unsigned int ep_index) { union xhci_trb *dequeue_temp; int num_trbs_free_temp; bool revert = false; num_trbs_free_temp = ep_ring->num_trbs_free; dequeue_temp = ep_ring->dequeue; /* If we get two back-to-back stalls, and the first stalled transfer * ends just before a link TRB, the dequeue pointer will be left on * the link TRB by the code in the while loop. So we have to update * the dequeue pointer one segment further, or we'll jump off * the segment into la-la-land. */ if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) { /* We have more usable TRBs */ ep_ring->num_trbs_free++; ep_ring->dequeue++; if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) { if (ep_ring->dequeue == dev->eps[ep_index].queued_deq_ptr) break; ep_ring->deq_seg = ep_ring->deq_seg->next; ep_ring->dequeue = ep_ring->deq_seg->trbs; } if (ep_ring->dequeue == dequeue_temp) { revert = true; break; } } if (revert) { xhci_dbg(xhci, "Unable to find new dequeue pointer\n"); ep_ring->num_trbs_free = num_trbs_free_temp; } } /* * When we get a completion for a Set Transfer Ring Dequeue Pointer command, * we need to clear the set deq pending flag in the endpoint ring state, so that * the TD queueing code can ring the doorbell again. We also need to ring the * endpoint doorbell to restart the ring, but only if there aren't more * cancellations pending. */ static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { unsigned int ep_index; unsigned int stream_id; struct xhci_ring *ep_ring; struct xhci_virt_device *dev; struct xhci_virt_ep *ep; struct xhci_ep_ctx *ep_ctx; struct xhci_slot_ctx *slot_ctx; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2])); dev = xhci->devs[slot_id]; ep = &dev->eps[ep_index]; ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); if (!ep_ring) { xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n", stream_id); /* XXX: Harmless??? */ goto cleanup; } ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); if (cmd_comp_code != COMP_SUCCESS) { unsigned int ep_state; unsigned int slot_state; switch (cmd_comp_code) { case COMP_TRB_ERR: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n"); break; case COMP_CTX_STATE: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n"); ep_state = le32_to_cpu(ep_ctx->ep_info); ep_state &= EP_STATE_MASK; slot_state = le32_to_cpu(slot_ctx->dev_state); slot_state = GET_SLOT_STATE(slot_state); xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Slot state = %u, EP state = %u", slot_state, ep_state); break; case COMP_EBADSLT: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n", slot_id); break; default: xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n", cmd_comp_code); break; } /* OK what do we do now? The endpoint state is hosed, and we * should never get to this point if the synchronization between * queueing, and endpoint state are correct. This might happen * if the device gets disconnected after we've finished * cancelling URBs, which might not be an error... */ } else { u64 deq; /* 4.6.10 deq ptr is written to the stream ctx for streams */ if (ep->ep_state & EP_HAS_STREAMS) { struct xhci_stream_ctx *ctx = &ep->stream_info->stream_ctx_array[stream_id]; deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK; } else { deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK; } xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq); if (xhci_trb_virt_to_dma(ep->queued_deq_seg, ep->queued_deq_ptr) == deq) { /* Update the ring's dequeue segment and dequeue pointer * to reflect the new position. */ update_ring_for_set_deq_completion(xhci, dev, ep_ring, ep_index); } else { xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n"); xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n", ep->queued_deq_seg, ep->queued_deq_ptr); } } cleanup: dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; dev->eps[ep_index].queued_deq_seg = NULL; dev->eps[ep_index].queued_deq_ptr = NULL; /* Restart any rings with pending URBs */ ring_doorbell_for_active_rings(xhci, slot_id, ep_index); } static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id, union xhci_trb *trb, u32 cmd_comp_code) { unsigned int ep_index; ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3])); /* This command will only fail if the endpoint wasn't halted, * but we don't care. */ xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep, "Ignoring reset ep completion code of %u", cmd_comp_code); /* HW with the reset endpoint quirk needs to have a configure endpoint * command complete before the endpoint can be used. Queue that here * because the HW can't handle two commands being queued in a row. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK) { struct xhci_command *command; command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); if (!command) { xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n"); return; } xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "Queueing configure endpoint command"); xhci_queue_configure_endpoint(xhci, command, xhci->devs[slot_id]->in_ctx->dma, slot_id, false); xhci_ring_cmd_db(xhci); } else { /* Clear our internal halted state */ xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; } } static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id, u32 cmd_comp_code) { if (cmd_comp_code == COMP_SUCCESS) xhci->slot_id = slot_id; else xhci->slot_id = 0; } static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id) { struct xhci_virt_device *virt_dev; virt_dev = xhci->devs[slot_id]; if (!virt_dev) return; if (xhci->quirks & XHCI_EP_LIMIT_QUIRK) /* Delete default control endpoint resources */ xhci_free_device_endpoint_resources(xhci, virt_dev, true); xhci_free_virt_device(xhci, slot_id); } static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id, struct xhci_event_cmd *event, u32 cmd_comp_code) { struct xhci_virt_device *virt_dev; struct xhci_input_control_ctx *ctrl_ctx; unsigned int ep_index; unsigned int ep_state; u32 add_flags, drop_flags; /* * Configure endpoint commands can come from the USB core * configuration or alt setting changes, or because the HW * needed an extra configure endpoint command after a reset * endpoint command or streams were being configured. * If the command was for a halted endpoint, the xHCI driver * is not waiting on the configure endpoint command. */ virt_dev = xhci->devs[slot_id]; ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx); if (!ctrl_ctx) { xhci_warn(xhci, "Could not get input context, bad type.\n"); return; } add_flags = le32_to_cpu(ctrl_ctx->add_flags); drop_flags = le32_to_cpu(ctrl_ctx->drop_flags); /* Input ctx add_flags are the endpoint index plus one */ ep_index = xhci_last_valid_endpoint(add_flags) - 1; /* A usb_set_interface() call directly after clearing a halted * condition may race on this quirky hardware. Not worth * worrying about, since this is prototype hardware. Not sure * if this will work for streams, but streams support was * untested on this prototype. */ if (xhci->quirks & XHCI_RESET_EP_QUIRK && ep_index != (unsigned int) -1 && add_flags - SLOT_FLAG == drop_flags) { ep_state = virt_dev->eps[ep_index].ep_state; if (!(ep_state & EP_HALTED)) return; xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "Completed config ep cmd - " "last ep index = %d, state = %d", ep_index, ep_state); /* Clear internal halted state and restart ring(s) */ virt_dev->eps[ep_index].ep_state &= ~EP_HALTED; ring_doorbell_for_active_rings(xhci, slot_id, ep_index); return; } return; } static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id, struct xhci_event_cmd *event) { xhci_dbg(xhci, "Completed reset device command.\n"); if (!xhci->devs[slot_id]) xhci_warn(xhci, "Reset device command completion " "for disabled slot %u\n", slot_id); } static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { if (!(xhci->quirks & XHCI_NEC_HOST)) { xhci->error_bitmask |= 1 << 6; return; } xhci_dbg_trace(xhci, trace_xhci_dbg_quirks, "NEC firmware version %2x.%02x", NEC_FW_MAJOR(le32_to_cpu(event->status)), NEC_FW_MINOR(le32_to_cpu(event->status))); } static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status) { list_del(&cmd->cmd_list); if (cmd->completion) { cmd->status = status; complete(cmd->completion); } else { kfree(cmd); } } void xhci_cleanup_command_queue(struct xhci_hcd *xhci) { struct xhci_command *cur_cmd, *tmp_cmd; list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT); } /* * Turn all commands on command ring with status set to "aborted" to no-op trbs. * If there are other commands waiting then restart the ring and kick the timer. * This must be called with command ring stopped and xhci->lock held. */ static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci, struct xhci_command *cur_cmd) { struct xhci_command *i_cmd, *tmp_cmd; u32 cycle_state; /* Turn all aborted commands in list to no-ops, then restart */ list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list, cmd_list) { if (i_cmd->status != COMP_CMD_ABORT) continue; i_cmd->status = COMP_CMD_STOP; xhci_dbg(xhci, "Turn aborted command %p to no-op\n", i_cmd->command_trb); /* get cycle state from the original cmd trb */ cycle_state = le32_to_cpu( i_cmd->command_trb->generic.field[3]) & TRB_CYCLE; /* modify the command trb to no-op command */ i_cmd->command_trb->generic.field[0] = 0; i_cmd->command_trb->generic.field[1] = 0; i_cmd->command_trb->generic.field[2] = 0; i_cmd->command_trb->generic.field[3] = cpu_to_le32( TRB_TYPE(TRB_CMD_NOOP) | cycle_state); /* * caller waiting for completion is called when command * completion event is received for these no-op commands */ } xhci->cmd_ring_state = CMD_RING_STATE_RUNNING; /* ring command ring doorbell to restart the command ring */ if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) && !(xhci->xhc_state & XHCI_STATE_DYING)) { xhci->current_cmd = cur_cmd; mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); xhci_ring_cmd_db(xhci); } return; } void xhci_handle_command_timeout(unsigned long data) { struct xhci_hcd *xhci; int ret; unsigned long flags; u64 hw_ring_state; struct xhci_command *cur_cmd = NULL; xhci = (struct xhci_hcd *) data; /* mark this command to be cancelled */ spin_lock_irqsave(&xhci->lock, flags); if (xhci->current_cmd) { cur_cmd = xhci->current_cmd; cur_cmd->status = COMP_CMD_ABORT; } /* Make sure command ring is running before aborting it */ hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) && (hw_ring_state & CMD_RING_RUNNING)) { spin_unlock_irqrestore(&xhci->lock, flags); xhci_dbg(xhci, "Command timeout\n"); ret = xhci_abort_cmd_ring(xhci); if (unlikely(ret == -ESHUTDOWN)) { xhci_err(xhci, "Abort command ring failed\n"); xhci_cleanup_command_queue(xhci); usb_hc_died(xhci_to_hcd(xhci)->primary_hcd); xhci_dbg(xhci, "xHCI host controller is dead.\n"); } return; } /* command timeout on stopped ring, ring can't be aborted */ xhci_dbg(xhci, "Command timeout on stopped ring\n"); xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd); spin_unlock_irqrestore(&xhci->lock, flags); return; } static void handle_cmd_completion(struct xhci_hcd *xhci, struct xhci_event_cmd *event) { int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); u64 cmd_dma; dma_addr_t cmd_dequeue_dma; u32 cmd_comp_code; union xhci_trb *cmd_trb; struct xhci_command *cmd; u32 cmd_type; cmd_dma = le64_to_cpu(event->cmd_trb); cmd_trb = xhci->cmd_ring->dequeue; cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, cmd_trb); /* Is the command ring deq ptr out of sync with the deq seg ptr? */ if (cmd_dequeue_dma == 0) { xhci->error_bitmask |= 1 << 4; return; } /* Does the DMA address match our internal dequeue pointer address? */ if (cmd_dma != (u64) cmd_dequeue_dma) { xhci->error_bitmask |= 1 << 5; return; } cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list); if (cmd->command_trb != xhci->cmd_ring->dequeue) { xhci_err(xhci, "Command completion event does not match command\n"); return; } del_timer(&xhci->cmd_timer); trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event); cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status)); /* If CMD ring stopped we own the trbs between enqueue and dequeue */ if (cmd_comp_code == COMP_CMD_STOP) { xhci_handle_stopped_cmd_ring(xhci, cmd); return; } /* * Host aborted the command ring, check if the current command was * supposed to be aborted, otherwise continue normally. * The command ring is stopped now, but the xHC will issue a Command * Ring Stopped event which will cause us to restart it. */ if (cmd_comp_code == COMP_CMD_ABORT) { xhci->cmd_ring_state = CMD_RING_STATE_STOPPED; if (cmd->status == COMP_CMD_ABORT) goto event_handled; } cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3])); switch (cmd_type) { case TRB_ENABLE_SLOT: xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code); break; case TRB_DISABLE_SLOT: xhci_handle_cmd_disable_slot(xhci, slot_id); break; case TRB_CONFIG_EP: if (!cmd->completion) xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code); break; case TRB_EVAL_CONTEXT: break; case TRB_ADDR_DEV: break; case TRB_STOP_RING: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event); break; case TRB_SET_DEQ: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_CMD_NOOP: /* Is this an aborted command turned to NO-OP? */ if (cmd->status == COMP_CMD_STOP) cmd_comp_code = COMP_CMD_STOP; break; case TRB_RESET_EP: WARN_ON(slot_id != TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3]))); xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code); break; case TRB_RESET_DEV: /* SLOT_ID field in reset device cmd completion event TRB is 0. * Use the SLOT_ID from the command TRB instead (xhci 4.6.11) */ slot_id = TRB_TO_SLOT_ID( le32_to_cpu(cmd_trb->generic.field[3])); xhci_handle_cmd_reset_dev(xhci, slot_id, event); break; case TRB_NEC_GET_FW: xhci_handle_cmd_nec_get_fw(xhci, event); break; default: /* Skip over unknown commands on the event ring */ xhci->error_bitmask |= 1 << 6; break; } /* restart timer if this wasn't the last command */ if (cmd->cmd_list.next != &xhci->cmd_list) { xhci->current_cmd = list_entry(cmd->cmd_list.next, struct xhci_command, cmd_list); mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); } event_handled: xhci_complete_del_and_free_cmd(cmd, cmd_comp_code); inc_deq(xhci, xhci->cmd_ring); } static void handle_vendor_event(struct xhci_hcd *xhci, union xhci_trb *event) { u32 trb_type; trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3])); xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) handle_cmd_completion(xhci, &event->event_cmd); } /* @port_id: the one-based port ID from the hardware (indexed from array of all * port registers -- USB 3.0 and USB 2.0). * * Returns a zero-based port number, which is suitable for indexing into each of * the split roothubs' port arrays and bus state arrays. * Add one to it in order to call xhci_find_slot_id_by_port. */ static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd, struct xhci_hcd *xhci, u32 port_id) { unsigned int i; unsigned int num_similar_speed_ports = 0; /* port_id from the hardware is 1-based, but port_array[], usb3_ports[], * and usb2_ports are 0-based indexes. Count the number of similar * speed ports, up to 1 port before this port. */ for (i = 0; i < (port_id - 1); i++) { u8 port_speed = xhci->port_array[i]; /* * Skip ports that don't have known speeds, or have duplicate * Extended Capabilities port speed entries. */ if (port_speed == 0 || port_speed == DUPLICATE_ENTRY) continue; /* * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and * 1.1 ports are under the USB 2.0 hub. If the port speed * matches the device speed, it's a similar speed port. */ if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3)) num_similar_speed_ports++; } return num_similar_speed_ports; } static void handle_device_notification(struct xhci_hcd *xhci, union xhci_trb *event) { u32 slot_id; struct usb_device *udev; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3])); if (!xhci->devs[slot_id]) { xhci_warn(xhci, "Device Notification event for " "unused slot %u\n", slot_id); return; } xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n", slot_id); udev = xhci->devs[slot_id]->udev; if (udev && udev->parent) usb_wakeup_notification(udev->parent, udev->portnum); } static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event) { struct usb_hcd *hcd; u32 port_id; u32 temp, temp1; int max_ports; int slot_id; unsigned int faked_port_index; u8 major_revision; struct xhci_bus_state *bus_state; __le32 __iomem **port_array; bool bogus_port_status = false; /* Port status change events always have a successful completion code */ if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) { xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); xhci->error_bitmask |= 1 << 8; } port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0])); xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); max_ports = HCS_MAX_PORTS(xhci->hcs_params1); if ((port_id <= 0) || (port_id > max_ports)) { xhci_warn(xhci, "Invalid port id %d\n", port_id); inc_deq(xhci, xhci->event_ring); return; } /* Figure out which usb_hcd this port is attached to: * is it a USB 3.0 port or a USB 2.0/1.1 port? */ major_revision = xhci->port_array[port_id - 1]; /* Find the right roothub. */ hcd = xhci_to_hcd(xhci); if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3)) hcd = xhci->shared_hcd; if (major_revision == 0) { xhci_warn(xhci, "Event for port %u not in " "Extended Capabilities, ignoring.\n", port_id); bogus_port_status = true; goto cleanup; } if (major_revision == DUPLICATE_ENTRY) { xhci_warn(xhci, "Event for port %u duplicated in" "Extended Capabilities, ignoring.\n", port_id); bogus_port_status = true; goto cleanup; } /* * Hardware port IDs reported by a Port Status Change Event include USB * 3.0 and USB 2.0 ports. We want to check if the port has reported a * resume event, but we first need to translate the hardware port ID * into the index into the ports on the correct split roothub, and the * correct bus_state structure. */ bus_state = &xhci->bus_state[hcd_index(hcd)]; if (hcd->speed >= HCD_USB3) port_array = xhci->usb3_ports; else port_array = xhci->usb2_ports; /* Find the faked port hub number */ faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci, port_id); temp = readl(port_array[faked_port_index]); if (hcd->state == HC_STATE_SUSPENDED) { xhci_dbg(xhci, "resume root hub\n"); usb_hcd_resume_root_hub(hcd); } if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE) bus_state->port_remote_wakeup &= ~(1 << faked_port_index); if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { xhci_dbg(xhci, "port resume event for port %d\n", port_id); temp1 = readl(&xhci->op_regs->command); if (!(temp1 & CMD_RUN)) { xhci_warn(xhci, "xHC is not running.\n"); goto cleanup; } if (DEV_SUPERSPEED_ANY(temp)) { xhci_dbg(xhci, "remote wake SS port %d\n", port_id); /* Set a flag to say the port signaled remote wakeup, * so we can tell the difference between the end of * device and host initiated resume. */ bus_state->port_remote_wakeup |= 1 << faked_port_index; xhci_test_and_clear_bit(xhci, port_array, faked_port_index, PORT_PLC); xhci_set_link_state(xhci, port_array, faked_port_index, XDEV_U0); /* Need to wait until the next link state change * indicates the device is actually in U0. */ bogus_port_status = true; goto cleanup; } else if (!test_bit(faked_port_index, &bus_state->resuming_ports)) { xhci_dbg(xhci, "resume HS port %d\n", port_id); bus_state->resume_done[faked_port_index] = jiffies + msecs_to_jiffies(USB_RESUME_TIMEOUT); set_bit(faked_port_index, &bus_state->resuming_ports); mod_timer(&hcd->rh_timer, bus_state->resume_done[faked_port_index]); /* Do the rest in GetPortStatus */ } } if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 && DEV_SUPERSPEED_ANY(temp)) { xhci_dbg(xhci, "resume SS port %d finished\n", port_id); /* We've just brought the device into U0 through either the * Resume state after a device remote wakeup, or through the * U3Exit state after a host-initiated resume. If it's a device * initiated remote wake, don't pass up the link state change, * so the roothub behavior is consistent with external * USB 3.0 hub behavior. */ slot_id = xhci_find_slot_id_by_port(hcd, xhci, faked_port_index + 1); if (slot_id && xhci->devs[slot_id]) xhci_ring_device(xhci, slot_id); if (bus_state->port_remote_wakeup & (1 << faked_port_index)) { bus_state->port_remote_wakeup &= ~(1 << faked_port_index); xhci_test_and_clear_bit(xhci, port_array, faked_port_index, PORT_PLC); usb_wakeup_notification(hcd->self.root_hub, faked_port_index + 1); bogus_port_status = true; goto cleanup; } } /* * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or * RExit to a disconnect state). If so, let the the driver know it's * out of the RExit state. */ if (!DEV_SUPERSPEED_ANY(temp) && test_and_clear_bit(faked_port_index, &bus_state->rexit_ports)) { complete(&bus_state->rexit_done[faked_port_index]); bogus_port_status = true; goto cleanup; } if (hcd->speed < HCD_USB3) xhci_test_and_clear_bit(xhci, port_array, faked_port_index, PORT_PLC); cleanup: /* Update event ring dequeue pointer before dropping the lock */ inc_deq(xhci, xhci->event_ring); /* Don't make the USB core poll the roothub if we got a bad port status * change event. Besides, at that point we can't tell which roothub * (USB 2.0 or USB 3.0) to kick. */ if (bogus_port_status) return; /* * xHCI port-status-change events occur when the "or" of all the * status-change bits in the portsc register changes from 0 to 1. * New status changes won't cause an event if any other change * bits are still set. When an event occurs, switch over to * polling to avoid losing status changes. */ xhci_dbg(xhci, "%s: starting port polling.\n", __func__); set_bit(HCD_FLAG_POLL_RH, &hcd->flags); spin_unlock(&xhci->lock); /* Pass this up to the core */ usb_hcd_poll_rh_status(hcd); spin_lock(&xhci->lock); } /* * This TD is defined by the TRBs starting at start_trb in start_seg and ending * at end_trb, which may be in another segment. If the suspect DMA address is a * TRB in this TD, this function returns that TRB's segment. Otherwise it * returns 0. */ struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_segment *start_seg, union xhci_trb *start_trb, union xhci_trb *end_trb, dma_addr_t suspect_dma, bool debug) { dma_addr_t start_dma; dma_addr_t end_seg_dma; dma_addr_t end_trb_dma; struct xhci_segment *cur_seg; start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); cur_seg = start_seg; do { if (start_dma == 0) return NULL; /* We may get an event for a Link TRB in the middle of a TD */ end_seg_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); /* If the end TRB isn't in this segment, this is set to 0 */ end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); if (debug) xhci_warn(xhci, "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n", (unsigned long long)suspect_dma, (unsigned long long)start_dma, (unsigned long long)end_trb_dma, (unsigned long long)cur_seg->dma, (unsigned long long)end_seg_dma); if (end_trb_dma > 0) { /* The end TRB is in this segment, so suspect should be here */ if (start_dma <= end_trb_dma) { if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) return cur_seg; } else { /* Case for one segment with * a TD wrapped around to the top */ if ((suspect_dma >= start_dma && suspect_dma <= end_seg_dma) || (suspect_dma >= cur_seg->dma && suspect_dma <= end_trb_dma)) return cur_seg; } return NULL; } else { /* Might still be somewhere in this segment */ if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) return cur_seg; } cur_seg = cur_seg->next; start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); } while (cur_seg != start_seg); return NULL; } static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_td *td, union xhci_trb *event_trb) { struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; struct xhci_command *command; command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); if (!command) return; ep->ep_state |= EP_HALTED; ep->stopped_stream = stream_id; xhci_queue_reset_ep(xhci, command, slot_id, ep_index); xhci_cleanup_stalled_ring(xhci, ep_index, td); ep->stopped_stream = 0; xhci_ring_cmd_db(xhci); } /* Check if an error has halted the endpoint ring. The class driver will * cleanup the halt for a non-default control endpoint if we indicate a stall. * However, a babble and other errors also halt the endpoint ring, and the class * driver won't clear the halt in that case, so we need to issue a Set Transfer * Ring Dequeue Pointer command manually. */ static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, struct xhci_ep_ctx *ep_ctx, unsigned int trb_comp_code) { /* TRB completion codes that may require a manual halt cleanup */ if (trb_comp_code == COMP_TX_ERR || trb_comp_code == COMP_BABBLE || trb_comp_code == COMP_SPLIT_ERR) /* The 0.96 spec says a babbling control endpoint * is not halted. The 0.96 spec says it is. Some HW * claims to be 0.95 compliant, but it halts the control * endpoint anyway. Check if a babble halted the * endpoint. */ if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) == cpu_to_le32(EP_STATE_HALTED)) return 1; return 0; } int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) { if (trb_comp_code >= 224 && trb_comp_code <= 255) { /* Vendor defined "informational" completion code, * treat as not-an-error. */ xhci_dbg(xhci, "Vendor defined info completion code %u\n", trb_comp_code); xhci_dbg(xhci, "Treating code as success.\n"); return 1; } return 0; } /* * Finish the td processing, remove the td from td list; * Return 1 if the urb can be given back. */ static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status, bool skip) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct urb *urb = NULL; struct xhci_ep_ctx *ep_ctx; int ret = 0; struct urb_priv *urb_priv; u32 trb_comp_code; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); if (skip) goto td_cleanup; if (trb_comp_code == COMP_STOP_INVAL || trb_comp_code == COMP_STOP || trb_comp_code == COMP_STOP_SHORT) { /* The Endpoint Stop Command completion will take care of any * stopped TDs. A stopped TD may be restarted, so don't update * the ring dequeue pointer or take this TD off any lists yet. */ ep->stopped_td = td; return 0; } if (trb_comp_code == COMP_STALL || xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) { /* Issue a reset endpoint command to clear the host side * halt, followed by a set dequeue command to move the * dequeue pointer past the TD. * The class driver clears the device side halt later. */ xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, ep_ring->stream_id, td, event_trb); } else { /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring); inc_deq(xhci, ep_ring); } td_cleanup: /* Clean up the endpoint's TD list */ urb = td->urb; urb_priv = urb->hcpriv; /* Do one last check of the actual transfer length. * If the host controller said we transferred more data than the buffer * length, urb->actual_length will be a very big number (since it's * unsigned). Play it safe and say we didn't transfer anything. */ if (urb->actual_length > urb->transfer_buffer_length) { xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n", urb->transfer_buffer_length, urb->actual_length); urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } list_del_init(&td->td_list); /* Was this TD slated to be cancelled but completed anyway? */ if (!list_empty(&td->cancelled_td_list)) list_del_init(&td->cancelled_td_list); urb_priv->td_cnt++; /* Giveback the urb when all the tds are completed */ if (urb_priv->td_cnt == urb_priv->length) { ret = 1; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_enable(); } } } return ret; } /* * Process control tds, update urb status and actual_length. */ static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_ep_ctx *ep_ctx; u32 trb_comp_code; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); switch (trb_comp_code) { case COMP_SUCCESS: if (event_trb == ep_ring->dequeue) { xhci_warn(xhci, "WARN: Success on ctrl setup TRB " "without IOC set??\n"); *status = -ESHUTDOWN; } else if (event_trb != td->last_trb) { xhci_warn(xhci, "WARN: Success on ctrl data TRB " "without IOC set??\n"); *status = -ESHUTDOWN; } else { *status = 0; } break; case COMP_SHORT_TX: if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; break; case COMP_STOP_SHORT: if (event_trb == ep_ring->dequeue || event_trb == td->last_trb) xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n"); else td->urb->actual_length = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); return finish_td(xhci, td, event_trb, event, ep, status, false); case COMP_STOP: /* Did we stop at data stage? */ if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) td->urb->actual_length = td->urb->transfer_buffer_length - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); /* fall through */ case COMP_STOP_INVAL: return finish_td(xhci, td, event_trb, event, ep, status, false); default: if (!xhci_requires_manual_halt_cleanup(xhci, ep_ctx, trb_comp_code)) break; xhci_dbg(xhci, "TRB error code %u, " "halted endpoint index = %u\n", trb_comp_code, ep_index); /* else fall through */ case COMP_STALL: /* Did we transfer part of the data (middle) phase? */ if (event_trb != ep_ring->dequeue && event_trb != td->last_trb) td->urb->actual_length = td->urb->transfer_buffer_length - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); else if (!td->urb_length_set) td->urb->actual_length = 0; return finish_td(xhci, td, event_trb, event, ep, status, false); } /* * Did we transfer any data, despite the errors that might have * happened? I.e. did we get past the setup stage? */ if (event_trb != ep_ring->dequeue) { /* The event was for the status stage */ if (event_trb == td->last_trb) { if (td->urb_length_set) { /* Don't overwrite a previously set error code */ if ((*status == -EINPROGRESS || *status == 0) && (td->urb->transfer_flags & URB_SHORT_NOT_OK)) /* Did we already see a short data * stage? */ *status = -EREMOTEIO; } else { td->urb->actual_length = td->urb->transfer_buffer_length; } } else { /* * Maybe the event was for the data stage? If so, update * already the actual_length of the URB and flag it as * set, so that it is not overwritten in the event for * the last TRB. */ td->urb_length_set = true; td->urb->actual_length = td->urb->transfer_buffer_length - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); xhci_dbg(xhci, "Waiting for status " "stage event\n"); return 0; } } return finish_td(xhci, td, event_trb, event, ep, status, false); } /* * Process isochronous tds, update urb packet status and actual_length. */ static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; int idx; int len = 0; union xhci_trb *cur_trb; struct xhci_segment *cur_seg; struct usb_iso_packet_descriptor *frame; u32 trb_comp_code; bool skip_td = false; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); urb_priv = td->urb->hcpriv; idx = urb_priv->td_cnt; frame = &td->urb->iso_frame_desc[idx]; /* handle completion code */ switch (trb_comp_code) { case COMP_SUCCESS: if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) { frame->status = 0; break; } if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) trb_comp_code = COMP_SHORT_TX; /* fallthrough */ case COMP_STOP_SHORT: case COMP_SHORT_TX: frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ? -EREMOTEIO : 0; break; case COMP_BW_OVER: frame->status = -ECOMM; skip_td = true; break; case COMP_BUFF_OVER: case COMP_BABBLE: frame->status = -EOVERFLOW; skip_td = true; break; case COMP_DEV_ERR: case COMP_STALL: frame->status = -EPROTO; skip_td = true; break; case COMP_TX_ERR: frame->status = -EPROTO; if (event_trb != td->last_trb) return 0; skip_td = true; break; case COMP_STOP: case COMP_STOP_INVAL: break; default: frame->status = -1; break; } if (trb_comp_code == COMP_SUCCESS || skip_td) { frame->actual_length = frame->length; td->urb->actual_length += frame->length; } else if (trb_comp_code == COMP_STOP_SHORT) { frame->actual_length = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); td->urb->actual_length += frame->actual_length; } else { for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; cur_trb != event_trb; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); } len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); if (trb_comp_code != COMP_STOP_INVAL) { frame->actual_length = len; td->urb->actual_length += len; } } return finish_td(xhci, td, event_trb, event, ep, status, false); } static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct usb_iso_packet_descriptor *frame; int idx; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); urb_priv = td->urb->hcpriv; idx = urb_priv->td_cnt; frame = &td->urb->iso_frame_desc[idx]; /* The transfer is partly done. */ frame->status = -EXDEV; /* calc actual length */ frame->actual_length = 0; /* Update ring dequeue pointer */ while (ep_ring->dequeue != td->last_trb) inc_deq(xhci, ep_ring); inc_deq(xhci, ep_ring); return finish_td(xhci, td, NULL, event, ep, status, true); } /* * Process bulk and interrupt tds, update urb status and actual_length. */ static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, union xhci_trb *event_trb, struct xhci_transfer_event *event, struct xhci_virt_ep *ep, int *status) { struct xhci_ring *ep_ring; union xhci_trb *cur_trb; struct xhci_segment *cur_seg; u32 trb_comp_code; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); switch (trb_comp_code) { case COMP_SUCCESS: /* Double check that the HW transferred everything. */ if (event_trb != td->last_trb || EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { xhci_warn(xhci, "WARN Successful completion " "on short TX\n"); if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; if ((xhci->quirks & XHCI_TRUST_TX_LENGTH)) trb_comp_code = COMP_SHORT_TX; } else { *status = 0; } break; case COMP_STOP_SHORT: case COMP_SHORT_TX: if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; break; default: /* Others already handled above */ break; } if (trb_comp_code == COMP_SHORT_TX) xhci_dbg(xhci, "ep %#x - asked for %d bytes, " "%d bytes untransferred\n", td->urb->ep->desc.bEndpointAddress, td->urb->transfer_buffer_length, EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); /* Stopped - short packet completion */ if (trb_comp_code == COMP_STOP_SHORT) { td->urb->actual_length = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); if (td->urb->transfer_buffer_length < td->urb->actual_length) { xhci_warn(xhci, "HC gave bad length of %d bytes txed\n", EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); td->urb->actual_length = 0; /* status will be set by usb core for canceled urbs */ } /* Fast path - was this the last TRB in the TD for this URB? */ } else if (event_trb == td->last_trb) { if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) { td->urb->actual_length = td->urb->transfer_buffer_length - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); if (td->urb->transfer_buffer_length < td->urb->actual_length) { xhci_warn(xhci, "HC gave bad length " "of %d bytes left\n", EVENT_TRB_LEN(le32_to_cpu(event->transfer_len))); td->urb->actual_length = 0; if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } /* Don't overwrite a previously set error code */ if (*status == -EINPROGRESS) { if (td->urb->transfer_flags & URB_SHORT_NOT_OK) *status = -EREMOTEIO; else *status = 0; } } else { td->urb->actual_length = td->urb->transfer_buffer_length; /* Ignore a short packet completion if the * untransferred length was zero. */ if (*status == -EREMOTEIO) *status = 0; } } else { /* Slow path - walk the list, starting from the dequeue * pointer, to get the actual length transferred. */ td->urb->actual_length = 0; for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; cur_trb != event_trb; next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) && !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) td->urb->actual_length += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])); } /* If the ring didn't stop on a Link or No-op TRB, add * in the actual bytes transferred from the Normal TRB */ if (trb_comp_code != COMP_STOP_INVAL) td->urb->actual_length += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) - EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)); } return finish_td(xhci, td, event_trb, event, ep, status, false); } /* * If this function returns an error condition, it means it got a Transfer * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. * At this point, the host controller is probably hosed and should be reset. */ static int handle_tx_event(struct xhci_hcd *xhci, struct xhci_transfer_event *event) __releases(&xhci->lock) __acquires(&xhci->lock) { struct xhci_virt_device *xdev; struct xhci_virt_ep *ep; struct xhci_ring *ep_ring; unsigned int slot_id; int ep_index; struct xhci_td *td = NULL; dma_addr_t event_dma; struct xhci_segment *event_seg; union xhci_trb *event_trb; struct urb *urb = NULL; int status = -EINPROGRESS; struct urb_priv *urb_priv; struct xhci_ep_ctx *ep_ctx; struct list_head *tmp; u32 trb_comp_code; int ret = 0; int td_num = 0; bool handling_skipped_tds = false; slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags)); xdev = xhci->devs[slot_id]; if (!xdev) { xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", (unsigned long long) xhci_trb_virt_to_dma( xhci->event_ring->deq_seg, xhci->event_ring->dequeue), lower_32_bits(le64_to_cpu(event->buffer)), upper_32_bits(le64_to_cpu(event->buffer)), le32_to_cpu(event->transfer_len), le32_to_cpu(event->flags)); xhci_dbg(xhci, "Event ring:\n"); xhci_debug_segment(xhci, xhci->event_ring->deq_seg); return -ENODEV; } /* Endpoint ID is 1 based, our index is zero based */ ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1; ep = &xdev->eps[ep_index]; ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer)); ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); if (!ep_ring || (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_DISABLED) { xhci_err(xhci, "ERROR Transfer event for disabled endpoint " "or incorrect stream ring\n"); xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n", (unsigned long long) xhci_trb_virt_to_dma( xhci->event_ring->deq_seg, xhci->event_ring->dequeue), lower_32_bits(le64_to_cpu(event->buffer)), upper_32_bits(le64_to_cpu(event->buffer)), le32_to_cpu(event->transfer_len), le32_to_cpu(event->flags)); xhci_dbg(xhci, "Event ring:\n"); xhci_debug_segment(xhci, xhci->event_ring->deq_seg); return -ENODEV; } /* Count current td numbers if ep->skip is set */ if (ep->skip) { list_for_each(tmp, &ep_ring->td_list) td_num++; } event_dma = le64_to_cpu(event->buffer); trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len)); /* Look for common error cases */ switch (trb_comp_code) { /* Skip codes that require special handling depending on * transfer type */ case COMP_SUCCESS: if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) break; if (xhci->quirks & XHCI_TRUST_TX_LENGTH) trb_comp_code = COMP_SHORT_TX; else xhci_warn_ratelimited(xhci, "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n"); case COMP_SHORT_TX: break; case COMP_STOP: xhci_dbg(xhci, "Stopped on Transfer TRB\n"); break; case COMP_STOP_INVAL: xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); break; case COMP_STOP_SHORT: xhci_dbg(xhci, "Stopped with short packet transfer detected\n"); break; case COMP_STALL: xhci_dbg(xhci, "Stalled endpoint\n"); ep->ep_state |= EP_HALTED; status = -EPIPE; break; case COMP_TRB_ERR: xhci_warn(xhci, "WARN: TRB error on endpoint\n"); status = -EILSEQ; break; case COMP_SPLIT_ERR: case COMP_TX_ERR: xhci_dbg(xhci, "Transfer error on endpoint\n"); status = -EPROTO; break; case COMP_BABBLE: xhci_dbg(xhci, "Babble error on endpoint\n"); status = -EOVERFLOW; break; case COMP_DB_ERR: xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); status = -ENOSR; break; case COMP_BW_OVER: xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); break; case COMP_BUFF_OVER: xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); break; case COMP_UNDERRUN: /* * When the Isoch ring is empty, the xHC will generate * a Ring Overrun Event for IN Isoch endpoint or Ring * Underrun Event for OUT Isoch endpoint. */ xhci_dbg(xhci, "underrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Underrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_OVERRUN: xhci_dbg(xhci, "overrun event on endpoint\n"); if (!list_empty(&ep_ring->td_list)) xhci_dbg(xhci, "Overrun Event for slot %d ep %d " "still with TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); goto cleanup; case COMP_DEV_ERR: xhci_warn(xhci, "WARN: detect an incompatible device"); status = -EPROTO; break; case COMP_MISSED_INT: /* * When encounter missed service error, one or more isoc tds * may be missed by xHC. * Set skip flag of the ep_ring; Complete the missed tds as * short transfer when process the ep_ring next time. */ ep->skip = true; xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); goto cleanup; case COMP_PING_ERR: ep->skip = true; xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n"); goto cleanup; default: if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { status = 0; break; } xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n", trb_comp_code); goto cleanup; } do { /* This TRB should be in the TD at the head of this ring's * TD list. */ if (list_empty(&ep_ring->td_list)) { /* * A stopped endpoint may generate an extra completion * event if the device was suspended. Don't print * warnings. */ if (!(trb_comp_code == COMP_STOP || trb_comp_code == COMP_STOP_INVAL)) { xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n", TRB_TO_SLOT_ID(le32_to_cpu(event->flags)), ep_index); xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", (le32_to_cpu(event->flags) & TRB_TYPE_BITMASK)>>10); xhci_print_trb_offsets(xhci, (union xhci_trb *) event); } if (ep->skip) { ep->skip = false; xhci_dbg(xhci, "td_list is empty while skip " "flag set. Clear skip flag.\n"); } ret = 0; goto cleanup; } /* We've skipped all the TDs on the ep ring when ep->skip set */ if (ep->skip && td_num == 0) { ep->skip = false; xhci_dbg(xhci, "All tds on the ep_ring skipped. " "Clear skip flag.\n"); ret = 0; goto cleanup; } td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); if (ep->skip) td_num--; /* Is this a TRB in the currently executing TD? */ event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, event_dma, false); /* * Skip the Force Stopped Event. The event_trb(event_dma) of FSE * is not in the current TD pointed by ep_ring->dequeue because * that the hardware dequeue pointer still at the previous TRB * of the current TD. The previous TRB maybe a Link TD or the * last TRB of the previous TD. The command completion handle * will take care the rest. */ if (!event_seg && (trb_comp_code == COMP_STOP || trb_comp_code == COMP_STOP_INVAL)) { ret = 0; goto cleanup; } if (!event_seg) { if (!ep->skip || !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) { /* Some host controllers give a spurious * successful event after a short transfer. * Ignore it. */ if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) && ep_ring->last_td_was_short) { ep_ring->last_td_was_short = false; ret = 0; goto cleanup; } /* HC is busted, give up! */ xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not " "part of current TD ep_index %d " "comp_code %u\n", ep_index, trb_comp_code); trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue, td->last_trb, event_dma, true); return -ESHUTDOWN; } ret = skip_isoc_td(xhci, td, event, ep, &status); goto cleanup; } if (trb_comp_code == COMP_SHORT_TX) ep_ring->last_td_was_short = true; else ep_ring->last_td_was_short = false; if (ep->skip) { xhci_dbg(xhci, "Found td. Clear skip flag.\n"); ep->skip = false; } event_trb = &event_seg->trbs[(event_dma - event_seg->dma) / sizeof(*event_trb)]; /* * No-op TRB should not trigger interrupts. * If event_trb is a no-op TRB, it means the * corresponding TD has been cancelled. Just ignore * the TD. */ if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) { xhci_dbg(xhci, "event_trb is a no-op TRB. Skip it\n"); goto cleanup; } /* Now update the urb's actual_length and give back to * the core */ if (usb_endpoint_xfer_control(&td->urb->ep->desc)) ret = process_ctrl_td(xhci, td, event_trb, event, ep, &status); else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) ret = process_isoc_td(xhci, td, event_trb, event, ep, &status); else ret = process_bulk_intr_td(xhci, td, event_trb, event, ep, &status); cleanup: handling_skipped_tds = ep->skip && trb_comp_code != COMP_MISSED_INT && trb_comp_code != COMP_PING_ERR; /* * Do not update event ring dequeue pointer if we're in a loop * processing missed tds. */ if (!handling_skipped_tds) inc_deq(xhci, xhci->event_ring); if (ret) { urb = td->urb; urb_priv = urb->hcpriv; xhci_urb_free_priv(urb_priv); usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); if ((urb->actual_length != urb->transfer_buffer_length && (urb->transfer_flags & URB_SHORT_NOT_OK)) || (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc))) xhci_dbg(xhci, "Giveback URB %p, len = %d, " "expected = %d, status = %d\n", urb, urb->actual_length, urb->transfer_buffer_length, status); spin_unlock(&xhci->lock); /* EHCI, UHCI, and OHCI always unconditionally set the * urb->status of an isochronous endpoint to 0. */ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) status = 0; usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status); spin_lock(&xhci->lock); } /* * If ep->skip is set, it means there are missed tds on the * endpoint ring need to take care of. * Process them as short transfer until reach the td pointed by * the event. */ } while (handling_skipped_tds); return 0; } /* * This function handles all OS-owned events on the event ring. It may drop * xhci->lock between event processing (e.g. to pass up port status changes). * Returns >0 for "possibly more events to process" (caller should call again), * otherwise 0 if done. In future, <0 returns should indicate error code. */ static int xhci_handle_event(struct xhci_hcd *xhci) { union xhci_trb *event; int update_ptrs = 1; int ret; if (!xhci->event_ring || !xhci->event_ring->dequeue) { xhci->error_bitmask |= 1 << 1; return 0; } event = xhci->event_ring->dequeue; /* Does the HC or OS own the TRB? */ if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) != xhci->event_ring->cycle_state) { xhci->error_bitmask |= 1 << 2; return 0; } /* * Barrier between reading the TRB_CYCLE (valid) flag above and any * speculative reads of the event's flags/data below. */ rmb(); /* FIXME: Handle more event types. */ switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) { case TRB_TYPE(TRB_COMPLETION): handle_cmd_completion(xhci, &event->event_cmd); break; case TRB_TYPE(TRB_PORT_STATUS): handle_port_status(xhci, event); update_ptrs = 0; break; case TRB_TYPE(TRB_TRANSFER): ret = handle_tx_event(xhci, &event->trans_event); if (ret < 0) xhci->error_bitmask |= 1 << 9; else update_ptrs = 0; break; case TRB_TYPE(TRB_DEV_NOTE): handle_device_notification(xhci, event); break; default: if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >= TRB_TYPE(48)) handle_vendor_event(xhci, event); else xhci->error_bitmask |= 1 << 3; } /* Any of the above functions may drop and re-acquire the lock, so check * to make sure a watchdog timer didn't mark the host as non-responsive. */ if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI host dying, returning from " "event handler.\n"); return 0; } if (update_ptrs) /* Update SW event ring dequeue pointer */ inc_deq(xhci, xhci->event_ring); /* Are there more items on the event ring? Caller will call us again to * check. */ return 1; } /* * xHCI spec says we can get an interrupt, and if the HC has an error condition, * we might get bad data out of the event ring. Section 4.10.2.7 has a list of * indicators of an event TRB error, but we check the status *first* to be safe. */ irqreturn_t xhci_irq(struct usb_hcd *hcd) { struct xhci_hcd *xhci = hcd_to_xhci(hcd); u32 status; u64 temp_64; union xhci_trb *event_ring_deq; dma_addr_t deq; spin_lock(&xhci->lock); /* Check if the xHC generated the interrupt, or the irq is shared */ status = readl(&xhci->op_regs->status); if (status == 0xffffffff) goto hw_died; if (!(status & STS_EINT)) { spin_unlock(&xhci->lock); return IRQ_NONE; } if (status & STS_FATAL) { xhci_warn(xhci, "WARNING: Host System Error\n"); xhci_halt(xhci); hw_died: spin_unlock(&xhci->lock); return IRQ_HANDLED; } /* * Clear the op reg interrupt status first, * so we can receive interrupts from other MSI-X interrupters. * Write 1 to clear the interrupt status. */ status |= STS_EINT; writel(status, &xhci->op_regs->status); /* FIXME when MSI-X is supported and there are multiple vectors */ /* Clear the MSI-X event interrupt status */ if (hcd->irq) { u32 irq_pending; /* Acknowledge the PCI interrupt */ irq_pending = readl(&xhci->ir_set->irq_pending); irq_pending |= IMAN_IP; writel(irq_pending, &xhci->ir_set->irq_pending); } if (xhci->xhc_state & XHCI_STATE_DYING) { xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " "Shouldn't IRQs be disabled?\n"); /* Clear the event handler busy flag (RW1C); * the event ring should be empty. */ temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); xhci_write_64(xhci, temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue); spin_unlock(&xhci->lock); return IRQ_HANDLED; } event_ring_deq = xhci->event_ring->dequeue; /* FIXME this should be a delayed service routine * that clears the EHB. */ while (xhci_handle_event(xhci) > 0) {} temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); /* If necessary, update the HW's version of the event ring deq ptr. */ if (event_ring_deq != xhci->event_ring->dequeue) { deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, xhci->event_ring->dequeue); if (deq == 0) xhci_warn(xhci, "WARN something wrong with SW event " "ring dequeue ptr.\n"); /* Update HC event ring dequeue pointer */ temp_64 &= ERST_PTR_MASK; temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); } /* Clear the event handler busy flag (RW1C); event ring is empty. */ temp_64 |= ERST_EHB; xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); spin_unlock(&xhci->lock); return IRQ_HANDLED; } irqreturn_t xhci_msi_irq(int irq, void *hcd) { return xhci_irq(hcd); } /**** Endpoint Ring Operations ****/ /* * Generic function for queueing a TRB on a ring. * The caller must have checked to make sure there's room on the ring. * * @more_trbs_coming: Will you enqueue more TRBs before calling * prepare_transfer()? */ static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, bool more_trbs_coming, u32 field1, u32 field2, u32 field3, u32 field4) { struct xhci_generic_trb *trb; trb = &ring->enqueue->generic; trb->field[0] = cpu_to_le32(field1); trb->field[1] = cpu_to_le32(field2); trb->field[2] = cpu_to_le32(field3); trb->field[3] = cpu_to_le32(field4); inc_enq(xhci, ring, more_trbs_coming); } /* * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. * FIXME allocate segments if the ring is full. */ static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) { unsigned int num_trbs_needed; /* Make sure the endpoint has been added to xHC schedule */ switch (ep_state) { case EP_STATE_DISABLED: /* * USB core changed config/interfaces without notifying us, * or hardware is reporting the wrong state. */ xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); return -ENOENT; case EP_STATE_ERROR: xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); /* FIXME event handling code for error needs to clear it */ /* XXX not sure if this should be -ENOENT or not */ return -EINVAL; case EP_STATE_HALTED: xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); case EP_STATE_STOPPED: case EP_STATE_RUNNING: break; default: xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); /* * FIXME issue Configure Endpoint command to try to get the HC * back into a known state. */ return -EINVAL; } while (1) { if (room_on_ring(xhci, ep_ring, num_trbs)) break; if (ep_ring == xhci->cmd_ring) { xhci_err(xhci, "Do not support expand command ring\n"); return -ENOMEM; } xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, "ERROR no room on ep ring, try ring expansion"); num_trbs_needed = num_trbs - ep_ring->num_trbs_free; if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed, mem_flags)) { xhci_err(xhci, "Ring expansion failed\n"); return -ENOMEM; } } if (enqueue_is_link_trb(ep_ring)) { struct xhci_ring *ring = ep_ring; union xhci_trb *next; next = ring->enqueue; while (last_trb(xhci, ring, ring->enq_seg, next)) { /* If we're not dealing with 0.95 hardware or isoc rings * on AMD 0.96 host, clear the chain bit. */ if (!xhci_link_trb_quirk(xhci) && !(ring->type == TYPE_ISOC && (xhci->quirks & XHCI_AMD_0x96_HOST))) next->link.control &= cpu_to_le32(~TRB_CHAIN); else next->link.control |= cpu_to_le32(TRB_CHAIN); wmb(); next->link.control ^= cpu_to_le32(TRB_CYCLE); /* Toggle the cycle bit after the last ring segment. */ if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { ring->cycle_state ^= 1; } ring->enq_seg = ring->enq_seg->next; ring->enqueue = ring->enq_seg->trbs; next = ring->enqueue; } } return 0; } static int prepare_transfer(struct xhci_hcd *xhci, struct xhci_virt_device *xdev, unsigned int ep_index, unsigned int stream_id, unsigned int num_trbs, struct urb *urb, unsigned int td_index, gfp_t mem_flags) { int ret; struct urb_priv *urb_priv; struct xhci_td *td; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); if (!ep_ring) { xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", stream_id); return -EINVAL; } ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, num_trbs, mem_flags); if (ret) return ret; urb_priv = urb->hcpriv; td = urb_priv->td[td_index]; INIT_LIST_HEAD(&td->td_list); INIT_LIST_HEAD(&td->cancelled_td_list); if (td_index == 0) { ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb); if (unlikely(ret)) return ret; } td->urb = urb; /* Add this TD to the tail of the endpoint ring's TD list */ list_add_tail(&td->td_list, &ep_ring->td_list); td->start_seg = ep_ring->enq_seg; td->first_trb = ep_ring->enqueue; urb_priv->td[td_index] = td; return 0; } static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) { int num_sgs, num_trbs, running_total, temp, i; struct scatterlist *sg; sg = NULL; num_sgs = urb->num_mapped_sgs; temp = urb->transfer_buffer_length; num_trbs = 0; for_each_sg(urb->sg, sg, num_sgs, i) { unsigned int len = sg_dma_len(sg); /* Scatter gather list entries may cross 64KB boundaries */ running_total = TRB_MAX_BUFF_SIZE - (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1)); running_total &= TRB_MAX_BUFF_SIZE - 1; if (running_total != 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < sg_dma_len(sg) && running_total < temp) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } len = min_t(int, len, temp); temp -= len; if (temp == 0) break; } return num_trbs; } static void check_trb_math(struct urb *urb, int num_trbs, int running_total) { if (num_trbs != 0) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " "TRBs, %d left\n", __func__, urb->ep->desc.bEndpointAddress, num_trbs); if (running_total != urb->transfer_buffer_length) dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " "queued %#x (%d), asked for %#x (%d)\n", __func__, urb->ep->desc.bEndpointAddress, running_total, running_total, urb->transfer_buffer_length, urb->transfer_buffer_length); } static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, unsigned int ep_index, unsigned int stream_id, int start_cycle, struct xhci_generic_trb *start_trb) { /* * Pass all the TRBs to the hardware at once and make sure this write * isn't reordered. */ wmb(); if (start_cycle) start_trb->field[3] |= cpu_to_le32(start_cycle); else start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE); xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); } /* * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD * (comprised of sg list entries) can take several service intervals to * transmit. */ int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index); int xhci_interval; int ep_interval; xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { dev_dbg_ratelimited(&urb->dev->dev, "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index); } /* * For xHCI 1.0 host controllers, TD size is the number of max packet sized * packets remaining in the TD (*not* including this TRB). * * Total TD packet count = total_packet_count = * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize) * * Packets transferred up to and including this TRB = packets_transferred = * rounddown(total bytes transferred including this TRB / wMaxPacketSize) * * TD size = total_packet_count - packets_transferred * * For xHCI 0.96 and older, TD size field should be the remaining bytes * including this TRB, right shifted by 10 * * For all hosts it must fit in bits 21:17, so it can't be bigger than 31. * This is taken care of in the TRB_TD_SIZE() macro * * The last TRB in a TD must have the TD size set to zero. */ static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred, int trb_buff_len, unsigned int td_total_len, struct urb *urb, unsigned int num_trbs_left) { u32 maxp, total_packet_count; if (xhci->hci_version < 0x100) return ((td_total_len - transferred) >> 10); maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc)); total_packet_count = DIV_ROUND_UP(td_total_len, maxp); /* One TRB with a zero-length data packet. */ if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) || trb_buff_len == td_total_len) return 0; /* Queueing functions don't count the current TRB into transferred */ return (total_packet_count - ((transferred + trb_buff_len) / maxp)); } static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; unsigned int num_trbs; struct urb_priv *urb_priv; struct xhci_td *td; struct scatterlist *sg; int num_sgs; int trb_buff_len, this_sg_len, running_total, ret; unsigned int total_packet_count; bool zero_length_needed; bool first_trb; int last_trb_num; u64 addr; bool more_trbs_coming; struct xhci_generic_trb *start_trb; int start_cycle; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; num_trbs = count_sg_trbs_needed(xhci, urb); num_sgs = urb->num_mapped_sgs; total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, usb_endpoint_maxp(&urb->ep->desc)); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; /* Deal with URB_ZERO_PACKET - need one more td/trb */ zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length == 2; if (zero_length_needed) { num_trbs++; xhci_dbg(xhci, "Creating zero length td.\n"); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, 1, urb, 1, mem_flags); if (ret < 0) return ret; } td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; /* * How much data is in the first TRB? * * There are three forces at work for TRB buffer pointers and lengths: * 1. We don't want to walk off the end of this sg-list entry buffer. * 2. The transfer length that the driver requested may be smaller than * the amount of memory allocated for this scatter-gather list. * 3. TRBs buffers can't cross 64KB boundaries. */ sg = urb->sg; addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length; first_trb = true; last_trb_num = zero_length_needed ? 2 : 1; /* Queue the first TRB, even if it's zero-length */ do { u32 field = 0; u32 length_field = 0; u32 remainder = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > last_trb_num) { field |= TRB_CHAIN; } else if (num_trbs == last_trb_num) { td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } else if (zero_length_needed && num_trbs == 1) { trb_buff_len = 0; urb_priv->td[1]->last_trb = ep_ring->enqueue; field |= TRB_IOC; } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; if (TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) { xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), (unsigned int) addr + trb_buff_len); } /* Set the TRB length, TD size, and interrupter fields. */ remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, urb->transfer_buffer_length, urb, num_trbs - 1); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); if (num_trbs > 1) more_trbs_coming = true; else more_trbs_coming = false; queue_trb(xhci, ep_ring, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer -- * Are we done queueing all the TRBs for this sg entry? */ this_sg_len -= trb_buff_len; if (this_sg_len == 0) { --num_sgs; if (num_sgs == 0) break; sg = sg_next(sg); addr = (u64) sg_dma_address(sg); this_sg_len = sg_dma_len(sg); } else { addr += trb_buff_len; } trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1)); trb_buff_len = min_t(int, trb_buff_len, this_sg_len); if (running_total + trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length - running_total; } while (num_trbs > 0); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* This is very similar to what ehci-q.c qtd_fill() does */ int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_trbs; struct xhci_generic_trb *start_trb; bool first_trb; int last_trb_num; bool more_trbs_coming; bool zero_length_needed; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, ret; unsigned int total_packet_count; u64 addr; if (urb->num_sgs) return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; num_trbs = 0; /* How much data is (potentially) left before the 64KB boundary? */ running_total = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); running_total &= TRB_MAX_BUFF_SIZE - 1; /* If there's some data on this 64KB chunk, or we have to send a * zero-length transfer, we need at least one TRB */ if (running_total != 0 || urb->transfer_buffer_length == 0) num_trbs++; /* How many more 64KB chunks to transfer, how many more TRBs? */ while (running_total < urb->transfer_buffer_length) { num_trbs++; running_total += TRB_MAX_BUFF_SIZE; } ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; /* Deal with URB_ZERO_PACKET - need one more td/trb */ zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET && urb_priv->length == 2; if (zero_length_needed) { num_trbs++; xhci_dbg(xhci, "Creating zero length td.\n"); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, 1, urb, 1, mem_flags); if (ret < 0) return ret; } td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; running_total = 0; total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length, usb_endpoint_maxp(&urb->ep->desc)); /* How much data is in the first TRB? */ addr = (u64) urb->transfer_dma; trb_buff_len = TRB_MAX_BUFF_SIZE - (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1)); if (trb_buff_len > urb->transfer_buffer_length) trb_buff_len = urb->transfer_buffer_length; first_trb = true; last_trb_num = zero_length_needed ? 2 : 1; /* Queue the first TRB, even if it's zero-length */ do { u32 remainder = 0; field = 0; /* Don't change the cycle bit of the first TRB until later */ if (first_trb) { first_trb = false; if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; /* Chain all the TRBs together; clear the chain bit in the last * TRB to indicate it's the last TRB in the chain. */ if (num_trbs > last_trb_num) { field |= TRB_CHAIN; } else if (num_trbs == last_trb_num) { td->last_trb = ep_ring->enqueue; field |= TRB_IOC; } else if (zero_length_needed && num_trbs == 1) { trb_buff_len = 0; urb_priv->td[1]->last_trb = ep_ring->enqueue; field |= TRB_IOC; } /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Set the TRB length, TD size, and interrupter fields. */ remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, urb->transfer_buffer_length, urb, num_trbs - 1); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); if (num_trbs > 1) more_trbs_coming = true; else more_trbs_coming = false; queue_trb(xhci, ep_ring, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field | TRB_TYPE(TRB_NORMAL)); --num_trbs; running_total += trb_buff_len; /* Calculate length for next transfer */ addr += trb_buff_len; trb_buff_len = urb->transfer_buffer_length - running_total; if (trb_buff_len > TRB_MAX_BUFF_SIZE) trb_buff_len = TRB_MAX_BUFF_SIZE; } while (num_trbs > 0); check_trb_math(urb, num_trbs, running_total); giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; } /* Caller must have locked xhci->lock */ int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; int num_trbs; int ret; struct usb_ctrlrequest *setup; struct xhci_generic_trb *start_trb; int start_cycle; u32 field, length_field, remainder; struct urb_priv *urb_priv; struct xhci_td *td; ep_ring = xhci_urb_to_transfer_ring(xhci, urb); if (!ep_ring) return -EINVAL; /* * Need to copy setup packet into setup TRB, so we can't use the setup * DMA address. */ if (!urb->setup_packet) return -EINVAL; /* 1 TRB for setup, 1 for status */ num_trbs = 2; /* * Don't need to check if we need additional event data and normal TRBs, * since data in control transfers will never get bigger than 16MB * XXX: can we get a buffer that crosses 64KB boundaries? */ if (urb->transfer_buffer_length > 0) num_trbs++; ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, num_trbs, urb, 0, mem_flags); if (ret < 0) return ret; urb_priv = urb->hcpriv; td = urb_priv->td[0]; /* * Don't give the first TRB to the hardware (by toggling the cycle bit) * until we've finished creating all the other TRBs. The ring's cycle * state may change as we enqueue the other TRBs, so save it too. */ start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; /* Queue setup TRB - see section 6.4.1.2.1 */ /* FIXME better way to translate setup_packet into two u32 fields? */ setup = (struct usb_ctrlrequest *) urb->setup_packet; field = 0; field |= TRB_IDT | TRB_TYPE(TRB_SETUP); if (start_cycle == 0) field |= 0x1; /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */ if (xhci->hci_version >= 0x100) { if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_TX_TYPE(TRB_DATA_IN); else field |= TRB_TX_TYPE(TRB_DATA_OUT); } } queue_trb(xhci, ep_ring, true, setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16, le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16, TRB_LEN(8) | TRB_INTR_TARGET(0), /* Immediate data in pointer */ field); /* If there's data, queue data TRBs */ /* Only set interrupt on short packet for IN endpoints */ if (usb_urb_dir_in(urb)) field = TRB_ISP | TRB_TYPE(TRB_DATA); else field = TRB_TYPE(TRB_DATA); remainder = xhci_td_remainder(xhci, 0, urb->transfer_buffer_length, urb->transfer_buffer_length, urb, 1); length_field = TRB_LEN(urb->transfer_buffer_length) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); if (urb->transfer_buffer_length > 0) { if (setup->bRequestType & USB_DIR_IN) field |= TRB_DIR_IN; queue_trb(xhci, ep_ring, true, lower_32_bits(urb->transfer_dma), upper_32_bits(urb->transfer_dma), length_field, field | ep_ring->cycle_state); } /* Save the DMA address of the last TRB in the TD */ td->last_trb = ep_ring->enqueue; /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ /* If the device sent data, the status stage is an OUT transfer */ if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) field = 0; else field = TRB_DIR_IN; queue_trb(xhci, ep_ring, false, 0, 0, TRB_INTR_TARGET(0), /* Event on completion */ field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); giveback_first_trb(xhci, slot_id, ep_index, 0, start_cycle, start_trb); return 0; } static int count_isoc_trbs_needed(struct xhci_hcd *xhci, struct urb *urb, int i) { int num_trbs = 0; u64 addr, td_len; addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); td_len = urb->iso_frame_desc[i].length; num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)), TRB_MAX_BUFF_SIZE); if (num_trbs == 0) num_trbs++; return num_trbs; } /* * The transfer burst count field of the isochronous TRB defines the number of * bursts that are required to move all packets in this TD. Only SuperSpeed * devices can burst up to bMaxBurst number of packets per service interval. * This field is zero based, meaning a value of zero in the field means one * burst. Basically, for everything but SuperSpeed devices, this field will be * zero. Only xHCI 1.0 host controllers support this field. */ static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci, struct usb_device *udev, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER) return 0; max_burst = urb->ep->ss_ep_comp.bMaxBurst; return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1; } /* * Returns the number of packets in the last "burst" of packets. This field is * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so * the last burst packet count is equal to the total number of packets in the * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst * must contain (bMaxBurst + 1) number of packets, but the last burst can * contain 1 to (bMaxBurst + 1) packets. */ static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci, struct usb_device *udev, struct urb *urb, unsigned int total_packet_count) { unsigned int max_burst; unsigned int residue; if (xhci->hci_version < 0x100) return 0; switch (udev->speed) { case USB_SPEED_SUPER: /* bMaxBurst is zero based: 0 means 1 packet per burst */ max_burst = urb->ep->ss_ep_comp.bMaxBurst; residue = total_packet_count % (max_burst + 1); /* If residue is zero, the last burst contains (max_burst + 1) * number of packets, but the TLBPC field is zero-based. */ if (residue == 0) return max_burst; return residue - 1; default: if (total_packet_count == 0) return 0; return total_packet_count - 1; } } /* * Calculates Frame ID field of the isochronous TRB identifies the * target frame that the Interval associated with this Isochronous * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec. * * Returns actual frame id on success, negative value on error. */ static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci, struct urb *urb, int index) { int start_frame, ist, ret = 0; int start_frame_id, end_frame_id, current_frame_id; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) start_frame = urb->start_frame + index * urb->interval; else start_frame = (urb->start_frame + index * urb->interval) >> 3; /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2): * * If bit [3] of IST is cleared to '0', software can add a TRB no * later than IST[2:0] Microframes before that TRB is scheduled to * be executed. * If bit [3] of IST is set to '1', software can add a TRB no later * than IST[2:0] Frames before that TRB is scheduled to be executed. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; /* Software shall not schedule an Isoch TD with a Frame ID value that * is less than the Start Frame ID or greater than the End Frame ID, * where: * * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048 * * Both the End Frame ID and Start Frame ID values are calculated * in microframes. When software determines the valid Frame ID value; * The End Frame ID value should be rounded down to the nearest Frame * boundary, and the Start Frame ID value should be rounded up to the * nearest Frame boundary. */ current_frame_id = readl(&xhci->run_regs->microframe_index); start_frame_id = roundup(current_frame_id + ist + 1, 8); end_frame_id = rounddown(current_frame_id + 895 * 8, 8); start_frame &= 0x7ff; start_frame_id = (start_frame_id >> 3) & 0x7ff; end_frame_id = (end_frame_id >> 3) & 0x7ff; xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n", __func__, index, readl(&xhci->run_regs->microframe_index), start_frame_id, end_frame_id, start_frame); if (start_frame_id < end_frame_id) { if (start_frame > end_frame_id || start_frame < start_frame_id) ret = -EINVAL; } else if (start_frame_id > end_frame_id) { if ((start_frame > end_frame_id && start_frame < start_frame_id)) ret = -EINVAL; } else { ret = -EINVAL; } if (index == 0) { if (ret == -EINVAL || start_frame == start_frame_id) { start_frame = start_frame_id + 1; if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->start_frame = start_frame; else urb->start_frame = start_frame << 3; ret = 0; } } if (ret) { xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n", start_frame, current_frame_id, index, start_frame_id, end_frame_id); xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n"); return ret; } return start_frame; } /* This is for isoc transfer */ static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_ring *ep_ring; struct urb_priv *urb_priv; struct xhci_td *td; int num_tds, trbs_per_td; struct xhci_generic_trb *start_trb; bool first_trb; int start_cycle; u32 field, length_field; int running_total, trb_buff_len, td_len, td_remain_len, ret; u64 start_addr, addr; int i, j; bool more_trbs_coming; struct xhci_virt_ep *xep; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; num_tds = urb->number_of_packets; if (num_tds < 1) { xhci_dbg(xhci, "Isoc URB with zero packets?\n"); return -EINVAL; } start_addr = (u64) urb->transfer_dma; start_trb = &ep_ring->enqueue->generic; start_cycle = ep_ring->cycle_state; urb_priv = urb->hcpriv; /* Queue the first TRB, even if it's zero-length */ for (i = 0; i < num_tds; i++) { unsigned int total_packet_count; unsigned int burst_count; unsigned int residue; first_trb = true; running_total = 0; addr = start_addr + urb->iso_frame_desc[i].offset; td_len = urb->iso_frame_desc[i].length; td_remain_len = td_len; total_packet_count = DIV_ROUND_UP(td_len, GET_MAX_PACKET( usb_endpoint_maxp(&urb->ep->desc))); /* A zero-length transfer still involves at least one packet. */ if (total_packet_count == 0) total_packet_count++; burst_count = xhci_get_burst_count(xhci, urb->dev, urb, total_packet_count); residue = xhci_get_last_burst_packet_count(xhci, urb->dev, urb, total_packet_count); trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, urb->stream_id, trbs_per_td, urb, i, mem_flags); if (ret < 0) { if (i == 0) return ret; goto cleanup; } td = urb_priv->td[i]; for (j = 0; j < trbs_per_td; j++) { int frame_id = 0; u32 remainder = 0; field = 0; if (first_trb) { field = TRB_TBC(burst_count) | TRB_TLBPC(residue); /* Queue the isoc TRB */ field |= TRB_TYPE(TRB_ISOC); /* Calculate Frame ID and SIA fields */ if (!(urb->transfer_flags & URB_ISO_ASAP) && HCC_CFC(xhci->hcc_params)) { frame_id = xhci_get_isoc_frame_id(xhci, urb, i); if (frame_id >= 0) field |= TRB_FRAME_ID(frame_id); else field |= TRB_SIA; } else field |= TRB_SIA; if (i == 0) { if (start_cycle == 0) field |= 0x1; } else field |= ep_ring->cycle_state; first_trb = false; } else { /* Queue other normal TRBs */ field |= TRB_TYPE(TRB_NORMAL); field |= ep_ring->cycle_state; } /* Only set interrupt on short packet for IN EPs */ if (usb_urb_dir_in(urb)) field |= TRB_ISP; /* Chain all the TRBs together; clear the chain bit in * the last TRB to indicate it's the last TRB in the * chain. */ if (j < trbs_per_td - 1) { field |= TRB_CHAIN; more_trbs_coming = true; } else { td->last_trb = ep_ring->enqueue; field |= TRB_IOC; if (xhci->hci_version == 0x100 && !(xhci->quirks & XHCI_AVOID_BEI)) { /* Set BEI bit except for the last td */ if (i < num_tds - 1) field |= TRB_BEI; } more_trbs_coming = false; } /* Calculate TRB length */ trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); if (trb_buff_len > td_remain_len) trb_buff_len = td_remain_len; /* Set the TRB length, TD size, & interrupter fields. */ remainder = xhci_td_remainder(xhci, running_total, trb_buff_len, td_len, urb, trbs_per_td - j - 1); length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0); queue_trb(xhci, ep_ring, more_trbs_coming, lower_32_bits(addr), upper_32_bits(addr), length_field, field); running_total += trb_buff_len; addr += trb_buff_len; td_remain_len -= trb_buff_len; } /* Check TD length */ if (running_total != td_len) { xhci_err(xhci, "ISOC TD length unmatch\n"); ret = -EINVAL; goto cleanup; } } /* store the next frame id */ if (HCC_CFC(xhci->hcc_params)) xep->next_frame_id = urb->start_frame + num_tds * urb->interval; if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) { if (xhci->quirks & XHCI_AMD_PLL_FIX) usb_amd_quirk_pll_disable(); } xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++; giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, start_cycle, start_trb); return 0; cleanup: /* Clean up a partially enqueued isoc transfer. */ for (i--; i >= 0; i--) list_del_init(&urb_priv->td[i]->td_list); /* Use the first TD as a temporary variable to turn the TDs we've queued * into No-ops with a software-owned cycle bit. That way the hardware * won't accidentally start executing bogus TDs when we partially * overwrite them. td->first_trb and td->start_seg are already set. */ urb_priv->td[0]->last_trb = ep_ring->enqueue; /* Every TRB except the first & last will have its cycle bit flipped. */ td_to_noop(xhci, ep_ring, urb_priv->td[0], true); /* Reset the ring enqueue back to the first TRB and its cycle bit. */ ep_ring->enqueue = urb_priv->td[0]->first_trb; ep_ring->enq_seg = urb_priv->td[0]->start_seg; ep_ring->cycle_state = start_cycle; ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp; usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb); return ret; } /* * Check transfer ring to guarantee there is enough room for the urb. * Update ISO URB start_frame and interval. * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or * Contiguous Frame ID is not supported by HC. */ int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb, int slot_id, unsigned int ep_index) { struct xhci_virt_device *xdev; struct xhci_ring *ep_ring; struct xhci_ep_ctx *ep_ctx; int start_frame; int xhci_interval; int ep_interval; int num_tds, num_trbs, i; int ret; struct xhci_virt_ep *xep; int ist; xdev = xhci->devs[slot_id]; xep = &xhci->devs[slot_id]->eps[ep_index]; ep_ring = xdev->eps[ep_index].ring; ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); num_trbs = 0; num_tds = urb->number_of_packets; for (i = 0; i < num_tds; i++) num_trbs += count_isoc_trbs_needed(xhci, urb, i); /* Check the ring to guarantee there is enough room for the whole urb. * Do not insert any td of the urb to the ring if the check failed. */ ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK, num_trbs, mem_flags); if (ret) return ret; /* * Check interval value. This should be done before we start to * calculate the start frame value. */ xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info)); ep_interval = urb->interval; /* Convert to microframes */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) ep_interval *= 8; /* FIXME change this to a warning and a suggestion to use the new API * to set the polling interval (once the API is added). */ if (xhci_interval != ep_interval) { dev_dbg_ratelimited(&urb->dev->dev, "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n", ep_interval, ep_interval == 1 ? "" : "s", xhci_interval, xhci_interval == 1 ? "" : "s"); urb->interval = xhci_interval; /* Convert back to frames for LS/FS devices */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) urb->interval /= 8; } /* Calculate the start frame and put it in urb->start_frame. */ if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) { if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) == EP_STATE_RUNNING) { urb->start_frame = xep->next_frame_id; goto skip_start_over; } } start_frame = readl(&xhci->run_regs->microframe_index); start_frame &= 0x3fff; /* * Round up to the next frame and consider the time before trb really * gets scheduled by hardare. */ ist = HCS_IST(xhci->hcs_params2) & 0x7; if (HCS_IST(xhci->hcs_params2) & (1 << 3)) ist <<= 3; start_frame += ist + XHCI_CFC_DELAY; start_frame = roundup(start_frame, 8); /* * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT * is greate than 8 microframes. */ if (urb->dev->speed == USB_SPEED_LOW || urb->dev->speed == USB_SPEED_FULL) { start_frame = roundup(start_frame, urb->interval << 3); urb->start_frame = start_frame >> 3; } else { start_frame = roundup(start_frame, urb->interval); urb->start_frame = start_frame; } skip_start_over: ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free; return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index); } /**** Command Ring Operations ****/ /* Generic function for queueing a command TRB on the command ring. * Check to make sure there's room on the command ring for one command TRB. * Also check that there's room reserved for commands that must not fail. * If this is a command that must not fail, meaning command_must_succeed = TRUE, * then only check for the number of reserved spots. * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB * because the command event handler may want to resubmit a failed command. */ static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4, bool command_must_succeed) { int reserved_trbs = xhci->cmd_ring_reserved_trbs; int ret; if (xhci->xhc_state) { xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n"); return -ESHUTDOWN; } if (!command_must_succeed) reserved_trbs++; ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, reserved_trbs, GFP_ATOMIC); if (ret < 0) { xhci_err(xhci, "ERR: No room for command on command ring\n"); if (command_must_succeed) xhci_err(xhci, "ERR: Reserved TRB counting for " "unfailable commands failed.\n"); return ret; } cmd->command_trb = xhci->cmd_ring->enqueue; list_add_tail(&cmd->cmd_list, &xhci->cmd_list); /* if there are no other commands queued we start the timeout timer */ if (xhci->cmd_list.next == &cmd->cmd_list && !timer_pending(&xhci->cmd_timer)) { xhci->current_cmd = cmd; mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT); } queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3, field4 | xhci->cmd_ring->cycle_state); return 0; } /* Queue a slot enable or disable request on the command ring */ int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 trb_type, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue an address device command TRB */ int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id) | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false); } int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 field1, u32 field2, u32 field3, u32 field4) { return queue_command(xhci, cmd, field1, field2, field3, field4, false); } /* Queue a reset device command TRB */ int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd, u32 slot_id) { return queue_command(xhci, cmd, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), false); } /* Queue a configure endpoint command TRB */ int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* Queue an evaluate context command TRB */ int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd, dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed) { return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr), upper_32_bits(in_ctx_ptr), 0, TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), command_must_succeed); } /* * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop * activity on an endpoint that is about to be suspended. */ int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index, int suspend) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_STOP_RING); u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type | trb_suspend, false); } /* Set Transfer Ring Dequeue Pointer command */ void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, unsigned int slot_id, unsigned int ep_index, unsigned int stream_id, struct xhci_dequeue_state *deq_state) { dma_addr_t addr; u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); u32 trb_sct = 0; u32 type = TRB_TYPE(TRB_SET_DEQ); struct xhci_virt_ep *ep; struct xhci_command *cmd; int ret; xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u", deq_state->new_deq_seg, (unsigned long long)deq_state->new_deq_seg->dma, deq_state->new_deq_ptr, (unsigned long long)xhci_trb_virt_to_dma( deq_state->new_deq_seg, deq_state->new_deq_ptr), deq_state->new_cycle_state); addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr); if (addr == 0) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", deq_state->new_deq_seg, deq_state->new_deq_ptr); return; } ep = &xhci->devs[slot_id]->eps[ep_index]; if ((ep->ep_state & SET_DEQ_PENDING)) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n"); return; } /* This function gets called from contexts where it cannot sleep */ cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC); if (!cmd) { xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n"); return; } ep->queued_deq_seg = deq_state->new_deq_seg; ep->queued_deq_ptr = deq_state->new_deq_ptr; if (stream_id) trb_sct = SCT_FOR_TRB(SCT_PRI_TR); ret = queue_command(xhci, cmd, lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state, upper_32_bits(addr), trb_stream_id, trb_slot_id | trb_ep_index | type, false); if (ret < 0) { xhci_free_command(xhci, cmd); return; } /* Stop the TD queueing code from ringing the doorbell until * this command completes. The HC won't set the dequeue pointer * if the ring is running, and ringing the doorbell starts the * ring running. */ ep->ep_state |= SET_DEQ_PENDING; } int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd, int slot_id, unsigned int ep_index) { u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); u32 type = TRB_TYPE(TRB_RESET_EP); return queue_command(xhci, cmd, 0, 0, 0, trb_slot_id | trb_ep_index | type, false); }