summaryrefslogtreecommitdiffstats
path: root/kernel/arch/arm/mach-mvebu/platsmp.c
blob: 58cc8c1575eb7e5f8139b69dd7c658f3d50e2efd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/*
 * Symmetric Multi Processing (SMP) support for Armada XP
 *
 * Copyright (C) 2012 Marvell
 *
 * Lior Amsalem <alior@marvell.com>
 * Yehuda Yitschak <yehuday@marvell.com>
 * Gregory CLEMENT <gregory.clement@free-electrons.com>
 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
 *
 * This file is licensed under the terms of the GNU General Public
 * License version 2.  This program is licensed "as is" without any
 * warranty of any kind, whether express or implied.
 *
 * The Armada XP SoC has 4 ARMv7 PJ4B CPUs running in full HW coherency
 * This file implements the routines for preparing the SMP infrastructure
 * and waking up the secondary CPUs
 */

#include <linux/init.h>
#include <linux/smp.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/mbus.h>
#include <asm/cacheflush.h>
#include <asm/smp_plat.h>
#include "common.h"
#include "armada-370-xp.h"
#include "pmsu.h"
#include "coherency.h"

#define ARMADA_XP_MAX_CPUS 4

#define AXP_BOOTROM_BASE 0xfff00000
#define AXP_BOOTROM_SIZE 0x100000

static struct clk *get_cpu_clk(int cpu)
{
	struct clk *cpu_clk;
	struct device_node *np = of_get_cpu_node(cpu, NULL);

	if (WARN(!np, "missing cpu node\n"))
		return NULL;
	cpu_clk = of_clk_get(np, 0);
	if (WARN_ON(IS_ERR(cpu_clk)))
		return NULL;
	return cpu_clk;
}

static void set_secondary_cpu_clock(unsigned int cpu)
{
	int thiscpu;
	unsigned long rate;
	struct clk *cpu_clk;

	thiscpu = get_cpu();

	cpu_clk = get_cpu_clk(thiscpu);
	if (!cpu_clk)
		goto out;
	clk_prepare_enable(cpu_clk);
	rate = clk_get_rate(cpu_clk);

	cpu_clk = get_cpu_clk(cpu);
	if (!cpu_clk)
		goto out;
	clk_set_rate(cpu_clk, rate);
	clk_prepare_enable(cpu_clk);

out:
	put_cpu();
}

static int armada_xp_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
	int ret, hw_cpu;

	pr_info("Booting CPU %d\n", cpu);

	hw_cpu = cpu_logical_map(cpu);
	set_secondary_cpu_clock(hw_cpu);
	mvebu_pmsu_set_cpu_boot_addr(hw_cpu, armada_xp_secondary_startup);

	/*
	 * This is needed to wake up CPUs in the offline state after
	 * using CPU hotplug.
	 */
	arch_send_wakeup_ipi_mask(cpumask_of(cpu));

	/*
	 * This is needed to take secondary CPUs out of reset on the
	 * initial boot.
	 */
	ret = mvebu_cpu_reset_deassert(hw_cpu);
	if (ret) {
		pr_warn("unable to boot CPU: %d\n", ret);
		return ret;
	}

	return 0;
}

/*
 * When a CPU is brought back online, either through CPU hotplug, or
 * because of the boot of a kexec'ed kernel, the PMSU configuration
 * for this CPU might be in the deep idle state, preventing this CPU
 * from receiving interrupts. Here, we therefore take out the current
 * CPU from this state, which was entered by armada_xp_cpu_die()
 * below.
 */
static void armada_xp_secondary_init(unsigned int cpu)
{
	mvebu_v7_pmsu_idle_exit();
}

static void __init armada_xp_smp_init_cpus(void)
{
	unsigned int ncores = num_possible_cpus();

	if (ncores == 0 || ncores > ARMADA_XP_MAX_CPUS)
		panic("Invalid number of CPUs in DT\n");
}

static void __init armada_xp_smp_prepare_cpus(unsigned int max_cpus)
{
	struct device_node *node;
	struct resource res;
	int err;

	flush_cache_all();
	set_cpu_coherent();

	/*
	 * In order to boot the secondary CPUs we need to ensure
	 * the bootROM is mapped at the correct address.
	 */
	node = of_find_compatible_node(NULL, NULL, "marvell,bootrom");
	if (!node)
		panic("Cannot find 'marvell,bootrom' compatible node");

	err = of_address_to_resource(node, 0, &res);
	if (err < 0)
		panic("Cannot get 'bootrom' node address");

	if (res.start != AXP_BOOTROM_BASE ||
	    resource_size(&res) != AXP_BOOTROM_SIZE)
		panic("The address for the BootROM is incorrect");
}

#ifdef CONFIG_HOTPLUG_CPU
static void armada_xp_cpu_die(unsigned int cpu)
{
	/*
	 * CPU hotplug is implemented by putting offline CPUs into the
	 * deep idle sleep state.
	 */
	armada_370_xp_pmsu_idle_enter(true);
}

/*
 * We need a dummy function, so that platform_can_cpu_hotplug() knows
 * we support CPU hotplug. However, the function does not need to do
 * anything, because CPUs going offline can enter the deep idle state
 * by themselves, without any help from a still alive CPU.
 */
static int armada_xp_cpu_kill(unsigned int cpu)
{
	return 1;
}
#endif

struct smp_operations armada_xp_smp_ops __initdata = {
	.smp_init_cpus		= armada_xp_smp_init_cpus,
	.smp_prepare_cpus	= armada_xp_smp_prepare_cpus,
	.smp_boot_secondary	= armada_xp_boot_secondary,
	.smp_secondary_init     = armada_xp_secondary_init,
#ifdef CONFIG_HOTPLUG_CPU
	.cpu_die		= armada_xp_cpu_die,
	.cpu_kill               = armada_xp_cpu_kill,
#endif
};

CPU_METHOD_OF_DECLARE(armada_xp_smp, "marvell,armada-xp-smp",
		      &armada_xp_smp_ops);
63 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
/*
 * (C) Copyright 2008 Semihalf
 *
 * (C) Copyright 2000-2006
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#ifndef USE_HOSTCC
#include <common.h>
#include <watchdog.h>

#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif

#ifdef CONFIG_HAS_DATAFLASH
#include <dataflash.h>
#endif

#ifdef CONFIG_LOGBUFFER
#include <logbuff.h>
#endif

#include <rtc.h>

#include <environment.h>
#include <image.h>

#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
#include <libfdt.h>
#include <fdt_support.h>
#endif

#include <u-boot/md5.h>
#include <sha1.h>
#include <asm/errno.h>
#include <asm/io.h>

#ifdef CONFIG_CMD_BDI
extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
#endif

DECLARE_GLOBAL_DATA_PTR;

static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
						int verify);
#else
#include "mkimage.h"
#include <u-boot/md5.h>
#include <time.h>
#include <image.h>
#endif /* !USE_HOSTCC*/

#include <u-boot/crc.h>

#ifndef CONFIG_SYS_BARGSIZE
#define CONFIG_SYS_BARGSIZE 512
#endif

static const table_entry_t uimage_arch[] = {
	{	IH_ARCH_INVALID,	NULL,		"Invalid ARCH",	},
	{	IH_ARCH_ALPHA,		"alpha",	"Alpha",	},
	{	IH_ARCH_ARM,		"arm",		"ARM",		},
	{	IH_ARCH_I386,		"x86",		"Intel x86",	},
	{	IH_ARCH_IA64,		"ia64",		"IA64",		},
	{	IH_ARCH_M68K,		"m68k",		"M68K",		},
	{	IH_ARCH_MICROBLAZE,	"microblaze",	"MicroBlaze",	},
	{	IH_ARCH_MIPS,		"mips",		"MIPS",		},
	{	IH_ARCH_MIPS64,		"mips64",	"MIPS 64 Bit",	},
	{	IH_ARCH_NIOS2,		"nios2",	"NIOS II",	},
	{	IH_ARCH_PPC,		"powerpc",	"PowerPC",	},
	{	IH_ARCH_PPC,		"ppc",		"PowerPC",	},
	{	IH_ARCH_S390,		"s390",		"IBM S390",	},
	{	IH_ARCH_SH,		"sh",		"SuperH",	},
	{	IH_ARCH_SPARC,		"sparc",	"SPARC",	},
	{	IH_ARCH_SPARC64,	"sparc64",	"SPARC 64 Bit",	},
	{	IH_ARCH_BLACKFIN,	"blackfin",	"Blackfin",	},
	{	IH_ARCH_AVR32,		"avr32",	"AVR32",	},
	{	IH_ARCH_NDS32,		"nds32",	"NDS32",	},
	{	IH_ARCH_OPENRISC,	"or1k",		"OpenRISC 1000",},
	{	IH_ARCH_SANDBOX,	"sandbox",	"Sandbox",	},
	{	IH_ARCH_ARM64,		"arm64",	"AArch64",	},
	{	IH_ARCH_ARC,		"arc",		"ARC",		},
	{	-1,			"",		"",		},
};

static const table_entry_t uimage_os[] = {
	{	IH_OS_INVALID,	NULL,		"Invalid OS",		},
	{	IH_OS_LINUX,	"linux",	"Linux",		},
#if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
	{	IH_OS_LYNXOS,	"lynxos",	"LynxOS",		},
#endif
	{	IH_OS_NETBSD,	"netbsd",	"NetBSD",		},
	{	IH_OS_OSE,	"ose",		"Enea OSE",		},
	{	IH_OS_PLAN9,	"plan9",	"Plan 9",		},
	{	IH_OS_RTEMS,	"rtems",	"RTEMS",		},
	{	IH_OS_U_BOOT,	"u-boot",	"U-Boot",		},
	{	IH_OS_VXWORKS,	"vxworks",	"VxWorks",		},
#if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
	{	IH_OS_QNX,	"qnx",		"QNX",			},
#endif
#if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
	{	IH_OS_INTEGRITY,"integrity",	"INTEGRITY",		},
#endif
#ifdef USE_HOSTCC
	{	IH_OS_4_4BSD,	"4_4bsd",	"4_4BSD",		},
	{	IH_OS_DELL,	"dell",		"Dell",			},
	{	IH_OS_ESIX,	"esix",		"Esix",			},
	{	IH_OS_FREEBSD,	"freebsd",	"FreeBSD",		},
	{	IH_OS_IRIX,	"irix",		"Irix",			},
	{	IH_OS_NCR,	"ncr",		"NCR",			},
	{	IH_OS_OPENBSD,	"openbsd",	"OpenBSD",		},
	{	IH_OS_PSOS,	"psos",		"pSOS",			},
	{	IH_OS_SCO,	"sco",		"SCO",			},
	{	IH_OS_SOLARIS,	"solaris",	"Solaris",		},
	{	IH_OS_SVR4,	"svr4",		"SVR4",			},
#endif
	{	-1,		"",		"",			},
};

static const table_entry_t uimage_type[] = {
	{	IH_TYPE_AISIMAGE,   "aisimage",   "Davinci AIS image",},
	{	IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image",	},
	{	IH_TYPE_FIRMWARE,   "firmware",	  "Firmware",		},
	{	IH_TYPE_FLATDT,     "flat_dt",    "Flat Device Tree",	},
	{	IH_TYPE_GPIMAGE,    "gpimage",    "TI Keystone SPL Image",},
	{	IH_TYPE_KERNEL,	    "kernel",	  "Kernel Image",	},
	{	IH_TYPE_KERNEL_NOLOAD, "kernel_noload",  "Kernel Image (no loading done)", },
	{	IH_TYPE_KWBIMAGE,   "kwbimage",   "Kirkwood Boot Image",},
	{	IH_TYPE_IMXIMAGE,   "imximage",   "Freescale i.MX Boot Image",},
	{	IH_TYPE_INVALID,    NULL,	  "Invalid Image",	},
	{	IH_TYPE_MULTI,	    "multi",	  "Multi-File Image",	},
	{	IH_TYPE_OMAPIMAGE,  "omapimage",  "TI OMAP SPL With GP CH",},
	{	IH_TYPE_PBLIMAGE,   "pblimage",   "Freescale PBL Boot Image",},
	{	IH_TYPE_RAMDISK,    "ramdisk",	  "RAMDisk Image",	},
	{	IH_TYPE_SCRIPT,     "script",	  "Script",		},
	{	IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
	{	IH_TYPE_UBLIMAGE,   "ublimage",   "Davinci UBL image",},
	{	IH_TYPE_MXSIMAGE,   "mxsimage",   "Freescale MXS Boot Image",},
	{	-1,		    "",		  "",			},
};

static const table_entry_t uimage_comp[] = {
	{	IH_COMP_NONE,	"none",		"uncompressed",		},
	{	IH_COMP_BZIP2,	"bzip2",	"bzip2 compressed",	},
	{	IH_COMP_GZIP,	"gzip",		"gzip compressed",	},
	{	IH_COMP_LZMA,	"lzma",		"lzma compressed",	},
	{	IH_COMP_LZO,	"lzo",		"lzo compressed",	},
	{	-1,		"",		"",			},
};

/*****************************************************************************/
/* Legacy format routines */
/*****************************************************************************/
int image_check_hcrc(const image_header_t *hdr)
{
	ulong hcrc;
	ulong len = image_get_header_size();
	image_header_t header;

	/* Copy header so we can blank CRC field for re-calculation */
	memmove(&header, (char *)hdr, image_get_header_size());
	image_set_hcrc(&header, 0);

	hcrc = crc32(0, (unsigned char *)&header, len);

	return (hcrc == image_get_hcrc(hdr));
}

int image_check_dcrc(const image_header_t *hdr)
{
	ulong data = image_get_data(hdr);
	ulong len = image_get_data_size(hdr);
	ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);

	return (dcrc == image_get_dcrc(hdr));
}

/**
 * image_multi_count - get component (sub-image) count
 * @hdr: pointer to the header of the multi component image
 *
 * image_multi_count() returns number of components in a multi
 * component image.
 *
 * Note: no checking of the image type is done, caller must pass
 * a valid multi component image.
 *
 * returns:
 *     number of components
 */
ulong image_multi_count(const image_header_t *hdr)
{
	ulong i, count = 0;
	uint32_t *size;

	/* get start of the image payload, which in case of multi
	 * component images that points to a table of component sizes */
	size = (uint32_t *)image_get_data(hdr);

	/* count non empty slots */
	for (i = 0; size[i]; ++i)
		count++;

	return count;
}

/**
 * image_multi_getimg - get component data address and size
 * @hdr: pointer to the header of the multi component image
 * @idx: index of the requested component
 * @data: pointer to a ulong variable, will hold component data address
 * @len: pointer to a ulong variable, will hold component size
 *
 * image_multi_getimg() returns size and data address for the requested
 * component in a multi component image.
 *
 * Note: no checking of the image type is done, caller must pass
 * a valid multi component image.
 *
 * returns:
 *     data address and size of the component, if idx is valid
 *     0 in data and len, if idx is out of range
 */
void image_multi_getimg(const image_header_t *hdr, ulong idx,
			ulong *data, ulong *len)
{
	int i;
	uint32_t *size;
	ulong offset, count, img_data;

	/* get number of component */
	count = image_multi_count(hdr);

	/* get start of the image payload, which in case of multi
	 * component images that points to a table of component sizes */
	size = (uint32_t *)image_get_data(hdr);

	/* get address of the proper component data start, which means
	 * skipping sizes table (add 1 for last, null entry) */
	img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);

	if (idx < count) {
		*len = uimage_to_cpu(size[idx]);
		offset = 0;

		/* go over all indices preceding requested component idx */
		for (i = 0; i < idx; i++) {
			/* add up i-th component size, rounding up to 4 bytes */
			offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
		}

		/* calculate idx-th component data address */
		*data = img_data + offset;
	} else {
		*len = 0;
		*data = 0;
	}
}

static void image_print_type(const image_header_t *hdr)
{
	const char *os, *arch, *type, *comp;

	os = genimg_get_os_name(image_get_os(hdr));
	arch = genimg_get_arch_name(image_get_arch(hdr));
	type = genimg_get_type_name(image_get_type(hdr));
	comp = genimg_get_comp_name(image_get_comp(hdr));

	printf("%s %s %s (%s)\n", arch, os, type, comp);
}

/**
 * image_print_contents - prints out the contents of the legacy format image
 * @ptr: pointer to the legacy format image header
 * @p: pointer to prefix string
 *
 * image_print_contents() formats a multi line legacy image contents description.
 * The routine prints out all header fields followed by the size/offset data
 * for MULTI/SCRIPT images.
 *
 * returns:
 *     no returned results
 */
void image_print_contents(const void *ptr)
{
	const image_header_t *hdr = (const image_header_t *)ptr;
	const char *p;

	p = IMAGE_INDENT_STRING;
	printf("%sImage Name:   %.*s\n", p, IH_NMLEN, image_get_name(hdr));
	if (IMAGE_ENABLE_TIMESTAMP) {
		printf("%sCreated:      ", p);
		genimg_print_time((time_t)image_get_time(hdr));
	}
	printf("%sImage Type:   ", p);
	image_print_type(hdr);
	printf("%sData Size:    ", p);
	genimg_print_size(image_get_data_size(hdr));
	printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
	printf("%sEntry Point:  %08x\n", p, image_get_ep(hdr));

	if (image_check_type(hdr, IH_TYPE_MULTI) ||
			image_check_type(hdr, IH_TYPE_SCRIPT)) {
		int i;
		ulong data, len;
		ulong count = image_multi_count(hdr);

		printf("%sContents:\n", p);
		for (i = 0; i < count; i++) {
			image_multi_getimg(hdr, i, &data, &len);

			printf("%s   Image %d: ", p, i);
			genimg_print_size(len);

			if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
				/*
				 * the user may need to know offsets
				 * if planning to do something with
				 * multiple files
				 */
				printf("%s    Offset = 0x%08lx\n", p, data);
			}
		}
	}
}


#ifndef USE_HOSTCC
/**
 * image_get_ramdisk - get and verify ramdisk image
 * @rd_addr: ramdisk image start address
 * @arch: expected ramdisk architecture
 * @verify: checksum verification flag
 *
 * image_get_ramdisk() returns a pointer to the verified ramdisk image
 * header. Routine receives image start address and expected architecture
 * flag. Verification done covers data and header integrity and os/type/arch
 * fields checking.
 *
 * If dataflash support is enabled routine checks for dataflash addresses
 * and handles required dataflash reads.
 *
 * returns:
 *     pointer to a ramdisk image header, if image was found and valid
 *     otherwise, return NULL
 */
static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
						int verify)
{
	const image_header_t *rd_hdr = (const image_header_t *)rd_addr;

	if (!image_check_magic(rd_hdr)) {
		puts("Bad Magic Number\n");
		bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
		return NULL;
	}

	if (!image_check_hcrc(rd_hdr)) {
		puts("Bad Header Checksum\n");
		bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
		return NULL;
	}

	bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
	image_print_contents(rd_hdr);

	if (verify) {
		puts("   Verifying Checksum ... ");
		if (!image_check_dcrc(rd_hdr)) {
			puts("Bad Data CRC\n");
			bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
			return NULL;
		}
		puts("OK\n");
	}

	bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);

	if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
	    !image_check_arch(rd_hdr, arch) ||
	    !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
		printf("No Linux %s Ramdisk Image\n",
				genimg_get_arch_name(arch));
		bootstage_error(BOOTSTAGE_ID_RAMDISK);
		return NULL;
	}

	return rd_hdr;
}
#endif /* !USE_HOSTCC */

/*****************************************************************************/
/* Shared dual-format routines */
/*****************************************************************************/
#ifndef USE_HOSTCC
ulong load_addr = CONFIG_SYS_LOAD_ADDR;	/* Default Load Address */
ulong save_addr;			/* Default Save Address */
ulong save_size;			/* Default Save Size (in bytes) */

static int on_loadaddr(const char *name, const char *value, enum env_op op,
	int flags)
{
	switch (op) {
	case env_op_create:
	case env_op_overwrite:
		load_addr = simple_strtoul(value, NULL, 16);
		break;
	default:
		break;
	}

	return 0;
}
U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);

ulong getenv_bootm_low(void)
{
	char *s = getenv("bootm_low");
	if (s) {
		ulong tmp = simple_strtoul(s, NULL, 16);
		return tmp;
	}

#if defined(CONFIG_SYS_SDRAM_BASE)
	return CONFIG_SYS_SDRAM_BASE;
#elif defined(CONFIG_ARM)
	return gd->bd->bi_dram[0].start;
#else
	return 0;
#endif
}

phys_size_t getenv_bootm_size(void)
{
	phys_size_t tmp;
	char *s = getenv("bootm_size");
	if (s) {
		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
		return tmp;
	}
	s = getenv("bootm_low");
	if (s)
		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
	else
		tmp = 0;


#if defined(CONFIG_ARM)
	return gd->bd->bi_dram[0].size - tmp;
#else
	return gd->bd->bi_memsize - tmp;
#endif
}

phys_size_t getenv_bootm_mapsize(void)
{
	phys_size_t tmp;
	char *s = getenv("bootm_mapsize");
	if (s) {
		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
		return tmp;
	}

#if defined(CONFIG_SYS_BOOTMAPSZ)
	return CONFIG_SYS_BOOTMAPSZ;
#else
	return getenv_bootm_size();
#endif
}

void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
{
	if (to == from)
		return;

#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
	while (len > 0) {
		size_t tail = (len > chunksz) ? chunksz : len;
		WATCHDOG_RESET();
		memmove(to, from, tail);
		to += tail;
		from += tail;
		len -= tail;
	}
#else	/* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
	memmove(to, from, len);
#endif	/* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
}
#endif /* !USE_HOSTCC */

void genimg_print_size(uint32_t size)
{
#ifndef USE_HOSTCC
	printf("%d Bytes = ", size);
	print_size(size, "\n");
#else
	printf("%d Bytes = %.2f kB = %.2f MB\n",
			size, (double)size / 1.024e3,
			(double)size / 1.048576e6);
#endif
}

#if IMAGE_ENABLE_TIMESTAMP
void genimg_print_time(time_t timestamp)
{
#ifndef USE_HOSTCC
	struct rtc_time tm;

	to_tm(timestamp, &tm);
	printf("%4d-%02d-%02d  %2d:%02d:%02d UTC\n",
			tm.tm_year, tm.tm_mon, tm.tm_mday,
			tm.tm_hour, tm.tm_min, tm.tm_sec);
#else
	printf("%s", ctime(&timestamp));
#endif
}
#endif

/**
 * get_table_entry_name - translate entry id to long name
 * @table: pointer to a translation table for entries of a specific type
 * @msg: message to be returned when translation fails
 * @id: entry id to be translated
 *
 * get_table_entry_name() will go over translation table trying to find
 * entry that matches given id. If matching entry is found, its long
 * name is returned to the caller.
 *
 * returns:
 *     long entry name if translation succeeds
 *     msg otherwise
 */
char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
{
	for (; table->id >= 0; ++table) {
		if (table->id == id)
#if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
			return table->lname;
#else
			return table->lname + gd->reloc_off;
#endif
	}
	return (msg);
}

const char *genimg_get_os_name(uint8_t os)
{
	return (get_table_entry_name(uimage_os, "Unknown OS", os));
}

const char *genimg_get_arch_name(uint8_t arch)
{
	return (get_table_entry_name(uimage_arch, "Unknown Architecture",
					arch));
}

const char *genimg_get_type_name(uint8_t type)
{
	return (get_table_entry_name(uimage_type, "Unknown Image", type));
}

const char *genimg_get_comp_name(uint8_t comp)
{
	return (get_table_entry_name(uimage_comp, "Unknown Compression",
					comp));
}

/**
 * get_table_entry_id - translate short entry name to id
 * @table: pointer to a translation table for entries of a specific type
 * @table_name: to be used in case of error
 * @name: entry short name to be translated
 *
 * get_table_entry_id() will go over translation table trying to find
 * entry that matches given short name. If matching entry is found,
 * its id returned to the caller.
 *
 * returns:
 *     entry id if translation succeeds
 *     -1 otherwise
 */
int get_table_entry_id(const table_entry_t *table,
		const char *table_name, const char *name)
{
	const table_entry_t *t;
#ifdef USE_HOSTCC
	int first = 1;

	for (t = table; t->id >= 0; ++t) {
		if (t->sname && strcasecmp(t->sname, name) == 0)
			return(t->id);
	}

	fprintf(stderr, "\nInvalid %s Type - valid names are", table_name);
	for (t = table; t->id >= 0; ++t) {
		if (t->sname == NULL)
			continue;
		fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname);
		first = 0;
	}
	fprintf(stderr, "\n");
#else
	for (t = table; t->id >= 0; ++t) {
#ifdef CONFIG_NEEDS_MANUAL_RELOC
		if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0)
#else
		if (t->sname && strcmp(t->sname, name) == 0)
#endif
			return (t->id);
	}
	debug("Invalid %s Type: %s\n", table_name, name);
#endif /* USE_HOSTCC */
	return (-1);
}

int genimg_get_os_id(const char *name)
{
	return (get_table_entry_id(uimage_os, "OS", name));
}

int genimg_get_arch_id(const char *name)
{
	return (get_table_entry_id(uimage_arch, "CPU", name));
}

int genimg_get_type_id(const char *name)
{
	return (get_table_entry_id(uimage_type, "Image", name));
}

int genimg_get_comp_id(const char *name)
{
	return (get_table_entry_id(uimage_comp, "Compression", name));
}

#ifndef USE_HOSTCC
/**
 * genimg_get_format - get image format type
 * @img_addr: image start address
 *
 * genimg_get_format() checks whether provided address points to a valid
 * legacy or FIT image.
 *
 * New uImage format and FDT blob are based on a libfdt. FDT blob
 * may be passed directly or embedded in a FIT image. In both situations
 * genimg_get_format() must be able to dectect libfdt header.
 *
 * returns:
 *     image format type or IMAGE_FORMAT_INVALID if no image is present
 */
int genimg_get_format(const void *img_addr)
{
	ulong format = IMAGE_FORMAT_INVALID;
	const image_header_t *hdr;

	hdr = (const image_header_t *)img_addr;
	if (image_check_magic(hdr))
		format = IMAGE_FORMAT_LEGACY;
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
	else {
		if (fdt_check_header(img_addr) == 0)
			format = IMAGE_FORMAT_FIT;
	}
#endif

	return format;
}

/**
 * genimg_get_image - get image from special storage (if necessary)
 * @img_addr: image start address
 *
 * genimg_get_image() checks if provided image start adddress is located
 * in a dataflash storage. If so, image is moved to a system RAM memory.
 *
 * returns:
 *     image start address after possible relocation from special storage
 */
ulong genimg_get_image(ulong img_addr)
{
	ulong ram_addr = img_addr;

#ifdef CONFIG_HAS_DATAFLASH
	ulong h_size, d_size;

	if (addr_dataflash(img_addr)) {
		void *buf;

		/* ger RAM address */
		ram_addr = CONFIG_SYS_LOAD_ADDR;

		/* get header size */
		h_size = image_get_header_size();
#if defined(CONFIG_FIT)
		if (sizeof(struct fdt_header) > h_size)
			h_size = sizeof(struct fdt_header);
#endif

		/* read in header */
		debug("   Reading image header from dataflash address "
			"%08lx to RAM address %08lx\n", img_addr, ram_addr);

		buf = map_sysmem(ram_addr, 0);
		read_dataflash(img_addr, h_size, buf);

		/* get data size */
		switch (genimg_get_format(buf)) {
		case IMAGE_FORMAT_LEGACY:
			d_size = image_get_data_size(buf);
			debug("   Legacy format image found at 0x%08lx, "
					"size 0x%08lx\n",
					ram_addr, d_size);
			break;
#if defined(CONFIG_FIT)
		case IMAGE_FORMAT_FIT:
			d_size = fit_get_size(buf) - h_size;
			debug("   FIT/FDT format image found at 0x%08lx, "
					"size 0x%08lx\n",
					ram_addr, d_size);
			break;
#endif
		default:
			printf("   No valid image found at 0x%08lx\n",
				img_addr);
			return ram_addr;
		}

		/* read in image data */
		debug("   Reading image remaining data from dataflash address "
			"%08lx to RAM address %08lx\n", img_addr + h_size,
			ram_addr + h_size);

		read_dataflash(img_addr + h_size, d_size,
				(char *)(buf + h_size));

	}
#endif /* CONFIG_HAS_DATAFLASH */

	return ram_addr;
}

/**
 * fit_has_config - check if there is a valid FIT configuration
 * @images: pointer to the bootm command headers structure
 *
 * fit_has_config() checks if there is a FIT configuration in use
 * (if FTI support is present).
 *
 * returns:
 *     0, no FIT support or no configuration found
 *     1, configuration found
 */
int genimg_has_config(bootm_headers_t *images)
{
#if defined(CONFIG_FIT)
	if (images->fit_uname_cfg)
		return 1;
#endif
	return 0;
}

/**
 * boot_get_ramdisk - main ramdisk handling routine
 * @argc: command argument count
 * @argv: command argument list
 * @images: pointer to the bootm images structure
 * @arch: expected ramdisk architecture
 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
 * @rd_end: pointer to a ulong variable, will hold ramdisk end
 *
 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
 * Curently supported are the following ramdisk sources:
 *      - multicomponent kernel/ramdisk image,
 *      - commandline provided address of decicated ramdisk image.
 *
 * returns:
 *     0, if ramdisk image was found and valid, or skiped
 *     rd_start and rd_end are set to ramdisk start/end addresses if
 *     ramdisk image is found and valid
 *
 *     1, if ramdisk image is found but corrupted, or invalid
 *     rd_start and rd_end are set to 0 if no ramdisk exists
 */
int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
		uint8_t arch, ulong *rd_start, ulong *rd_end)
{
	ulong rd_addr, rd_load;
	ulong rd_data, rd_len;
	const image_header_t *rd_hdr;
	void *buf;
#ifdef CONFIG_SUPPORT_RAW_INITRD
	char *end;
#endif
#if defined(CONFIG_FIT)
	const char	*fit_uname_config = images->fit_uname_cfg;
	const char	*fit_uname_ramdisk = NULL;
	ulong		default_addr;
	int		rd_noffset;
#endif
	const char *select = NULL;

	*rd_start = 0;
	*rd_end = 0;

	if (argc >= 2)
		select = argv[1];
	/*
	 * Look for a '-' which indicates to ignore the
	 * ramdisk argument
	 */
	if (select && strcmp(select, "-") ==  0) {
		debug("## Skipping init Ramdisk\n");
		rd_len = rd_data = 0;
	} else if (select || genimg_has_config(images)) {
#if defined(CONFIG_FIT)
		if (select) {
			/*
			 * If the init ramdisk comes from the FIT image and
			 * the FIT image address is omitted in the command
			 * line argument, try to use os FIT image address or
			 * default load address.
			 */
			if (images->fit_uname_os)
				default_addr = (ulong)images->fit_hdr_os;
			else
				default_addr = load_addr;

			if (fit_parse_conf(select, default_addr,
					   &rd_addr, &fit_uname_config)) {
				debug("*  ramdisk: config '%s' from image at "
						"0x%08lx\n",
						fit_uname_config, rd_addr);
			} else if (fit_parse_subimage(select, default_addr,
						&rd_addr, &fit_uname_ramdisk)) {
				debug("*  ramdisk: subimage '%s' from image at "
						"0x%08lx\n",
						fit_uname_ramdisk, rd_addr);
			} else
#endif
			{
				rd_addr = simple_strtoul(select, NULL, 16);
				debug("*  ramdisk: cmdline image address = "
						"0x%08lx\n",
						rd_addr);
			}
#if defined(CONFIG_FIT)
		} else {
			/* use FIT configuration provided in first bootm
			 * command argument. If the property is not defined,
			 * quit silently.
			 */
			rd_addr = map_to_sysmem(images->fit_hdr_os);
			rd_noffset = fit_get_node_from_config(images,
					FIT_RAMDISK_PROP, rd_addr);
			if (rd_noffset == -ENOLINK)
				return 0;
			else if (rd_noffset < 0)
				return 1;
		}
#endif

		/* copy from dataflash if needed */
		rd_addr = genimg_get_image(rd_addr);

		/*
		 * Check if there is an initrd image at the
		 * address provided in the second bootm argument
		 * check image type, for FIT images get FIT node.
		 */
		buf = map_sysmem(rd_addr, 0);
		switch (genimg_get_format(buf)) {
		case IMAGE_FORMAT_LEGACY:
			printf("## Loading init Ramdisk from Legacy "
					"Image at %08lx ...\n", rd_addr);

			bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
			rd_hdr = image_get_ramdisk(rd_addr, arch,
							images->verify);

			if (rd_hdr == NULL)
				return 1;

			rd_data = image_get_data(rd_hdr);
			rd_len = image_get_data_size(rd_hdr);
			rd_load = image_get_load(rd_hdr);
			break;
#if defined(CONFIG_FIT)
		case IMAGE_FORMAT_FIT:
			rd_noffset = fit_image_load(images, FIT_RAMDISK_PROP,
					rd_addr, &fit_uname_ramdisk,
					&fit_uname_config, arch,
					IH_TYPE_RAMDISK,
					BOOTSTAGE_ID_FIT_RD_START,
					FIT_LOAD_IGNORED, &rd_data, &rd_len);
			if (rd_noffset < 0)
				return 1;

			images->fit_hdr_rd = map_sysmem(rd_addr, 0);
			images->fit_uname_rd = fit_uname_ramdisk;
			images->fit_noffset_rd = rd_noffset;
			break;
#endif
		default:
#ifdef CONFIG_SUPPORT_RAW_INITRD
			end = NULL;
			if (select)
				end = strchr(select, ':');
			if (end) {
				rd_len = simple_strtoul(++end, NULL, 16);
				rd_data = rd_addr;
			} else
#endif
			{
				puts("Wrong Ramdisk Image Format\n");
				rd_data = rd_len = rd_load = 0;
				return 1;
			}
		}
	} else if (images->legacy_hdr_valid &&
			image_check_type(&images->legacy_hdr_os_copy,
						IH_TYPE_MULTI)) {

		/*
		 * Now check if we have a legacy mult-component image,
		 * get second entry data start address and len.
		 */
		bootstage_mark(BOOTSTAGE_ID_RAMDISK);
		printf("## Loading init Ramdisk from multi component "
				"Legacy Image at %08lx ...\n",
				(ulong)images->legacy_hdr_os);

		image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
	} else {
		/*
		 * no initrd image
		 */
		bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
		rd_len = rd_data = 0;
	}

	if (!rd_data) {
		debug("## No init Ramdisk\n");
	} else {
		*rd_start = rd_data;
		*rd_end = rd_data + rd_len;
	}
	debug("   ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
			*rd_start, *rd_end);

	return 0;
}

#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
/**
 * boot_ramdisk_high - relocate init ramdisk
 * @lmb: pointer to lmb handle, will be used for memory mgmt
 * @rd_data: ramdisk data start address
 * @rd_len: ramdisk data length
 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
 *      start address (after possible relocation)
 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
 *      end address (after possible relocation)
 *
 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment
 * variable and if requested ramdisk data is moved to a specified location.
 *
 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
 * start/end addresses if ramdisk image start and len were provided,
 * otherwise set initrd_start and initrd_end set to zeros.
 *
 * returns:
 *      0 - success
 *     -1 - failure
 */
int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
		  ulong *initrd_start, ulong *initrd_end)
{
	char	*s;
	ulong	initrd_high;
	int	initrd_copy_to_ram = 1;

	if ((s = getenv("initrd_high")) != NULL) {
		/* a value of "no" or a similar string will act like 0,
		 * turning the "load high" feature off. This is intentional.
		 */
		initrd_high = simple_strtoul(s, NULL, 16);
		if (initrd_high == ~0)
			initrd_copy_to_ram = 0;
	} else {
		/* not set, no restrictions to load high */
		initrd_high = ~0;
	}


#ifdef CONFIG_LOGBUFFER
	/* Prevent initrd from overwriting logbuffer */
	lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE);
#endif

	debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
			initrd_high, initrd_copy_to_ram);

	if (rd_data) {
		if (!initrd_copy_to_ram) {	/* zero-copy ramdisk support */
			debug("   in-place initrd\n");
			*initrd_start = rd_data;
			*initrd_end = rd_data + rd_len;
			lmb_reserve(lmb, rd_data, rd_len);
		} else {
			if (initrd_high)
				*initrd_start = (ulong)lmb_alloc_base(lmb,
						rd_len, 0x1000, initrd_high);
			else
				*initrd_start = (ulong)lmb_alloc(lmb, rd_len,
								 0x1000);

			if (*initrd_start == 0) {
				puts("ramdisk - allocation error\n");
				goto error;
			}
			bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);

			*initrd_end = *initrd_start + rd_len;
			printf("   Loading Ramdisk to %08lx, end %08lx ... ",
					*initrd_start, *initrd_end);

			memmove_wd((void *)*initrd_start,
					(void *)rd_data, rd_len, CHUNKSZ);

#ifdef CONFIG_MP
			/*
			 * Ensure the image is flushed to memory to handle
			 * AMP boot scenarios in which we might not be
			 * HW cache coherent
			 */
			flush_cache((unsigned long)*initrd_start, rd_len);
#endif
			puts("OK\n");
		}
	} else {
		*initrd_start = 0;
		*initrd_end = 0;
	}
	debug("   ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
			*initrd_start, *initrd_end);

	return 0;

error:
	return -1;
}
#endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */

#ifdef CONFIG_SYS_BOOT_GET_CMDLINE
/**
 * boot_get_cmdline - allocate and initialize kernel cmdline
 * @lmb: pointer to lmb handle, will be used for memory mgmt
 * @cmd_start: pointer to a ulong variable, will hold cmdline start
 * @cmd_end: pointer to a ulong variable, will hold cmdline end
 *
 * boot_get_cmdline() allocates space for kernel command line below
 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt
 * variable is present its contents is copied to allocated kernel
 * command line.
 *
 * returns:
 *      0 - success
 *     -1 - failure
 */
int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
{
	char *cmdline;
	char *s;

	cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
				getenv_bootm_mapsize() + getenv_bootm_low());

	if (cmdline == NULL)
		return -1;

	if ((s = getenv("bootargs")) == NULL)
		s = "";

	strcpy(cmdline, s);

	*cmd_start = (ulong) & cmdline[0];
	*cmd_end = *cmd_start + strlen(cmdline);

	debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);

	return 0;
}
#endif /* CONFIG_SYS_BOOT_GET_CMDLINE */

#ifdef CONFIG_SYS_BOOT_GET_KBD
/**
 * boot_get_kbd - allocate and initialize kernel copy of board info
 * @lmb: pointer to lmb handle, will be used for memory mgmt
 * @kbd: double pointer to board info data
 *
 * boot_get_kbd() allocates space for kernel copy of board info data below
 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized
 * with the current u-boot board info data.
 *
 * returns:
 *      0 - success
 *     -1 - failure
 */
int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
{
	*kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
				getenv_bootm_mapsize() + getenv_bootm_low());
	if (*kbd == NULL)
		return -1;

	**kbd = *(gd->bd);

	debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);

#if defined(DEBUG) && defined(CONFIG_CMD_BDI)
	do_bdinfo(NULL, 0, 0, NULL);
#endif

	return 0;
}
#endif /* CONFIG_SYS_BOOT_GET_KBD */

#ifdef CONFIG_LMB
int image_setup_linux(bootm_headers_t *images)
{
	ulong of_size = images->ft_len;
	char **of_flat_tree = &images->ft_addr;
	ulong *initrd_start = &images->initrd_start;
	ulong *initrd_end = &images->initrd_end;
	struct lmb *lmb = &images->lmb;
	ulong rd_len;
	int ret;

	if (IMAGE_ENABLE_OF_LIBFDT)
		boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);

	if (IMAGE_BOOT_GET_CMDLINE) {
		ret = boot_get_cmdline(lmb, &images->cmdline_start,
				&images->cmdline_end);
		if (ret) {
			puts("ERROR with allocation of cmdline\n");
			return ret;
		}
	}
	if (IMAGE_ENABLE_RAMDISK_HIGH) {
		rd_len = images->rd_end - images->rd_start;
		ret = boot_ramdisk_high(lmb, images->rd_start, rd_len,
				initrd_start, initrd_end);
		if (ret)
			return ret;
	}

	if (IMAGE_ENABLE_OF_LIBFDT) {
		ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
		if (ret)
			return ret;
	}

	if (IMAGE_ENABLE_OF_LIBFDT && of_size) {
		ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb);
		if (ret)
			return ret;
	}

	return 0;
}
#endif /* CONFIG_LMB */
#endif /* !USE_HOSTCC */