summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/iio/adc/mcp3422.c
blob: 3555122008b4408950f10e860eff61647dcc71a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
/*
 * mcp3422.c - driver for the Microchip mcp3422/3/4/6/7/8 chip family
 *
 * Copyright (C) 2013, Angelo Compagnucci
 * Author: Angelo Compagnucci <angelo.compagnucci@gmail.com>
 *
 * Datasheet: http://ww1.microchip.com/downloads/en/devicedoc/22088b.pdf
 *            http://ww1.microchip.com/downloads/en/DeviceDoc/22226a.pdf
 *
 * This driver exports the value of analog input voltage to sysfs, the
 * voltage unit is nV.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/of.h>

#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>

/* Masks */
#define MCP3422_CHANNEL_MASK	0x60
#define MCP3422_PGA_MASK	0x03
#define MCP3422_SRATE_MASK	0x0C
#define MCP3422_SRATE_240	0x0
#define MCP3422_SRATE_60	0x1
#define MCP3422_SRATE_15	0x2
#define MCP3422_SRATE_3	0x3
#define MCP3422_PGA_1	0
#define MCP3422_PGA_2	1
#define MCP3422_PGA_4	2
#define MCP3422_PGA_8	3
#define MCP3422_CONT_SAMPLING	0x10

#define MCP3422_CHANNEL(config)	(((config) & MCP3422_CHANNEL_MASK) >> 5)
#define MCP3422_PGA(config)	((config) & MCP3422_PGA_MASK)
#define MCP3422_SAMPLE_RATE(config)	(((config) & MCP3422_SRATE_MASK) >> 2)

#define MCP3422_CHANNEL_VALUE(value) (((value) << 5) & MCP3422_CHANNEL_MASK)
#define MCP3422_PGA_VALUE(value) ((value) & MCP3422_PGA_MASK)
#define MCP3422_SAMPLE_RATE_VALUE(value) ((value << 2) & MCP3422_SRATE_MASK)

#define MCP3422_CHAN(_index) \
	{ \
		.type = IIO_VOLTAGE, \
		.indexed = 1, \
		.channel = _index, \
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
				| BIT(IIO_CHAN_INFO_SCALE), \
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
	}

static const int mcp3422_scales[4][4] = {
	{ 1000000, 500000, 250000, 125000 },
	{ 250000 , 125000, 62500 , 31250  },
	{ 62500  , 31250 , 15625 , 7812   },
	{ 15625  , 7812  , 3906  , 1953   } };

/* Constant msleep times for data acquisitions */
static const int mcp3422_read_times[4] = {
	[MCP3422_SRATE_240] = 1000 / 240,
	[MCP3422_SRATE_60] = 1000 / 60,
	[MCP3422_SRATE_15] = 1000 / 15,
	[MCP3422_SRATE_3] = 1000 / 3 };

/* sample rates to integer conversion table */
static const int mcp3422_sample_rates[4] = {
	[MCP3422_SRATE_240] = 240,
	[MCP3422_SRATE_60] = 60,
	[MCP3422_SRATE_15] = 15,
	[MCP3422_SRATE_3] = 3 };

/* sample rates to sign extension table */
static const int mcp3422_sign_extend[4] = {
	[MCP3422_SRATE_240] = 11,
	[MCP3422_SRATE_60] = 13,
	[MCP3422_SRATE_15] = 15,
	[MCP3422_SRATE_3] = 17 };

/* Client data (each client gets its own) */
struct mcp3422 {
	struct i2c_client *i2c;
	u8 id;
	u8 config;
	u8 pga[4];
	struct mutex lock;
};

static int mcp3422_update_config(struct mcp3422 *adc, u8 newconfig)
{
	int ret;

	mutex_lock(&adc->lock);

	ret = i2c_master_send(adc->i2c, &newconfig, 1);
	if (ret > 0) {
		adc->config = newconfig;
		ret = 0;
	}

	mutex_unlock(&adc->lock);

	return ret;
}

static int mcp3422_read(struct mcp3422 *adc, int *value, u8 *config)
{
	int ret = 0;
	u8 sample_rate = MCP3422_SAMPLE_RATE(adc->config);
	u8 buf[4] = {0, 0, 0, 0};
	u32 temp;

	if (sample_rate == MCP3422_SRATE_3) {
		ret = i2c_master_recv(adc->i2c, buf, 4);
		temp = buf[0] << 16 | buf[1] << 8 | buf[2];
		*config = buf[3];
	} else {
		ret = i2c_master_recv(adc->i2c, buf, 3);
		temp = buf[0] << 8 | buf[1];
		*config = buf[2];
	}

	*value = sign_extend32(temp, mcp3422_sign_extend[sample_rate]);

	return ret;
}

static int mcp3422_read_channel(struct mcp3422 *adc,
				struct iio_chan_spec const *channel, int *value)
{
	int ret;
	u8 config;
	u8 req_channel = channel->channel;

	if (req_channel != MCP3422_CHANNEL(adc->config)) {
		config = adc->config;
		config &= ~MCP3422_CHANNEL_MASK;
		config |= MCP3422_CHANNEL_VALUE(req_channel);
		config &= ~MCP3422_PGA_MASK;
		config |= MCP3422_PGA_VALUE(adc->pga[req_channel]);
		ret = mcp3422_update_config(adc, config);
		if (ret < 0)
			return ret;
		msleep(mcp3422_read_times[MCP3422_SAMPLE_RATE(adc->config)]);
	}

	return mcp3422_read(adc, value, &config);
}

static int mcp3422_read_raw(struct iio_dev *iio,
			struct iio_chan_spec const *channel, int *val1,
			int *val2, long mask)
{
	struct mcp3422 *adc = iio_priv(iio);
	int err;

	u8 sample_rate = MCP3422_SAMPLE_RATE(adc->config);
	u8 pga		 = MCP3422_PGA(adc->config);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		err = mcp3422_read_channel(adc, channel, val1);
		if (err < 0)
			return -EINVAL;
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_SCALE:

		*val1 = 0;
		*val2 = mcp3422_scales[sample_rate][pga];
		return IIO_VAL_INT_PLUS_NANO;

	case IIO_CHAN_INFO_SAMP_FREQ:
		*val1 = mcp3422_sample_rates[MCP3422_SAMPLE_RATE(adc->config)];
		return IIO_VAL_INT;

	default:
		break;
	}

	return -EINVAL;
}

static int mcp3422_write_raw(struct iio_dev *iio,
			struct iio_chan_spec const *channel, int val1,
			int val2, long mask)
{
	struct mcp3422 *adc = iio_priv(iio);
	u8 temp;
	u8 config = adc->config;
	u8 req_channel = channel->channel;
	u8 sample_rate = MCP3422_SAMPLE_RATE(config);
	u8 i;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		if (val1 != 0)
			return -EINVAL;

		for (i = 0; i < ARRAY_SIZE(mcp3422_scales[0]); i++) {
			if (val2 == mcp3422_scales[sample_rate][i]) {
				adc->pga[req_channel] = i;

				config &= ~MCP3422_CHANNEL_MASK;
				config |= MCP3422_CHANNEL_VALUE(req_channel);
				config &= ~MCP3422_PGA_MASK;
				config |= MCP3422_PGA_VALUE(adc->pga[req_channel]);

				return mcp3422_update_config(adc, config);
			}
		}
		return -EINVAL;

	case IIO_CHAN_INFO_SAMP_FREQ:
		switch (val1) {
		case 240:
			temp = MCP3422_SRATE_240;
			break;
		case 60:
			temp = MCP3422_SRATE_60;
			break;
		case 15:
			temp = MCP3422_SRATE_15;
			break;
		case 3:
			if (adc->id > 4)
				return -EINVAL;
			temp = MCP3422_SRATE_3;
			break;
		default:
			return -EINVAL;
		}

		config &= ~MCP3422_CHANNEL_MASK;
		config |= MCP3422_CHANNEL_VALUE(req_channel);
		config &= ~MCP3422_SRATE_MASK;
		config |= MCP3422_SAMPLE_RATE_VALUE(temp);

		return mcp3422_update_config(adc, config);

	default:
		break;
	}

	return -EINVAL;
}

static int mcp3422_write_raw_get_fmt(struct iio_dev *indio_dev,
		struct iio_chan_spec const *chan, long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		return IIO_VAL_INT_PLUS_NANO;
	case IIO_CHAN_INFO_SAMP_FREQ:
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}

static ssize_t mcp3422_show_samp_freqs(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mcp3422 *adc = iio_priv(dev_to_iio_dev(dev));

	if (adc->id > 4)
		return sprintf(buf, "240 60 15\n");

	return sprintf(buf, "240 60 15 3\n");
}

static ssize_t mcp3422_show_scales(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct mcp3422 *adc = iio_priv(dev_to_iio_dev(dev));
	u8 sample_rate = MCP3422_SAMPLE_RATE(adc->config);

	return sprintf(buf, "0.%09u 0.%09u 0.%09u 0.%09u\n",
		mcp3422_scales[sample_rate][0],
		mcp3422_scales[sample_rate][1],
		mcp3422_scales[sample_rate][2],
		mcp3422_scales[sample_rate][3]);
}

static IIO_DEVICE_ATTR(sampling_frequency_available, S_IRUGO,
		mcp3422_show_samp_freqs, NULL, 0);
static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO,
		mcp3422_show_scales, NULL, 0);

static struct attribute *mcp3422_attributes[] = {
	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
	&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
	NULL,
};

static const struct attribute_group mcp3422_attribute_group = {
	.attrs = mcp3422_attributes,
};

static const struct iio_chan_spec mcp3422_channels[] = {
	MCP3422_CHAN(0),
	MCP3422_CHAN(1),
};

static const struct iio_chan_spec mcp3424_channels[] = {
	MCP3422_CHAN(0),
	MCP3422_CHAN(1),
	MCP3422_CHAN(2),
	MCP3422_CHAN(3),
};

static const struct iio_info mcp3422_info = {
	.read_raw = mcp3422_read_raw,
	.write_raw = mcp3422_write_raw,
	.write_raw_get_fmt = mcp3422_write_raw_get_fmt,
	.attrs = &mcp3422_attribute_group,
	.driver_module = THIS_MODULE,
};

static int mcp3422_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
{
	struct iio_dev *indio_dev;
	struct mcp3422 *adc;
	int err;
	u8 config;

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
		return -ENODEV;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*adc));
	if (!indio_dev)
		return -ENOMEM;

	adc = iio_priv(indio_dev);
	adc->i2c = client;
	adc->id = (u8)(id->driver_data);

	mutex_init(&adc->lock);

	indio_dev->dev.parent = &client->dev;
	indio_dev->name = dev_name(&client->dev);
	indio_dev->modes = INDIO_DIRECT_MODE;
	indio_dev->info = &mcp3422_info;

	switch (adc->id) {
	case 2:
	case 3:
	case 6:
	case 7:
		indio_dev->channels = mcp3422_channels;
		indio_dev->num_channels = ARRAY_SIZE(mcp3422_channels);
		break;
	case 4:
	case 8:
		indio_dev->channels = mcp3424_channels;
		indio_dev->num_channels = ARRAY_SIZE(mcp3424_channels);
		break;
	}

	/* meaningful default configuration */
	config = (MCP3422_CONT_SAMPLING
		| MCP3422_CHANNEL_VALUE(1)
		| MCP3422_PGA_VALUE(MCP3422_PGA_1)
		| MCP3422_SAMPLE_RATE_VALUE(MCP3422_SRATE_240));
	mcp3422_update_config(adc, config);

	err = devm_iio_device_register(&client->dev, indio_dev);
	if (err < 0)
		return err;

	i2c_set_clientdata(client, indio_dev);

	return 0;
}

static const struct i2c_device_id mcp3422_id[] = {
	{ "mcp3422", 2 },
	{ "mcp3423", 3 },
	{ "mcp3424", 4 },
	{ "mcp3426", 6 },
	{ "mcp3427", 7 },
	{ "mcp3428", 8 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, mcp3422_id);

#ifdef CONFIG_OF
static const struct of_device_id mcp3422_of_match[] = {
	{ .compatible = "mcp3422" },
	{ }
};
MODULE_DEVICE_TABLE(of, mcp3422_of_match);
#endif

static struct i2c_driver mcp3422_driver = {
	.driver = {
		.name = "mcp3422",
		.of_match_table = of_match_ptr(mcp3422_of_match),
	},
	.probe = mcp3422_probe,
	.id_table = mcp3422_id,
};
module_i2c_driver(mcp3422_driver);

MODULE_AUTHOR("Angelo Compagnucci <angelo.compagnucci@gmail.com>");
MODULE_DESCRIPTION("Microchip mcp3422/3/4/6/7/8 driver");
MODULE_LICENSE("GPL v2");
77' href='#n2077'>2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
/*
 *  UniCore32 translation
 *
 * Copyright (C) 2010-2012 Guan Xuetao
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation, or (at your option) any
 * later version. See the COPYING file in the top-level directory.
 */
#include "qemu/osdep.h"

#include "cpu.h"
#include "disas/disas.h"
#include "tcg-op.h"
#include "qemu/log.h"
#include "exec/cpu_ldst.h"

#include "exec/helper-proto.h"
#include "exec/helper-gen.h"

#include "trace-tcg.h"
#include "exec/log.h"


/* internal defines */
typedef struct DisasContext {
    target_ulong pc;
    int is_jmp;
    /* Nonzero if this instruction has been conditionally skipped.  */
    int condjmp;
    /* The label that will be jumped to when the instruction is skipped.  */
    TCGLabel *condlabel;
    struct TranslationBlock *tb;
    int singlestep_enabled;
#ifndef CONFIG_USER_ONLY
    int user;
#endif
} DisasContext;

#ifndef CONFIG_USER_ONLY
#define IS_USER(s)      (s->user)
#else
#define IS_USER(s)      1
#endif

/* These instructions trap after executing, so defer them until after the
   conditional executions state has been updated.  */
#define DISAS_SYSCALL 5

static TCGv_env cpu_env;
static TCGv_i32 cpu_R[32];

/* FIXME:  These should be removed.  */
static TCGv cpu_F0s, cpu_F1s;
static TCGv_i64 cpu_F0d, cpu_F1d;

#include "exec/gen-icount.h"

static const char *regnames[] = {
      "r00", "r01", "r02", "r03", "r04", "r05", "r06", "r07",
      "r08", "r09", "r10", "r11", "r12", "r13", "r14", "r15",
      "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
      "r24", "r25", "r26", "r27", "r28", "r29", "r30", "pc" };

/* initialize TCG globals.  */
void uc32_translate_init(void)
{
    int i;

    cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");

    for (i = 0; i < 32; i++) {
        cpu_R[i] = tcg_global_mem_new_i32(cpu_env,
                                offsetof(CPUUniCore32State, regs[i]), regnames[i]);
    }
}

static int num_temps;

/* Allocate a temporary variable.  */
static TCGv_i32 new_tmp(void)
{
    num_temps++;
    return tcg_temp_new_i32();
}

/* Release a temporary variable.  */
static void dead_tmp(TCGv tmp)
{
    tcg_temp_free(tmp);
    num_temps--;
}

static inline TCGv load_cpu_offset(int offset)
{
    TCGv tmp = new_tmp();
    tcg_gen_ld_i32(tmp, cpu_env, offset);
    return tmp;
}

#define load_cpu_field(name) load_cpu_offset(offsetof(CPUUniCore32State, name))

static inline void store_cpu_offset(TCGv var, int offset)
{
    tcg_gen_st_i32(var, cpu_env, offset);
    dead_tmp(var);
}

#define store_cpu_field(var, name) \
    store_cpu_offset(var, offsetof(CPUUniCore32State, name))

/* Set a variable to the value of a CPU register.  */
static void load_reg_var(DisasContext *s, TCGv var, int reg)
{
    if (reg == 31) {
        uint32_t addr;
        /* normaly, since we updated PC */
        addr = (long)s->pc;
        tcg_gen_movi_i32(var, addr);
    } else {
        tcg_gen_mov_i32(var, cpu_R[reg]);
    }
}

/* Create a new temporary and set it to the value of a CPU register.  */
static inline TCGv load_reg(DisasContext *s, int reg)
{
    TCGv tmp = new_tmp();
    load_reg_var(s, tmp, reg);
    return tmp;
}

/* Set a CPU register.  The source must be a temporary and will be
   marked as dead.  */
static void store_reg(DisasContext *s, int reg, TCGv var)
{
    if (reg == 31) {
        tcg_gen_andi_i32(var, var, ~3);
        s->is_jmp = DISAS_JUMP;
    }
    tcg_gen_mov_i32(cpu_R[reg], var);
    dead_tmp(var);
}

/* Value extensions.  */
#define gen_uxtb(var)           tcg_gen_ext8u_i32(var, var)
#define gen_uxth(var)           tcg_gen_ext16u_i32(var, var)
#define gen_sxtb(var)           tcg_gen_ext8s_i32(var, var)
#define gen_sxth(var)           tcg_gen_ext16s_i32(var, var)

#define UCOP_REG_M              (((insn) >>  0) & 0x1f)
#define UCOP_REG_N              (((insn) >> 19) & 0x1f)
#define UCOP_REG_D              (((insn) >> 14) & 0x1f)
#define UCOP_REG_S              (((insn) >>  9) & 0x1f)
#define UCOP_REG_LO             (((insn) >> 14) & 0x1f)
#define UCOP_REG_HI             (((insn) >>  9) & 0x1f)
#define UCOP_SH_OP              (((insn) >>  6) & 0x03)
#define UCOP_SH_IM              (((insn) >>  9) & 0x1f)
#define UCOP_OPCODES            (((insn) >> 25) & 0x0f)
#define UCOP_IMM_9              (((insn) >>  0) & 0x1ff)
#define UCOP_IMM10              (((insn) >>  0) & 0x3ff)
#define UCOP_IMM14              (((insn) >>  0) & 0x3fff)
#define UCOP_COND               (((insn) >> 25) & 0x0f)
#define UCOP_CMOV_COND          (((insn) >> 19) & 0x0f)
#define UCOP_CPNUM              (((insn) >> 10) & 0x0f)
#define UCOP_UCF64_FMT          (((insn) >> 24) & 0x03)
#define UCOP_UCF64_FUNC         (((insn) >>  6) & 0x0f)
#define UCOP_UCF64_COND         (((insn) >>  6) & 0x0f)

#define UCOP_SET(i)             ((insn) & (1 << (i)))
#define UCOP_SET_P              UCOP_SET(28)
#define UCOP_SET_U              UCOP_SET(27)
#define UCOP_SET_B              UCOP_SET(26)
#define UCOP_SET_W              UCOP_SET(25)
#define UCOP_SET_L              UCOP_SET(24)
#define UCOP_SET_S              UCOP_SET(24)

#define ILLEGAL         cpu_abort(CPU(cpu),                             \
                        "Illegal UniCore32 instruction %x at line %d!", \
                        insn, __LINE__)

#ifndef CONFIG_USER_ONLY
static void disas_cp0_insn(CPUUniCore32State *env, DisasContext *s,
        uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv tmp, tmp2, tmp3;
    if ((insn & 0xfe000000) == 0xe0000000) {
        tmp2 = new_tmp();
        tmp3 = new_tmp();
        tcg_gen_movi_i32(tmp2, UCOP_REG_N);
        tcg_gen_movi_i32(tmp3, UCOP_IMM10);
        if (UCOP_SET_L) {
            tmp = new_tmp();
            gen_helper_cp0_get(tmp, cpu_env, tmp2, tmp3);
            store_reg(s, UCOP_REG_D, tmp);
        } else {
            tmp = load_reg(s, UCOP_REG_D);
            gen_helper_cp0_set(cpu_env, tmp, tmp2, tmp3);
            dead_tmp(tmp);
        }
        dead_tmp(tmp2);
        dead_tmp(tmp3);
        return;
    }
    ILLEGAL;
}

static void disas_ocd_insn(CPUUniCore32State *env, DisasContext *s,
        uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv tmp;

    if ((insn & 0xff003fff) == 0xe1000400) {
        /*
         * movc rd, pp.nn, #imm9
         *      rd: UCOP_REG_D
         *      nn: UCOP_REG_N (must be 0)
         *      imm9: 0
         */
        if (UCOP_REG_N == 0) {
            tmp = new_tmp();
            tcg_gen_movi_i32(tmp, 0);
            store_reg(s, UCOP_REG_D, tmp);
            return;
        } else {
            ILLEGAL;
        }
    }
    if ((insn & 0xff003fff) == 0xe0000401) {
        /*
         * movc pp.nn, rn, #imm9
         *      rn: UCOP_REG_D
         *      nn: UCOP_REG_N (must be 1)
         *      imm9: 1
         */
        if (UCOP_REG_N == 1) {
            tmp = load_reg(s, UCOP_REG_D);
            gen_helper_cp1_putc(tmp);
            dead_tmp(tmp);
            return;
        } else {
            ILLEGAL;
        }
    }
    ILLEGAL;
}
#endif

static inline void gen_set_asr(TCGv var, uint32_t mask)
{
    TCGv tmp_mask = tcg_const_i32(mask);
    gen_helper_asr_write(cpu_env, var, tmp_mask);
    tcg_temp_free_i32(tmp_mask);
}
/* Set NZCV flags from the high 4 bits of var.  */
#define gen_set_nzcv(var) gen_set_asr(var, ASR_NZCV)

static void gen_exception(int excp)
{
    TCGv tmp = new_tmp();
    tcg_gen_movi_i32(tmp, excp);
    gen_helper_exception(cpu_env, tmp);
    dead_tmp(tmp);
}

#define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, CF))

/* Set CF to the top bit of var.  */
static void gen_set_CF_bit31(TCGv var)
{
    TCGv tmp = new_tmp();
    tcg_gen_shri_i32(tmp, var, 31);
    gen_set_CF(tmp);
    dead_tmp(tmp);
}

/* Set N and Z flags from var.  */
static inline void gen_logic_CC(TCGv var)
{
    tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, NF));
    tcg_gen_st_i32(var, cpu_env, offsetof(CPUUniCore32State, ZF));
}

/* dest = T0 + T1 + CF. */
static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1)
{
    TCGv tmp;
    tcg_gen_add_i32(dest, t0, t1);
    tmp = load_cpu_field(CF);
    tcg_gen_add_i32(dest, dest, tmp);
    dead_tmp(tmp);
}

/* dest = T0 - T1 + CF - 1.  */
static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1)
{
    TCGv tmp;
    tcg_gen_sub_i32(dest, t0, t1);
    tmp = load_cpu_field(CF);
    tcg_gen_add_i32(dest, dest, tmp);
    tcg_gen_subi_i32(dest, dest, 1);
    dead_tmp(tmp);
}

static void shifter_out_im(TCGv var, int shift)
{
    TCGv tmp = new_tmp();
    if (shift == 0) {
        tcg_gen_andi_i32(tmp, var, 1);
    } else {
        tcg_gen_shri_i32(tmp, var, shift);
        if (shift != 31) {
            tcg_gen_andi_i32(tmp, tmp, 1);
        }
    }
    gen_set_CF(tmp);
    dead_tmp(tmp);
}

/* Shift by immediate.  Includes special handling for shift == 0.  */
static inline void gen_uc32_shift_im(TCGv var, int shiftop, int shift,
        int flags)
{
    switch (shiftop) {
    case 0: /* LSL */
        if (shift != 0) {
            if (flags) {
                shifter_out_im(var, 32 - shift);
            }
            tcg_gen_shli_i32(var, var, shift);
        }
        break;
    case 1: /* LSR */
        if (shift == 0) {
            if (flags) {
                tcg_gen_shri_i32(var, var, 31);
                gen_set_CF(var);
            }
            tcg_gen_movi_i32(var, 0);
        } else {
            if (flags) {
                shifter_out_im(var, shift - 1);
            }
            tcg_gen_shri_i32(var, var, shift);
        }
        break;
    case 2: /* ASR */
        if (shift == 0) {
            shift = 32;
        }
        if (flags) {
            shifter_out_im(var, shift - 1);
        }
        if (shift == 32) {
            shift = 31;
        }
        tcg_gen_sari_i32(var, var, shift);
        break;
    case 3: /* ROR/RRX */
        if (shift != 0) {
            if (flags) {
                shifter_out_im(var, shift - 1);
            }
            tcg_gen_rotri_i32(var, var, shift); break;
        } else {
            TCGv tmp = load_cpu_field(CF);
            if (flags) {
                shifter_out_im(var, 0);
            }
            tcg_gen_shri_i32(var, var, 1);
            tcg_gen_shli_i32(tmp, tmp, 31);
            tcg_gen_or_i32(var, var, tmp);
            dead_tmp(tmp);
        }
    }
};

static inline void gen_uc32_shift_reg(TCGv var, int shiftop,
                                     TCGv shift, int flags)
{
    if (flags) {
        switch (shiftop) {
        case 0:
            gen_helper_shl_cc(var, cpu_env, var, shift);
            break;
        case 1:
            gen_helper_shr_cc(var, cpu_env, var, shift);
            break;
        case 2:
            gen_helper_sar_cc(var, cpu_env, var, shift);
            break;
        case 3:
            gen_helper_ror_cc(var, cpu_env, var, shift);
            break;
        }
    } else {
        switch (shiftop) {
        case 0:
            gen_helper_shl(var, var, shift);
            break;
        case 1:
            gen_helper_shr(var, var, shift);
            break;
        case 2:
            gen_helper_sar(var, var, shift);
            break;
        case 3:
            tcg_gen_andi_i32(shift, shift, 0x1f);
            tcg_gen_rotr_i32(var, var, shift);
            break;
        }
    }
    dead_tmp(shift);
}

static void gen_test_cc(int cc, TCGLabel *label)
{
    TCGv tmp;
    TCGv tmp2;
    TCGLabel *inv;

    switch (cc) {
    case 0: /* eq: Z */
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
        break;
    case 1: /* ne: !Z */
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
        break;
    case 2: /* cs: C */
        tmp = load_cpu_field(CF);
        tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
        break;
    case 3: /* cc: !C */
        tmp = load_cpu_field(CF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
        break;
    case 4: /* mi: N */
        tmp = load_cpu_field(NF);
        tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
        break;
    case 5: /* pl: !N */
        tmp = load_cpu_field(NF);
        tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
        break;
    case 6: /* vs: V */
        tmp = load_cpu_field(VF);
        tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
        break;
    case 7: /* vc: !V */
        tmp = load_cpu_field(VF);
        tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
        break;
    case 8: /* hi: C && !Z */
        inv = gen_new_label();
        tmp = load_cpu_field(CF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
        dead_tmp(tmp);
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
        gen_set_label(inv);
        break;
    case 9: /* ls: !C || Z */
        tmp = load_cpu_field(CF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
        dead_tmp(tmp);
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
        break;
    case 10: /* ge: N == V -> N ^ V == 0 */
        tmp = load_cpu_field(VF);
        tmp2 = load_cpu_field(NF);
        tcg_gen_xor_i32(tmp, tmp, tmp2);
        dead_tmp(tmp2);
        tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
        break;
    case 11: /* lt: N != V -> N ^ V != 0 */
        tmp = load_cpu_field(VF);
        tmp2 = load_cpu_field(NF);
        tcg_gen_xor_i32(tmp, tmp, tmp2);
        dead_tmp(tmp2);
        tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
        break;
    case 12: /* gt: !Z && N == V */
        inv = gen_new_label();
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
        dead_tmp(tmp);
        tmp = load_cpu_field(VF);
        tmp2 = load_cpu_field(NF);
        tcg_gen_xor_i32(tmp, tmp, tmp2);
        dead_tmp(tmp2);
        tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
        gen_set_label(inv);
        break;
    case 13: /* le: Z || N != V */
        tmp = load_cpu_field(ZF);
        tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
        dead_tmp(tmp);
        tmp = load_cpu_field(VF);
        tmp2 = load_cpu_field(NF);
        tcg_gen_xor_i32(tmp, tmp, tmp2);
        dead_tmp(tmp2);
        tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
        break;
    default:
        fprintf(stderr, "Bad condition code 0x%x\n", cc);
        abort();
    }
    dead_tmp(tmp);
}

static const uint8_t table_logic_cc[16] = {
    1, /* and */    1, /* xor */    0, /* sub */    0, /* rsb */
    0, /* add */    0, /* adc */    0, /* sbc */    0, /* rsc */
    1, /* andl */   1, /* xorl */   0, /* cmp */    0, /* cmn */
    1, /* orr */    1, /* mov */    1, /* bic */    1, /* mvn */
};

/* Set PC state from an immediate address.  */
static inline void gen_bx_im(DisasContext *s, uint32_t addr)
{
    s->is_jmp = DISAS_UPDATE;
    tcg_gen_movi_i32(cpu_R[31], addr & ~3);
}

/* Set PC state from var.  var is marked as dead.  */
static inline void gen_bx(DisasContext *s, TCGv var)
{
    s->is_jmp = DISAS_UPDATE;
    tcg_gen_andi_i32(cpu_R[31], var, ~3);
    dead_tmp(var);
}

static inline void store_reg_bx(DisasContext *s, int reg, TCGv var)
{
    store_reg(s, reg, var);
}

static inline TCGv gen_ld8s(TCGv addr, int index)
{
    TCGv tmp = new_tmp();
    tcg_gen_qemu_ld8s(tmp, addr, index);
    return tmp;
}

static inline TCGv gen_ld8u(TCGv addr, int index)
{
    TCGv tmp = new_tmp();
    tcg_gen_qemu_ld8u(tmp, addr, index);
    return tmp;
}

static inline TCGv gen_ld16s(TCGv addr, int index)
{
    TCGv tmp = new_tmp();
    tcg_gen_qemu_ld16s(tmp, addr, index);
    return tmp;
}

static inline TCGv gen_ld16u(TCGv addr, int index)
{
    TCGv tmp = new_tmp();
    tcg_gen_qemu_ld16u(tmp, addr, index);
    return tmp;
}

static inline TCGv gen_ld32(TCGv addr, int index)
{
    TCGv tmp = new_tmp();
    tcg_gen_qemu_ld32u(tmp, addr, index);
    return tmp;
}

static inline void gen_st8(TCGv val, TCGv addr, int index)
{
    tcg_gen_qemu_st8(val, addr, index);
    dead_tmp(val);
}

static inline void gen_st16(TCGv val, TCGv addr, int index)
{
    tcg_gen_qemu_st16(val, addr, index);
    dead_tmp(val);
}

static inline void gen_st32(TCGv val, TCGv addr, int index)
{
    tcg_gen_qemu_st32(val, addr, index);
    dead_tmp(val);
}

static inline void gen_set_pc_im(uint32_t val)
{
    tcg_gen_movi_i32(cpu_R[31], val);
}

/* Force a TB lookup after an instruction that changes the CPU state.  */
static inline void gen_lookup_tb(DisasContext *s)
{
    tcg_gen_movi_i32(cpu_R[31], s->pc & ~1);
    s->is_jmp = DISAS_UPDATE;
}

static inline void gen_add_data_offset(DisasContext *s, unsigned int insn,
        TCGv var)
{
    int val;
    TCGv offset;

    if (UCOP_SET(29)) {
        /* immediate */
        val = UCOP_IMM14;
        if (!UCOP_SET_U) {
            val = -val;
        }
        if (val != 0) {
            tcg_gen_addi_i32(var, var, val);
        }
    } else {
        /* shift/register */
        offset = load_reg(s, UCOP_REG_M);
        gen_uc32_shift_im(offset, UCOP_SH_OP, UCOP_SH_IM, 0);
        if (!UCOP_SET_U) {
            tcg_gen_sub_i32(var, var, offset);
        } else {
            tcg_gen_add_i32(var, var, offset);
        }
        dead_tmp(offset);
    }
}

static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
        TCGv var)
{
    int val;
    TCGv offset;

    if (UCOP_SET(26)) {
        /* immediate */
        val = (insn & 0x1f) | ((insn >> 4) & 0x3e0);
        if (!UCOP_SET_U) {
            val = -val;
        }
        if (val != 0) {
            tcg_gen_addi_i32(var, var, val);
        }
    } else {
        /* register */
        offset = load_reg(s, UCOP_REG_M);
        if (!UCOP_SET_U) {
            tcg_gen_sub_i32(var, var, offset);
        } else {
            tcg_gen_add_i32(var, var, offset);
        }
        dead_tmp(offset);
    }
}

static inline long ucf64_reg_offset(int reg)
{
    if (reg & 1) {
        return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1])
          + offsetof(CPU_DoubleU, l.upper);
    } else {
        return offsetof(CPUUniCore32State, ucf64.regs[reg >> 1])
          + offsetof(CPU_DoubleU, l.lower);
    }
}

#define ucf64_gen_ld32(reg)      load_cpu_offset(ucf64_reg_offset(reg))
#define ucf64_gen_st32(var, reg) store_cpu_offset(var, ucf64_reg_offset(reg))

/* UniCore-F64 single load/store I_offset */
static void do_ucf64_ldst_i(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    int offset;
    TCGv tmp;
    TCGv addr;

    addr = load_reg(s, UCOP_REG_N);
    if (!UCOP_SET_P && !UCOP_SET_W) {
        ILLEGAL;
    }

    if (UCOP_SET_P) {
        offset = UCOP_IMM10 << 2;
        if (!UCOP_SET_U) {
            offset = -offset;
        }
        if (offset != 0) {
            tcg_gen_addi_i32(addr, addr, offset);
        }
    }

    if (UCOP_SET_L) { /* load */
        tmp = gen_ld32(addr, IS_USER(s));
        ucf64_gen_st32(tmp, UCOP_REG_D);
    } else { /* store */
        tmp = ucf64_gen_ld32(UCOP_REG_D);
        gen_st32(tmp, addr, IS_USER(s));
    }

    if (!UCOP_SET_P) {
        offset = UCOP_IMM10 << 2;
        if (!UCOP_SET_U) {
            offset = -offset;
        }
        if (offset != 0) {
            tcg_gen_addi_i32(addr, addr, offset);
        }
    }
    if (UCOP_SET_W) {
        store_reg(s, UCOP_REG_N, addr);
    } else {
        dead_tmp(addr);
    }
}

/* UniCore-F64 load/store multiple words */
static void do_ucf64_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    unsigned int i;
    int j, n, freg;
    TCGv tmp;
    TCGv addr;

    if (UCOP_REG_D != 0) {
        ILLEGAL;
    }
    if (UCOP_REG_N == 31) {
        ILLEGAL;
    }
    if ((insn << 24) == 0) {
        ILLEGAL;
    }

    addr = load_reg(s, UCOP_REG_N);

    n = 0;
    for (i = 0; i < 8; i++) {
        if (UCOP_SET(i)) {
            n++;
        }
    }

    if (UCOP_SET_U) {
        if (UCOP_SET_P) { /* pre increment */
            tcg_gen_addi_i32(addr, addr, 4);
        } /* unnecessary to do anything when post increment */
    } else {
        if (UCOP_SET_P) { /* pre decrement */
            tcg_gen_addi_i32(addr, addr, -(n * 4));
        } else { /* post decrement */
            if (n != 1) {
                tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
            }
        }
    }

    freg = ((insn >> 8) & 3) << 3; /* freg should be 0, 8, 16, 24 */

    for (i = 0, j = 0; i < 8; i++, freg++) {
        if (!UCOP_SET(i)) {
            continue;
        }

        if (UCOP_SET_L) { /* load */
            tmp = gen_ld32(addr, IS_USER(s));
            ucf64_gen_st32(tmp, freg);
        } else { /* store */
            tmp = ucf64_gen_ld32(freg);
            gen_st32(tmp, addr, IS_USER(s));
        }

        j++;
        /* unnecessary to add after the last transfer */
        if (j != n) {
            tcg_gen_addi_i32(addr, addr, 4);
        }
    }

    if (UCOP_SET_W) { /* write back */
        if (UCOP_SET_U) {
            if (!UCOP_SET_P) { /* post increment */
                tcg_gen_addi_i32(addr, addr, 4);
            } /* unnecessary to do anything when pre increment */
        } else {
            if (UCOP_SET_P) {
                /* pre decrement */
                if (n != 1) {
                    tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
                }
            } else {
                /* post decrement */
                tcg_gen_addi_i32(addr, addr, -(n * 4));
            }
        }
        store_reg(s, UCOP_REG_N, addr);
    } else {
        dead_tmp(addr);
    }
}

/* UniCore-F64 mrc/mcr */
static void do_ucf64_trans(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv tmp;

    if ((insn & 0xfe0003ff) == 0xe2000000) {
        /* control register */
        if ((UCOP_REG_N != UC32_UCF64_FPSCR) || (UCOP_REG_D == 31)) {
            ILLEGAL;
        }
        if (UCOP_SET(24)) {
            /* CFF */
            tmp = new_tmp();
            gen_helper_ucf64_get_fpscr(tmp, cpu_env);
            store_reg(s, UCOP_REG_D, tmp);
        } else {
            /* CTF */
            tmp = load_reg(s, UCOP_REG_D);
            gen_helper_ucf64_set_fpscr(cpu_env, tmp);
            dead_tmp(tmp);
            gen_lookup_tb(s);
        }
        return;
    }
    if ((insn & 0xfe0003ff) == 0xe0000000) {
        /* general register */
        if (UCOP_REG_D == 31) {
            ILLEGAL;
        }
        if (UCOP_SET(24)) { /* MFF */
            tmp = ucf64_gen_ld32(UCOP_REG_N);
            store_reg(s, UCOP_REG_D, tmp);
        } else { /* MTF */
            tmp = load_reg(s, UCOP_REG_D);
            ucf64_gen_st32(tmp, UCOP_REG_N);
        }
        return;
    }
    if ((insn & 0xfb000000) == 0xe9000000) {
        /* MFFC */
        if (UCOP_REG_D != 31) {
            ILLEGAL;
        }
        if (UCOP_UCF64_COND & 0x8) {
            ILLEGAL;
        }

        tmp = new_tmp();
        tcg_gen_movi_i32(tmp, UCOP_UCF64_COND);
        if (UCOP_SET(26)) {
            tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
            tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, tmp, cpu_env);
        } else {
            tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
            tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, tmp, cpu_env);
        }
        dead_tmp(tmp);
        return;
    }
    ILLEGAL;
}

/* UniCore-F64 convert instructions */
static void do_ucf64_fcvt(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);

    if (UCOP_UCF64_FMT == 3) {
        ILLEGAL;
    }
    if (UCOP_REG_N != 0) {
        ILLEGAL;
    }
    switch (UCOP_UCF64_FUNC) {
    case 0: /* cvt.s */
        switch (UCOP_UCF64_FMT) {
        case 1 /* d */:
            tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_df2sf(cpu_F0s, cpu_F0d, cpu_env);
            tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
        case 2 /* w */:
            tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_si2sf(cpu_F0s, cpu_F0s, cpu_env);
            tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
        default /* s */:
            ILLEGAL;
            break;
        }
        break;
    case 1: /* cvt.d */
        switch (UCOP_UCF64_FMT) {
        case 0 /* s */:
            tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_sf2df(cpu_F0d, cpu_F0s, cpu_env);
            tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
        case 2 /* w */:
            tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_si2df(cpu_F0d, cpu_F0s, cpu_env);
            tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
        default /* d */:
            ILLEGAL;
            break;
        }
        break;
    case 4: /* cvt.w */
        switch (UCOP_UCF64_FMT) {
        case 0 /* s */:
            tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_sf2si(cpu_F0s, cpu_F0s, cpu_env);
            tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
        case 1 /* d */:
            tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
            gen_helper_ucf64_df2si(cpu_F0s, cpu_F0d, cpu_env);
            tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
            break;
    default /* w */:
            ILLEGAL;
            break;
        }
        break;
    default:
        ILLEGAL;
    }
}

/* UniCore-F64 compare instructions */
static void do_ucf64_fcmp(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);

    if (UCOP_SET(25)) {
        ILLEGAL;
    }
    if (UCOP_REG_D != 0) {
        ILLEGAL;
    }

    ILLEGAL; /* TODO */
    if (UCOP_SET(24)) {
        tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
        tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
        /* gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, cpu_env); */
    } else {
        tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
        tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
        /* gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, cpu_env); */
    }
}

#define gen_helper_ucf64_movs(x, y)      do { } while (0)
#define gen_helper_ucf64_movd(x, y)      do { } while (0)

#define UCF64_OP1(name)    do {                           \
        if (UCOP_REG_N != 0) {                            \
            ILLEGAL;                                      \
        }                                                 \
        switch (UCOP_UCF64_FMT) {                         \
        case 0 /* s */:                                   \
            tcg_gen_ld_i32(cpu_F0s, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_M)); \
            gen_helper_ucf64_##name##s(cpu_F0s, cpu_F0s); \
            tcg_gen_st_i32(cpu_F0s, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_D)); \
            break;                                        \
        case 1 /* d */:                                   \
            tcg_gen_ld_i64(cpu_F0d, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_M)); \
            gen_helper_ucf64_##name##d(cpu_F0d, cpu_F0d); \
            tcg_gen_st_i64(cpu_F0d, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_D)); \
            break;                                        \
        case 2 /* w */:                                   \
            ILLEGAL;                                      \
            break;                                        \
        }                                                 \
    } while (0)

#define UCF64_OP2(name)    do {                           \
        switch (UCOP_UCF64_FMT) {                         \
        case 0 /* s */:                                   \
            tcg_gen_ld_i32(cpu_F0s, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_N)); \
            tcg_gen_ld_i32(cpu_F1s, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_M)); \
            gen_helper_ucf64_##name##s(cpu_F0s,           \
                           cpu_F0s, cpu_F1s, cpu_env);    \
            tcg_gen_st_i32(cpu_F0s, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_D)); \
            break;                                        \
        case 1 /* d */:                                   \
            tcg_gen_ld_i64(cpu_F0d, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_N)); \
            tcg_gen_ld_i64(cpu_F1d, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_M)); \
            gen_helper_ucf64_##name##d(cpu_F0d,           \
                           cpu_F0d, cpu_F1d, cpu_env);    \
            tcg_gen_st_i64(cpu_F0d, cpu_env,              \
                           ucf64_reg_offset(UCOP_REG_D)); \
            break;                                        \
        case 2 /* w */:                                   \
            ILLEGAL;                                      \
            break;                                        \
        }                                                 \
    } while (0)

/* UniCore-F64 data processing */
static void do_ucf64_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);

    if (UCOP_UCF64_FMT == 3) {
        ILLEGAL;
    }
    switch (UCOP_UCF64_FUNC) {
    case 0: /* add */
        UCF64_OP2(add);
        break;
    case 1: /* sub */
        UCF64_OP2(sub);
        break;
    case 2: /* mul */
        UCF64_OP2(mul);
        break;
    case 4: /* div */
        UCF64_OP2(div);
        break;
    case 5: /* abs */
        UCF64_OP1(abs);
        break;
    case 6: /* mov */
        UCF64_OP1(mov);
        break;
    case 7: /* neg */
        UCF64_OP1(neg);
        break;
    default:
        ILLEGAL;
    }
}

/* Disassemble an F64 instruction */
static void disas_ucf64_insn(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);

    if (!UCOP_SET(29)) {
        if (UCOP_SET(26)) {
            do_ucf64_ldst_m(env, s, insn);
        } else {
            do_ucf64_ldst_i(env, s, insn);
        }
    } else {
        if (UCOP_SET(5)) {
            switch ((insn >> 26) & 0x3) {
            case 0:
                do_ucf64_datap(env, s, insn);
                break;
            case 1:
                ILLEGAL;
                break;
            case 2:
                do_ucf64_fcvt(env, s, insn);
                break;
            case 3:
                do_ucf64_fcmp(env, s, insn);
                break;
            }
        } else {
            do_ucf64_trans(env, s, insn);
        }
    }
}

static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest)
{
    TranslationBlock *tb;

    tb = s->tb;
    if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
        tcg_gen_goto_tb(n);
        gen_set_pc_im(dest);
        tcg_gen_exit_tb((uintptr_t)tb + n);
    } else {
        gen_set_pc_im(dest);
        tcg_gen_exit_tb(0);
    }
}

static inline void gen_jmp(DisasContext *s, uint32_t dest)
{
    if (unlikely(s->singlestep_enabled)) {
        /* An indirect jump so that we still trigger the debug exception.  */
        gen_bx_im(s, dest);
    } else {
        gen_goto_tb(s, 0, dest);
        s->is_jmp = DISAS_TB_JUMP;
    }
}

/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
static int gen_set_psr(DisasContext *s, uint32_t mask, int bsr, TCGv t0)
{
    TCGv tmp;
    if (bsr) {
        /* ??? This is also undefined in system mode.  */
        if (IS_USER(s)) {
            return 1;
        }

        tmp = load_cpu_field(bsr);
        tcg_gen_andi_i32(tmp, tmp, ~mask);
        tcg_gen_andi_i32(t0, t0, mask);
        tcg_gen_or_i32(tmp, tmp, t0);
        store_cpu_field(tmp, bsr);
    } else {
        gen_set_asr(t0, mask);
    }
    dead_tmp(t0);
    gen_lookup_tb(s);
    return 0;
}

/* Generate an old-style exception return. Marks pc as dead. */
static void gen_exception_return(DisasContext *s, TCGv pc)
{
    TCGv tmp;
    store_reg(s, 31, pc);
    tmp = load_cpu_field(bsr);
    gen_set_asr(tmp, 0xffffffff);
    dead_tmp(tmp);
    s->is_jmp = DISAS_UPDATE;
}

static void disas_coproc_insn(CPUUniCore32State *env, DisasContext *s,
        uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);

    switch (UCOP_CPNUM) {
#ifndef CONFIG_USER_ONLY
    case 0:
        disas_cp0_insn(env, s, insn);
        break;
    case 1:
        disas_ocd_insn(env, s, insn);
        break;
#endif
    case 2:
        disas_ucf64_insn(env, s, insn);
        break;
    default:
        /* Unknown coprocessor. */
        cpu_abort(CPU(cpu), "Unknown coprocessor!");
    }
}

/* data processing instructions */
static void do_datap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv tmp;
    TCGv tmp2;
    int logic_cc;

    if (UCOP_OPCODES == 0x0f || UCOP_OPCODES == 0x0d) {
        if (UCOP_SET(23)) { /* CMOV instructions */
            if ((UCOP_CMOV_COND == 0xe) || (UCOP_CMOV_COND == 0xf)) {
                ILLEGAL;
            }
            /* if not always execute, we generate a conditional jump to
               next instruction */
            s->condlabel = gen_new_label();
            gen_test_cc(UCOP_CMOV_COND ^ 1, s->condlabel);
            s->condjmp = 1;
        }
    }

    logic_cc = table_logic_cc[UCOP_OPCODES] & (UCOP_SET_S >> 24);

    if (UCOP_SET(29)) {
        unsigned int val;
        /* immediate operand */
        val = UCOP_IMM_9;
        if (UCOP_SH_IM) {
            val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
        }
        tmp2 = new_tmp();
        tcg_gen_movi_i32(tmp2, val);
        if (logic_cc && UCOP_SH_IM) {
            gen_set_CF_bit31(tmp2);
        }
   } else {
        /* register */
        tmp2 = load_reg(s, UCOP_REG_M);
        if (UCOP_SET(5)) {
            tmp = load_reg(s, UCOP_REG_S);
            gen_uc32_shift_reg(tmp2, UCOP_SH_OP, tmp, logic_cc);
        } else {
            gen_uc32_shift_im(tmp2, UCOP_SH_OP, UCOP_SH_IM, logic_cc);
        }
    }

    if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
        tmp = load_reg(s, UCOP_REG_N);
    } else {
        TCGV_UNUSED(tmp);
    }

    switch (UCOP_OPCODES) {
    case 0x00:
        tcg_gen_and_i32(tmp, tmp, tmp2);
        if (logic_cc) {
            gen_logic_CC(tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x01:
        tcg_gen_xor_i32(tmp, tmp, tmp2);
        if (logic_cc) {
            gen_logic_CC(tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x02:
        if (UCOP_SET_S && UCOP_REG_D == 31) {
            /* SUBS r31, ... is used for exception return.  */
            if (IS_USER(s)) {
                ILLEGAL;
            }
            gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
            gen_exception_return(s, tmp);
        } else {
            if (UCOP_SET_S) {
                gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
            } else {
                tcg_gen_sub_i32(tmp, tmp, tmp2);
            }
            store_reg_bx(s, UCOP_REG_D, tmp);
        }
        break;
    case 0x03:
        if (UCOP_SET_S) {
            gen_helper_sub_cc(tmp, cpu_env, tmp2, tmp);
        } else {
            tcg_gen_sub_i32(tmp, tmp2, tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x04:
        if (UCOP_SET_S) {
            gen_helper_add_cc(tmp, cpu_env, tmp, tmp2);
        } else {
            tcg_gen_add_i32(tmp, tmp, tmp2);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x05:
        if (UCOP_SET_S) {
            gen_helper_adc_cc(tmp, cpu_env, tmp, tmp2);
        } else {
            gen_add_carry(tmp, tmp, tmp2);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x06:
        if (UCOP_SET_S) {
            gen_helper_sbc_cc(tmp, cpu_env, tmp, tmp2);
        } else {
            gen_sub_carry(tmp, tmp, tmp2);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x07:
        if (UCOP_SET_S) {
            gen_helper_sbc_cc(tmp, cpu_env, tmp2, tmp);
        } else {
            gen_sub_carry(tmp, tmp2, tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x08:
        if (UCOP_SET_S) {
            tcg_gen_and_i32(tmp, tmp, tmp2);
            gen_logic_CC(tmp);
        }
        dead_tmp(tmp);
        break;
    case 0x09:
        if (UCOP_SET_S) {
            tcg_gen_xor_i32(tmp, tmp, tmp2);
            gen_logic_CC(tmp);
        }
        dead_tmp(tmp);
        break;
    case 0x0a:
        if (UCOP_SET_S) {
            gen_helper_sub_cc(tmp, cpu_env, tmp, tmp2);
        }
        dead_tmp(tmp);
        break;
    case 0x0b:
        if (UCOP_SET_S) {
            gen_helper_add_cc(tmp, cpu_env, tmp, tmp2);
        }
        dead_tmp(tmp);
        break;
    case 0x0c:
        tcg_gen_or_i32(tmp, tmp, tmp2);
        if (logic_cc) {
            gen_logic_CC(tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    case 0x0d:
        if (logic_cc && UCOP_REG_D == 31) {
            /* MOVS r31, ... is used for exception return.  */
            if (IS_USER(s)) {
                ILLEGAL;
            }
            gen_exception_return(s, tmp2);
        } else {
            if (logic_cc) {
                gen_logic_CC(tmp2);
            }
            store_reg_bx(s, UCOP_REG_D, tmp2);
        }
        break;
    case 0x0e:
        tcg_gen_andc_i32(tmp, tmp, tmp2);
        if (logic_cc) {
            gen_logic_CC(tmp);
        }
        store_reg_bx(s, UCOP_REG_D, tmp);
        break;
    default:
    case 0x0f:
        tcg_gen_not_i32(tmp2, tmp2);
        if (logic_cc) {
            gen_logic_CC(tmp2);
        }
        store_reg_bx(s, UCOP_REG_D, tmp2);
        break;
    }
    if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
        dead_tmp(tmp2);
    }
}

/* multiply */
static void do_mult(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    TCGv tmp, tmp2, tmp3, tmp4;

    if (UCOP_SET(27)) {
        /* 64 bit mul */
        tmp = load_reg(s, UCOP_REG_M);
        tmp2 = load_reg(s, UCOP_REG_N);
        if (UCOP_SET(26)) {
            tcg_gen_muls2_i32(tmp, tmp2, tmp, tmp2);
        } else {
            tcg_gen_mulu2_i32(tmp, tmp2, tmp, tmp2);
        }
        if (UCOP_SET(25)) { /* mult accumulate */
            tmp3 = load_reg(s, UCOP_REG_LO);
            tmp4 = load_reg(s, UCOP_REG_HI);
            tcg_gen_add2_i32(tmp, tmp2, tmp, tmp2, tmp3, tmp4);
            dead_tmp(tmp3);
            dead_tmp(tmp4);
        }
        store_reg(s, UCOP_REG_LO, tmp);
        store_reg(s, UCOP_REG_HI, tmp2);
    } else {
        /* 32 bit mul */
        tmp = load_reg(s, UCOP_REG_M);
        tmp2 = load_reg(s, UCOP_REG_N);
        tcg_gen_mul_i32(tmp, tmp, tmp2);
        dead_tmp(tmp2);
        if (UCOP_SET(25)) {
            /* Add */
            tmp2 = load_reg(s, UCOP_REG_S);
            tcg_gen_add_i32(tmp, tmp, tmp2);
            dead_tmp(tmp2);
        }
        if (UCOP_SET_S) {
            gen_logic_CC(tmp);
        }
        store_reg(s, UCOP_REG_D, tmp);
    }
}

/* miscellaneous instructions */
static void do_misc(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    unsigned int val;
    TCGv tmp;

    if ((insn & 0xffffffe0) == 0x10ffc120) {
        /* Trivial implementation equivalent to bx.  */
        tmp = load_reg(s, UCOP_REG_M);
        gen_bx(s, tmp);
        return;
    }

    if ((insn & 0xfbffc000) == 0x30ffc000) {
        /* PSR = immediate */
        val = UCOP_IMM_9;
        if (UCOP_SH_IM) {
            val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
        }
        tmp = new_tmp();
        tcg_gen_movi_i32(tmp, val);
        if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
            ILLEGAL;
        }
        return;
    }

    if ((insn & 0xfbffffe0) == 0x12ffc020) {
        /* PSR.flag = reg */
        tmp = load_reg(s, UCOP_REG_M);
        if (gen_set_psr(s, ASR_NZCV, UCOP_SET_B, tmp)) {
            ILLEGAL;
        }
        return;
    }

    if ((insn & 0xfbffffe0) == 0x10ffc020) {
        /* PSR = reg */
        tmp = load_reg(s, UCOP_REG_M);
        if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
            ILLEGAL;
        }
        return;
    }

    if ((insn & 0xfbf83fff) == 0x10f80000) {
        /* reg = PSR */
        if (UCOP_SET_B) {
            if (IS_USER(s)) {
                ILLEGAL;
            }
            tmp = load_cpu_field(bsr);
        } else {
            tmp = new_tmp();
            gen_helper_asr_read(tmp, cpu_env);
        }
        store_reg(s, UCOP_REG_D, tmp);
        return;
    }

    if ((insn & 0xfbf83fe0) == 0x12f80120) {
        /* clz */
        tmp = load_reg(s, UCOP_REG_M);
        if (UCOP_SET(26)) {
            gen_helper_clo(tmp, tmp);
        } else {
            gen_helper_clz(tmp, tmp);
        }
        store_reg(s, UCOP_REG_D, tmp);
        return;
    }

    /* otherwise */
    ILLEGAL;
}

/* load/store I_offset and R_offset */
static void do_ldst_ir(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    unsigned int mmu_idx;
    TCGv tmp;
    TCGv tmp2;

    tmp2 = load_reg(s, UCOP_REG_N);
    mmu_idx = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W));

    /* immediate */
    if (UCOP_SET_P) {
        gen_add_data_offset(s, insn, tmp2);
    }

    if (UCOP_SET_L) {
        /* load */
        if (UCOP_SET_B) {
            tmp = gen_ld8u(tmp2, mmu_idx);
        } else {
            tmp = gen_ld32(tmp2, mmu_idx);
        }
    } else {
        /* store */
        tmp = load_reg(s, UCOP_REG_D);
        if (UCOP_SET_B) {
            gen_st8(tmp, tmp2, mmu_idx);
        } else {
            gen_st32(tmp, tmp2, mmu_idx);
        }
    }
    if (!UCOP_SET_P) {
        gen_add_data_offset(s, insn, tmp2);
        store_reg(s, UCOP_REG_N, tmp2);
    } else if (UCOP_SET_W) {
        store_reg(s, UCOP_REG_N, tmp2);
    } else {
        dead_tmp(tmp2);
    }
    if (UCOP_SET_L) {
        /* Complete the load.  */
        if (UCOP_REG_D == 31) {
            gen_bx(s, tmp);
        } else {
            store_reg(s, UCOP_REG_D, tmp);
        }
    }
}

/* SWP instruction */
static void do_swap(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv addr;
    TCGv tmp;
    TCGv tmp2;

    if ((insn & 0xff003fe0) != 0x40000120) {
        ILLEGAL;
    }

    /* ??? This is not really atomic.  However we know
       we never have multiple CPUs running in parallel,
       so it is good enough.  */
    addr = load_reg(s, UCOP_REG_N);
    tmp = load_reg(s, UCOP_REG_M);
    if (UCOP_SET_B) {
        tmp2 = gen_ld8u(addr, IS_USER(s));
        gen_st8(tmp, addr, IS_USER(s));
    } else {
        tmp2 = gen_ld32(addr, IS_USER(s));
        gen_st32(tmp, addr, IS_USER(s));
    }
    dead_tmp(addr);
    store_reg(s, UCOP_REG_D, tmp2);
}

/* load/store hw/sb */
static void do_ldst_hwsb(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    TCGv addr;
    TCGv tmp;

    if (UCOP_SH_OP == 0) {
        do_swap(env, s, insn);
        return;
    }

    addr = load_reg(s, UCOP_REG_N);
    if (UCOP_SET_P) {
        gen_add_datah_offset(s, insn, addr);
    }

    if (UCOP_SET_L) { /* load */
        switch (UCOP_SH_OP) {
        case 1:
            tmp = gen_ld16u(addr, IS_USER(s));
            break;
        case 2:
            tmp = gen_ld8s(addr, IS_USER(s));
            break;
        default: /* see do_swap */
        case 3:
            tmp = gen_ld16s(addr, IS_USER(s));
            break;
        }
    } else { /* store */
        if (UCOP_SH_OP != 1) {
            ILLEGAL;
        }
        tmp = load_reg(s, UCOP_REG_D);
        gen_st16(tmp, addr, IS_USER(s));
    }
    /* Perform base writeback before the loaded value to
       ensure correct behavior with overlapping index registers. */
    if (!UCOP_SET_P) {
        gen_add_datah_offset(s, insn, addr);
        store_reg(s, UCOP_REG_N, addr);
    } else if (UCOP_SET_W) {
        store_reg(s, UCOP_REG_N, addr);
    } else {
        dead_tmp(addr);
    }
    if (UCOP_SET_L) {
        /* Complete the load.  */
        store_reg(s, UCOP_REG_D, tmp);
    }
}

/* load/store multiple words */
static void do_ldst_m(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    unsigned int val, i, mmu_idx;
    int j, n, reg, user, loaded_base;
    TCGv tmp;
    TCGv tmp2;
    TCGv addr;
    TCGv loaded_var;

    if (UCOP_SET(7)) {
        ILLEGAL;
    }
    /* XXX: store correct base if write back */
    user = 0;
    if (UCOP_SET_B) { /* S bit in instruction table */
        if (IS_USER(s)) {
            ILLEGAL; /* only usable in supervisor mode */
        }
        if (UCOP_SET(18) == 0) { /* pc reg */
            user = 1;
        }
    }

    mmu_idx = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W));
    addr = load_reg(s, UCOP_REG_N);

    /* compute total size */
    loaded_base = 0;
    TCGV_UNUSED(loaded_var);
    n = 0;
    for (i = 0; i < 6; i++) {
        if (UCOP_SET(i)) {
            n++;
        }
    }
    for (i = 9; i < 19; i++) {
        if (UCOP_SET(i)) {
            n++;
        }
    }
    /* XXX: test invalid n == 0 case ? */
    if (UCOP_SET_U) {
        if (UCOP_SET_P) {
            /* pre increment */
            tcg_gen_addi_i32(addr, addr, 4);
        } else {
            /* post increment */
        }
    } else {
        if (UCOP_SET_P) {
            /* pre decrement */
            tcg_gen_addi_i32(addr, addr, -(n * 4));
        } else {
            /* post decrement */
            if (n != 1) {
                tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
            }
        }
    }

    j = 0;
    reg = UCOP_SET(6) ? 16 : 0;
    for (i = 0; i < 19; i++, reg++) {
        if (i == 6) {
            i = i + 3;
        }
        if (UCOP_SET(i)) {
            if (UCOP_SET_L) { /* load */
                tmp = gen_ld32(addr, mmu_idx);
                if (reg == 31) {
                    gen_bx(s, tmp);
                } else if (user) {
                    tmp2 = tcg_const_i32(reg);
                    gen_helper_set_user_reg(cpu_env, tmp2, tmp);
                    tcg_temp_free_i32(tmp2);
                    dead_tmp(tmp);
                } else if (reg == UCOP_REG_N) {
                    loaded_var = tmp;
                    loaded_base = 1;
                } else {
                    store_reg(s, reg, tmp);
                }
            } else { /* store */
                if (reg == 31) {
                    /* special case: r31 = PC + 4 */
                    val = (long)s->pc;
                    tmp = new_tmp();
                    tcg_gen_movi_i32(tmp, val);
                } else if (user) {
                    tmp = new_tmp();
                    tmp2 = tcg_const_i32(reg);
                    gen_helper_get_user_reg(tmp, cpu_env, tmp2);
                    tcg_temp_free_i32(tmp2);
                } else {
                    tmp = load_reg(s, reg);
                }
                gen_st32(tmp, addr, mmu_idx);
            }
            j++;
            /* no need to add after the last transfer */
            if (j != n) {
                tcg_gen_addi_i32(addr, addr, 4);
            }
        }
    }
    if (UCOP_SET_W) { /* write back */
        if (UCOP_SET_U) {
            if (UCOP_SET_P) {
                /* pre increment */
            } else {
                /* post increment */
                tcg_gen_addi_i32(addr, addr, 4);
            }
        } else {
            if (UCOP_SET_P) {
                /* pre decrement */
                if (n != 1) {
                    tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
                }
            } else {
                /* post decrement */
                tcg_gen_addi_i32(addr, addr, -(n * 4));
            }
        }
        store_reg(s, UCOP_REG_N, addr);
    } else {
        dead_tmp(addr);
    }
    if (loaded_base) {
        store_reg(s, UCOP_REG_N, loaded_var);
    }
    if (UCOP_SET_B && !user) {
        /* Restore ASR from BSR.  */
        tmp = load_cpu_field(bsr);
        gen_set_asr(tmp, 0xffffffff);
        dead_tmp(tmp);
        s->is_jmp = DISAS_UPDATE;
    }
}

/* branch (and link) */
static void do_branch(CPUUniCore32State *env, DisasContext *s, uint32_t insn)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    unsigned int val;
    int32_t offset;
    TCGv tmp;

    if (UCOP_COND == 0xf) {
        ILLEGAL;
    }

    if (UCOP_COND != 0xe) {
        /* if not always execute, we generate a conditional jump to
           next instruction */
        s->condlabel = gen_new_label();
        gen_test_cc(UCOP_COND ^ 1, s->condlabel);
        s->condjmp = 1;
    }

    val = (int32_t)s->pc;
    if (UCOP_SET_L) {
        tmp = new_tmp();
        tcg_gen_movi_i32(tmp, val);
        store_reg(s, 30, tmp);
    }
    offset = (((int32_t)insn << 8) >> 8);
    val += (offset << 2); /* unicore is pc+4 */
    gen_jmp(s, val);
}

static void disas_uc32_insn(CPUUniCore32State *env, DisasContext *s)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    unsigned int insn;

    insn = cpu_ldl_code(env, s->pc);
    s->pc += 4;

    /* UniCore instructions class:
     * AAAB BBBC xxxx xxxx xxxx xxxD xxEx xxxx
     * AAA  : see switch case
     * BBBB : opcodes or cond or PUBW
     * C    : S OR L
     * D    : 8
     * E    : 5
     */
    switch (insn >> 29) {
    case 0x0:
        if (UCOP_SET(5) && UCOP_SET(8) && !UCOP_SET(28)) {
            do_mult(env, s, insn);
            break;
        }

        if (UCOP_SET(8)) {
            do_misc(env, s, insn);
            break;
        }
    case 0x1:
        if (((UCOP_OPCODES >> 2) == 2) && !UCOP_SET_S) {
            do_misc(env, s, insn);
            break;
        }
        do_datap(env, s, insn);
        break;

    case 0x2:
        if (UCOP_SET(8) && UCOP_SET(5)) {
            do_ldst_hwsb(env, s, insn);
            break;
        }
        if (UCOP_SET(8) || UCOP_SET(5)) {
            ILLEGAL;
        }
    case 0x3:
        do_ldst_ir(env, s, insn);
        break;

    case 0x4:
        if (UCOP_SET(8)) {
            ILLEGAL; /* extended instructions */
        }
        do_ldst_m(env, s, insn);
        break;
    case 0x5:
        do_branch(env, s, insn);
        break;
    case 0x6:
        /* Coprocessor.  */
        disas_coproc_insn(env, s, insn);
        break;
    case 0x7:
        if (!UCOP_SET(28)) {
            disas_coproc_insn(env, s, insn);
            break;
        }
        if ((insn & 0xff000000) == 0xff000000) { /* syscall */
            gen_set_pc_im(s->pc);
            s->is_jmp = DISAS_SYSCALL;
            break;
        }
        ILLEGAL;
    }
}

/* generate intermediate code for basic block 'tb'.  */
void gen_intermediate_code(CPUUniCore32State *env, TranslationBlock *tb)
{
    UniCore32CPU *cpu = uc32_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    DisasContext dc1, *dc = &dc1;
    target_ulong pc_start;
    uint32_t next_page_start;
    int num_insns;
    int max_insns;

    /* generate intermediate code */
    num_temps = 0;

    pc_start = tb->pc;

    dc->tb = tb;

    dc->is_jmp = DISAS_NEXT;
    dc->pc = pc_start;
    dc->singlestep_enabled = cs->singlestep_enabled;
    dc->condjmp = 0;
    cpu_F0s = tcg_temp_new_i32();
    cpu_F1s = tcg_temp_new_i32();
    cpu_F0d = tcg_temp_new_i64();
    cpu_F1d = tcg_temp_new_i64();
    next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
    num_insns = 0;
    max_insns = tb->cflags & CF_COUNT_MASK;
    if (max_insns == 0) {
        max_insns = CF_COUNT_MASK;
    }
    if (max_insns > TCG_MAX_INSNS) {
        max_insns = TCG_MAX_INSNS;
    }

#ifndef CONFIG_USER_ONLY
    if ((env->uncached_asr & ASR_M) == ASR_MODE_USER) {
        dc->user = 1;
    } else {
        dc->user = 0;
    }
#endif

    gen_tb_start(tb);
    do {
        tcg_gen_insn_start(dc->pc);
        num_insns++;

        if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) {
            gen_set_pc_im(dc->pc);
            gen_exception(EXCP_DEBUG);
            dc->is_jmp = DISAS_JUMP;
            /* The address covered by the breakpoint must be included in
               [tb->pc, tb->pc + tb->size) in order to for it to be
               properly cleared -- thus we increment the PC here so that
               the logic setting tb->size below does the right thing.  */
            dc->pc += 4;
            goto done_generating;
        }

        if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
            gen_io_start();
        }

        disas_uc32_insn(env, dc);

        if (num_temps) {
            fprintf(stderr, "Internal resource leak before %08x\n", dc->pc);
            num_temps = 0;
        }

        if (dc->condjmp && !dc->is_jmp) {
            gen_set_label(dc->condlabel);
            dc->condjmp = 0;
        }
        /* Translation stops when a conditional branch is encountered.
         * Otherwise the subsequent code could get translated several times.
         * Also stop translation when a page boundary is reached.  This
         * ensures prefetch aborts occur at the right place.  */
    } while (!dc->is_jmp && !tcg_op_buf_full() &&
             !cs->singlestep_enabled &&
             !singlestep &&
             dc->pc < next_page_start &&
             num_insns < max_insns);

    if (tb->cflags & CF_LAST_IO) {
        if (dc->condjmp) {
            /* FIXME:  This can theoretically happen with self-modifying
               code.  */
            cpu_abort(cs, "IO on conditional branch instruction");
        }
        gen_io_end();
    }

    /* At this stage dc->condjmp will only be set when the skipped
       instruction was a conditional branch or trap, and the PC has
       already been written.  */
    if (unlikely(cs->singlestep_enabled)) {
        /* Make sure the pc is updated, and raise a debug exception.  */
        if (dc->condjmp) {
            if (dc->is_jmp == DISAS_SYSCALL) {
                gen_exception(UC32_EXCP_PRIV);
            } else {
                gen_exception(EXCP_DEBUG);
            }
            gen_set_label(dc->condlabel);
        }
        if (dc->condjmp || !dc->is_jmp) {
            gen_set_pc_im(dc->pc);
            dc->condjmp = 0;
        }
        if (dc->is_jmp == DISAS_SYSCALL && !dc->condjmp) {
            gen_exception(UC32_EXCP_PRIV);
        } else {
            gen_exception(EXCP_DEBUG);
        }
    } else {
        /* While branches must always occur at the end of an IT block,
           there are a few other things that can cause us to terminate
           the TB in the middel of an IT block:
            - Exception generating instructions (bkpt, swi, undefined).
            - Page boundaries.
            - Hardware watchpoints.
           Hardware breakpoints have already been handled and skip this code.
         */
        switch (dc->is_jmp) {
        case DISAS_NEXT:
            gen_goto_tb(dc, 1, dc->pc);
            break;
        default:
        case DISAS_JUMP:
        case DISAS_UPDATE:
            /* indicate that the hash table must be used to find the next TB */
            tcg_gen_exit_tb(0);
            break;
        case DISAS_TB_JUMP:
            /* nothing more to generate */
            break;
        case DISAS_SYSCALL:
            gen_exception(UC32_EXCP_PRIV);
            break;
        }
        if (dc->condjmp) {
            gen_set_label(dc->condlabel);
            gen_goto_tb(dc, 1, dc->pc);
            dc->condjmp = 0;
        }
    }

done_generating:
    gen_tb_end(tb, num_insns);

#ifdef DEBUG_DISAS
    if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
        qemu_log("----------------\n");
        qemu_log("IN: %s\n", lookup_symbol(pc_start));
        log_target_disas(cs, pc_start, dc->pc - pc_start, 0);
        qemu_log("\n");
    }
#endif
    tb->size = dc->pc - pc_start;
    tb->icount = num_insns;
}

static const char *cpu_mode_names[16] = {
    "USER", "REAL", "INTR", "PRIV", "UM14", "UM15", "UM16", "TRAP",
    "UM18", "UM19", "UM1A", "EXTN", "UM1C", "UM1D", "UM1E", "SUSR"
};

#undef UCF64_DUMP_STATE
#ifdef UCF64_DUMP_STATE
static void cpu_dump_state_ucf64(CPUUniCore32State *env, FILE *f,
        fprintf_function cpu_fprintf, int flags)
{
    int i;
    union {
        uint32_t i;
        float s;
    } s0, s1;
    CPU_DoubleU d;
    /* ??? This assumes float64 and double have the same layout.
       Oh well, it's only debug dumps.  */
    union {
        float64 f64;
        double d;
    } d0;

    for (i = 0; i < 16; i++) {
        d.d = env->ucf64.regs[i];
        s0.i = d.l.lower;
        s1.i = d.l.upper;
        d0.f64 = d.d;
        cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g)",
                    i * 2, (int)s0.i, s0.s,
                    i * 2 + 1, (int)s1.i, s1.s);
        cpu_fprintf(f, " d%02d=%" PRIx64 "(%8g)\n",
                    i, (uint64_t)d0.f64, d0.d);
    }
    cpu_fprintf(f, "FPSCR: %08x\n", (int)env->ucf64.xregs[UC32_UCF64_FPSCR]);
}
#else
#define cpu_dump_state_ucf64(env, file, pr, flags)      do { } while (0)
#endif

void uc32_cpu_dump_state(CPUState *cs, FILE *f,
                         fprintf_function cpu_fprintf, int flags)
{
    UniCore32CPU *cpu = UNICORE32_CPU(cs);
    CPUUniCore32State *env = &cpu->env;
    int i;
    uint32_t psr;

    for (i = 0; i < 32; i++) {
        cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
        if ((i % 4) == 3) {
            cpu_fprintf(f, "\n");
        } else {
            cpu_fprintf(f, " ");
        }
    }
    psr = cpu_asr_read(env);
    cpu_fprintf(f, "PSR=%08x %c%c%c%c %s\n",
                psr,
                psr & (1 << 31) ? 'N' : '-',
                psr & (1 << 30) ? 'Z' : '-',
                psr & (1 << 29) ? 'C' : '-',
                psr & (1 << 28) ? 'V' : '-',
                cpu_mode_names[psr & 0xf]);

    cpu_dump_state_ucf64(env, f, cpu_fprintf, flags);
}

void restore_state_to_opc(CPUUniCore32State *env, TranslationBlock *tb,
                          target_ulong *data)
{
    env->regs[31] = data[0];
}