summaryrefslogtreecommitdiffstats
path: root/kernel/Documentation/filesystems/directory-locking
blob: 09bbf9a54f808363b72b78e89e2284cb60157a7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
	Locking scheme used for directory operations is based on two
kinds of locks - per-inode (->i_mutex) and per-filesystem
(->s_vfs_rename_mutex).

	When taking the i_mutex on multiple non-directory objects, we
always acquire the locks in order by increasing address.  We'll call
that "inode pointer" order in the following.

	For our purposes all operations fall in 5 classes:

1) read access.  Locking rules: caller locks directory we are accessing.

2) object creation.  Locking rules: same as above.

3) object removal.  Locking rules: caller locks parent, finds victim,
locks victim and calls the method.

4) rename() that is _not_ cross-directory.  Locking rules: caller locks
the parent and finds source and target.  If target already exists, lock
it.  If source is a non-directory, lock it.  If that means we need to
lock both, lock them in inode pointer order.

5) link creation.  Locking rules:
	* lock parent
	* check that source is not a directory
	* lock source
	* call the method.

6) cross-directory rename.  The trickiest in the whole bunch.  Locking
rules:
	* lock the filesystem
	* lock parents in "ancestors first" order.
	* find source and target.
	* if old parent is equal to or is a descendent of target
		fail with -ENOTEMPTY
	* if new parent is equal to or is a descendent of source
		fail with -ELOOP
	* If target exists, lock it.  If source is a non-directory, lock
	  it.  In case that means we need to lock both source and target,
	  do so in inode pointer order.
	* call the method.


The rules above obviously guarantee that all directories that are going to be
read, modified or removed by method will be locked by caller.


If no directory is its own ancestor, the scheme above is deadlock-free.
Proof:

	First of all, at any moment we have a partial ordering of the
objects - A < B iff A is an ancestor of B.

	That ordering can change.  However, the following is true:

(1) if object removal or non-cross-directory rename holds lock on A and
    attempts to acquire lock on B, A will remain the parent of B until we
    acquire the lock on B.  (Proof: only cross-directory rename can change
    the parent of object and it would have to lock the parent).

(2) if cross-directory rename holds the lock on filesystem, order will not
    change until rename acquires all locks.  (Proof: other cross-directory
    renames will be blocked on filesystem lock and we don't start changing
    the order until we had acquired all locks).

(3) locks on non-directory objects are acquired only after locks on
    directory objects, and are acquired in inode pointer order.
    (Proof: all operations but renames take lock on at most one
    non-directory object, except renames, which take locks on source and
    target in inode pointer order in the case they are not directories.)

	Now consider the minimal deadlock.  Each process is blocked on
attempt to acquire some lock and already holds at least one lock.  Let's
consider the set of contended locks.  First of all, filesystem lock is
not contended, since any process blocked on it is not holding any locks.
Thus all processes are blocked on ->i_mutex.

	By (3), any process holding a non-directory lock can only be
waiting on another non-directory lock with a larger address.  Therefore
the process holding the "largest" such lock can always make progress, and
non-directory objects are not included in the set of contended locks.

	Thus link creation can't be a part of deadlock - it can't be
blocked on source and it means that it doesn't hold any locks.

	Any contended object is either held by cross-directory rename or
has a child that is also contended.  Indeed, suppose that it is held by
operation other than cross-directory rename.  Then the lock this operation
is blocked on belongs to child of that object due to (1).

	It means that one of the operations is cross-directory rename.
Otherwise the set of contended objects would be infinite - each of them
would have a contended child and we had assumed that no object is its
own descendent.  Moreover, there is exactly one cross-directory rename
(see above).

	Consider the object blocking the cross-directory rename.  One
of its descendents is locked by cross-directory rename (otherwise we
would again have an infinite set of contended objects).  But that
means that cross-directory rename is taking locks out of order.  Due
to (2) the order hadn't changed since we had acquired filesystem lock.
But locking rules for cross-directory rename guarantee that we do not
try to acquire lock on descendent before the lock on ancestor.
Contradiction.  I.e.  deadlock is impossible.  Q.E.D.


	These operations are guaranteed to avoid loop creation.  Indeed,
the only operation that could introduce loops is cross-directory rename.
Since the only new (parent, child) pair added by rename() is (new parent,
source), such loop would have to contain these objects and the rest of it
would have to exist before rename().  I.e. at the moment of loop creation
rename() responsible for that would be holding filesystem lock and new parent
would have to be equal to or a descendent of source.  But that means that
new parent had been equal to or a descendent of source since the moment when
we had acquired filesystem lock and rename() would fail with -ELOOP in that
case.

	While this locking scheme works for arbitrary DAGs, it relies on
ability to check that directory is a descendent of another object.  Current
implementation assumes that directory graph is a tree.  This assumption is
also preserved by all operations (cross-directory rename on a tree that would
not introduce a cycle will leave it a tree and link() fails for directories).

	Notice that "directory" in the above == "anything that might have
children", so if we are going to introduce hybrid objects we will need
either to make sure that link(2) doesn't work for them or to make changes
in is_subdir() that would make it work even in presence of such beasts.
/a> 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
/*
 * algif_aead: User-space interface for AEAD algorithms
 *
 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
 *
 * This file provides the user-space API for AEAD ciphers.
 *
 * This file is derived from algif_skcipher.c.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */

#include <crypto/scatterwalk.h>
#include <crypto/if_alg.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>

struct aead_sg_list {
	unsigned int cur;
	struct scatterlist sg[ALG_MAX_PAGES];
};

struct aead_ctx {
	struct aead_sg_list tsgl;
	/*
	 * RSGL_MAX_ENTRIES is an artificial limit where user space at maximum
	 * can cause the kernel to allocate RSGL_MAX_ENTRIES * ALG_MAX_PAGES
	 * pages
	 */
#define RSGL_MAX_ENTRIES ALG_MAX_PAGES
	struct af_alg_sgl rsgl[RSGL_MAX_ENTRIES];

	void *iv;

	struct af_alg_completion completion;

	unsigned long used;

	unsigned int len;
	bool more;
	bool merge;
	bool enc;

	size_t aead_assoclen;
	struct aead_request aead_req;
};

static inline int aead_sndbuf(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;

	return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
			  ctx->used, 0);
}

static inline bool aead_writable(struct sock *sk)
{
	return PAGE_SIZE <= aead_sndbuf(sk);
}

static inline bool aead_sufficient_data(struct aead_ctx *ctx)
{
	unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));

	return (ctx->used >= (ctx->aead_assoclen + (ctx->enc ? 0 : as)));
}

static void aead_put_sgl(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	struct aead_sg_list *sgl = &ctx->tsgl;
	struct scatterlist *sg = sgl->sg;
	unsigned int i;

	for (i = 0; i < sgl->cur; i++) {
		if (!sg_page(sg + i))
			continue;

		put_page(sg_page(sg + i));
		sg_assign_page(sg + i, NULL);
	}
	sgl->cur = 0;
	ctx->used = 0;
	ctx->more = 0;
	ctx->merge = 0;
}

static void aead_wmem_wakeup(struct sock *sk)
{
	struct socket_wq *wq;

	if (!aead_writable(sk))
		return;

	rcu_read_lock();
	wq = rcu_dereference(sk->sk_wq);
	if (wq_has_sleeper(wq))
		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
							   POLLRDNORM |
							   POLLRDBAND);
	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
	rcu_read_unlock();
}

static int aead_wait_for_data(struct sock *sk, unsigned flags)
{
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	long timeout;
	DEFINE_WAIT(wait);
	int err = -ERESTARTSYS;

	if (flags & MSG_DONTWAIT)
		return -EAGAIN;

	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);

	for (;;) {
		if (signal_pending(current))
			break;
		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
		timeout = MAX_SCHEDULE_TIMEOUT;
		if (sk_wait_event(sk, &timeout, !ctx->more)) {
			err = 0;
			break;
		}
	}
	finish_wait(sk_sleep(sk), &wait);

	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);

	return err;
}

static void aead_data_wakeup(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	struct socket_wq *wq;

	if (ctx->more)
		return;
	if (!ctx->used)
		return;

	rcu_read_lock();
	wq = rcu_dereference(sk->sk_wq);
	if (wq_has_sleeper(wq))
		wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
							   POLLRDNORM |
							   POLLRDBAND);
	sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
	rcu_read_unlock();
}

static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	unsigned ivsize =
		crypto_aead_ivsize(crypto_aead_reqtfm(&ctx->aead_req));
	struct aead_sg_list *sgl = &ctx->tsgl;
	struct af_alg_control con = {};
	long copied = 0;
	bool enc = 0;
	bool init = 0;
	int err = -EINVAL;

	if (msg->msg_controllen) {
		err = af_alg_cmsg_send(msg, &con);
		if (err)
			return err;

		init = 1;
		switch (con.op) {
		case ALG_OP_ENCRYPT:
			enc = 1;
			break;
		case ALG_OP_DECRYPT:
			enc = 0;
			break;
		default:
			return -EINVAL;
		}

		if (con.iv && con.iv->ivlen != ivsize)
			return -EINVAL;
	}

	lock_sock(sk);
	if (!ctx->more && ctx->used)
		goto unlock;

	if (init) {
		ctx->enc = enc;
		if (con.iv)
			memcpy(ctx->iv, con.iv->iv, ivsize);

		ctx->aead_assoclen = con.aead_assoclen;
	}

	while (size) {
		unsigned long len = size;
		struct scatterlist *sg = NULL;

		/* use the existing memory in an allocated page */
		if (ctx->merge) {
			sg = sgl->sg + sgl->cur - 1;
			len = min_t(unsigned long, len,
				    PAGE_SIZE - sg->offset - sg->length);
			err = memcpy_from_msg(page_address(sg_page(sg)) +
					      sg->offset + sg->length,
					      msg, len);
			if (err)
				goto unlock;

			sg->length += len;
			ctx->merge = (sg->offset + sg->length) &
				     (PAGE_SIZE - 1);

			ctx->used += len;
			copied += len;
			size -= len;
			continue;
		}

		if (!aead_writable(sk)) {
			/* user space sent too much data */
			aead_put_sgl(sk);
			err = -EMSGSIZE;
			goto unlock;
		}

		/* allocate a new page */
		len = min_t(unsigned long, size, aead_sndbuf(sk));
		while (len) {
			int plen = 0;

			if (sgl->cur >= ALG_MAX_PAGES) {
				aead_put_sgl(sk);
				err = -E2BIG;
				goto unlock;
			}

			sg = sgl->sg + sgl->cur;
			plen = min_t(int, len, PAGE_SIZE);

			sg_assign_page(sg, alloc_page(GFP_KERNEL));
			err = -ENOMEM;
			if (!sg_page(sg))
				goto unlock;

			err = memcpy_from_msg(page_address(sg_page(sg)),
					      msg, plen);
			if (err) {
				__free_page(sg_page(sg));
				sg_assign_page(sg, NULL);
				goto unlock;
			}

			sg->offset = 0;
			sg->length = plen;
			len -= plen;
			ctx->used += plen;
			copied += plen;
			sgl->cur++;
			size -= plen;
			ctx->merge = plen & (PAGE_SIZE - 1);
		}
	}

	err = 0;

	ctx->more = msg->msg_flags & MSG_MORE;
	if (!ctx->more && !aead_sufficient_data(ctx)) {
		aead_put_sgl(sk);
		err = -EMSGSIZE;
	}

unlock:
	aead_data_wakeup(sk);
	release_sock(sk);

	return err ?: copied;
}

static ssize_t aead_sendpage(struct socket *sock, struct page *page,
			     int offset, size_t size, int flags)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	struct aead_sg_list *sgl = &ctx->tsgl;
	int err = -EINVAL;

	if (flags & MSG_SENDPAGE_NOTLAST)
		flags |= MSG_MORE;

	if (sgl->cur >= ALG_MAX_PAGES)
		return -E2BIG;

	lock_sock(sk);
	if (!ctx->more && ctx->used)
		goto unlock;

	if (!size)
		goto done;

	if (!aead_writable(sk)) {
		/* user space sent too much data */
		aead_put_sgl(sk);
		err = -EMSGSIZE;
		goto unlock;
	}

	ctx->merge = 0;

	get_page(page);
	sg_set_page(sgl->sg + sgl->cur, page, size, offset);
	sgl->cur++;
	ctx->used += size;

	err = 0;

done:
	ctx->more = flags & MSG_MORE;
	if (!ctx->more && !aead_sufficient_data(ctx)) {
		aead_put_sgl(sk);
		err = -EMSGSIZE;
	}

unlock:
	aead_data_wakeup(sk);
	release_sock(sk);

	return err ?: size;
}

static int aead_recvmsg(struct socket *sock, struct msghdr *msg, size_t ignored, int flags)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	unsigned bs = crypto_aead_blocksize(crypto_aead_reqtfm(&ctx->aead_req));
	unsigned as = crypto_aead_authsize(crypto_aead_reqtfm(&ctx->aead_req));
	struct aead_sg_list *sgl = &ctx->tsgl;
	struct scatterlist *sg = NULL;
	struct scatterlist assoc[ALG_MAX_PAGES];
	size_t assoclen = 0;
	unsigned int i = 0;
	int err = -EINVAL;
	unsigned long used = 0;
	size_t outlen = 0;
	size_t usedpages = 0;
	unsigned int cnt = 0;

	/* Limit number of IOV blocks to be accessed below */
	if (msg->msg_iter.nr_segs > RSGL_MAX_ENTRIES)
		return -ENOMSG;

	lock_sock(sk);

	/*
	 * AEAD memory structure: For encryption, the tag is appended to the
	 * ciphertext which implies that the memory allocated for the ciphertext
	 * must be increased by the tag length. For decryption, the tag
	 * is expected to be concatenated to the ciphertext. The plaintext
	 * therefore has a memory size of the ciphertext minus the tag length.
	 *
	 * The memory structure for cipher operation has the following
	 * structure:
	 *	AEAD encryption input:  assoc data || plaintext
	 *	AEAD encryption output: cipherntext || auth tag
	 *	AEAD decryption input:  assoc data || ciphertext || auth tag
	 *	AEAD decryption output: plaintext
	 */

	if (ctx->more) {
		err = aead_wait_for_data(sk, flags);
		if (err)
			goto unlock;
	}

	used = ctx->used;

	/*
	 * Make sure sufficient data is present -- note, the same check is
	 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
	 * shall provide an information to the data sender that something is
	 * wrong, but they are irrelevant to maintain the kernel integrity.
	 * We need this check here too in case user space decides to not honor
	 * the error message in sendmsg/sendpage and still call recvmsg. This
	 * check here protects the kernel integrity.
	 */
	if (!aead_sufficient_data(ctx))
		goto unlock;

	/*
	 * The cipher operation input data is reduced by the associated data
	 * length as this data is processed separately later on.
	 */
	used -= ctx->aead_assoclen;

	if (ctx->enc) {
		/* round up output buffer to multiple of block size */
		outlen = ((used + bs - 1) / bs * bs);
		/* add the size needed for the auth tag to be created */
		outlen += as;
	} else {
		/* output data size is input without the authentication tag */
		outlen = used - as;
		/* round up output buffer to multiple of block size */
		outlen = ((outlen + bs - 1) / bs * bs);
	}

	/* convert iovecs of output buffers into scatterlists */
	while (iov_iter_count(&msg->msg_iter)) {
		size_t seglen = min_t(size_t, iov_iter_count(&msg->msg_iter),
				      (outlen - usedpages));

		/* make one iovec available as scatterlist */
		err = af_alg_make_sg(&ctx->rsgl[cnt], &msg->msg_iter,
				     seglen);
		if (err < 0)
			goto unlock;
		usedpages += err;
		/* chain the new scatterlist with previous one */
		if (cnt)
			af_alg_link_sg(&ctx->rsgl[cnt-1], &ctx->rsgl[cnt]);

		/* we do not need more iovecs as we have sufficient memory */
		if (outlen <= usedpages)
			break;
		iov_iter_advance(&msg->msg_iter, err);
		cnt++;
	}

	err = -EINVAL;
	/* ensure output buffer is sufficiently large */
	if (usedpages < outlen)
		goto unlock;

	sg_init_table(assoc, ALG_MAX_PAGES);
	assoclen = ctx->aead_assoclen;
	/*
	 * Split scatterlist into two: first part becomes AD, second part
	 * is plaintext / ciphertext. The first part is assigned to assoc
	 * scatterlist. When this loop finishes, sg points to the start of the
	 * plaintext / ciphertext.
	 */
	for (i = 0; i < ctx->tsgl.cur; i++) {
		sg = sgl->sg + i;
		if (sg->length <= assoclen) {
			/* AD is larger than one page */
			sg_set_page(assoc + i, sg_page(sg),
				    sg->length, sg->offset);
			assoclen -= sg->length;
			if (i >= ctx->tsgl.cur)
				goto unlock;
		} else if (!assoclen) {
			/* current page is to start of plaintext / ciphertext */
			if (i)
				/* AD terminates at page boundary */
				sg_mark_end(assoc + i - 1);
			else
				/* AD size is zero */
				sg_mark_end(assoc);
			break;
		} else {
			/* AD does not terminate at page boundary */
			sg_set_page(assoc + i, sg_page(sg),
				    assoclen, sg->offset);
			sg_mark_end(assoc + i);
			/* plaintext / ciphertext starts after AD */
			sg->length -= assoclen;
			sg->offset += assoclen;
			break;
		}
	}

	aead_request_set_assoc(&ctx->aead_req, assoc, ctx->aead_assoclen);
	aead_request_set_crypt(&ctx->aead_req, sg, ctx->rsgl[0].sg, used,
			       ctx->iv);

	err = af_alg_wait_for_completion(ctx->enc ?
					 crypto_aead_encrypt(&ctx->aead_req) :
					 crypto_aead_decrypt(&ctx->aead_req),
					 &ctx->completion);

	if (err) {
		/* EBADMSG implies a valid cipher operation took place */
		if (err == -EBADMSG)
			aead_put_sgl(sk);
		goto unlock;
	}

	aead_put_sgl(sk);

	err = 0;

unlock:
	for (i = 0; i < cnt; i++)
		af_alg_free_sg(&ctx->rsgl[i]);

	aead_wmem_wakeup(sk);
	release_sock(sk);

	return err ? err : outlen;
}

static unsigned int aead_poll(struct file *file, struct socket *sock,
			      poll_table *wait)
{
	struct sock *sk = sock->sk;
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	unsigned int mask;

	sock_poll_wait(file, sk_sleep(sk), wait);
	mask = 0;

	if (!ctx->more)
		mask |= POLLIN | POLLRDNORM;

	if (aead_writable(sk))
		mask |= POLLOUT | POLLWRNORM | POLLWRBAND;

	return mask;
}

static struct proto_ops algif_aead_ops = {
	.family		=	PF_ALG,

	.connect	=	sock_no_connect,
	.socketpair	=	sock_no_socketpair,
	.getname	=	sock_no_getname,
	.ioctl		=	sock_no_ioctl,
	.listen		=	sock_no_listen,
	.shutdown	=	sock_no_shutdown,
	.getsockopt	=	sock_no_getsockopt,
	.mmap		=	sock_no_mmap,
	.bind		=	sock_no_bind,
	.accept		=	sock_no_accept,
	.setsockopt	=	sock_no_setsockopt,

	.release	=	af_alg_release,
	.sendmsg	=	aead_sendmsg,
	.sendpage	=	aead_sendpage,
	.recvmsg	=	aead_recvmsg,
	.poll		=	aead_poll,
};

static void *aead_bind(const char *name, u32 type, u32 mask)
{
	return crypto_alloc_aead(name, type, mask);
}

static void aead_release(void *private)
{
	crypto_free_aead(private);
}

static int aead_setauthsize(void *private, unsigned int authsize)
{
	return crypto_aead_setauthsize(private, authsize);
}

static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
{
	return crypto_aead_setkey(private, key, keylen);
}

static void aead_sock_destruct(struct sock *sk)
{
	struct alg_sock *ask = alg_sk(sk);
	struct aead_ctx *ctx = ask->private;
	unsigned int ivlen = crypto_aead_ivsize(
				crypto_aead_reqtfm(&ctx->aead_req));

	aead_put_sgl(sk);
	sock_kzfree_s(sk, ctx->iv, ivlen);
	sock_kfree_s(sk, ctx, ctx->len);
	af_alg_release_parent(sk);
}

static int aead_accept_parent(void *private, struct sock *sk)
{
	struct aead_ctx *ctx;
	struct alg_sock *ask = alg_sk(sk);
	unsigned int len = sizeof(*ctx) + crypto_aead_reqsize(private);
	unsigned int ivlen = crypto_aead_ivsize(private);

	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	memset(ctx, 0, len);

	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
	if (!ctx->iv) {
		sock_kfree_s(sk, ctx, len);
		return -ENOMEM;
	}
	memset(ctx->iv, 0, ivlen);

	ctx->len = len;
	ctx->used = 0;
	ctx->more = 0;
	ctx->merge = 0;
	ctx->enc = 0;
	ctx->tsgl.cur = 0;
	ctx->aead_assoclen = 0;
	af_alg_init_completion(&ctx->completion);
	sg_init_table(ctx->tsgl.sg, ALG_MAX_PAGES);

	ask->private = ctx;

	aead_request_set_tfm(&ctx->aead_req, private);
	aead_request_set_callback(&ctx->aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
				  af_alg_complete, &ctx->completion);

	sk->sk_destruct = aead_sock_destruct;

	return 0;
}

static const struct af_alg_type algif_type_aead = {
	.bind		=	aead_bind,
	.release	=	aead_release,
	.setkey		=	aead_setkey,
	.setauthsize	=	aead_setauthsize,
	.accept		=	aead_accept_parent,
	.ops		=	&algif_aead_ops,
	.name		=	"aead",
	.owner		=	THIS_MODULE
};

static int __init algif_aead_init(void)
{
	return af_alg_register_type(&algif_type_aead);
}

static void __exit algif_aead_exit(void)
{
	int err = af_alg_unregister_type(&algif_type_aead);
	BUG_ON(err);
}

module_init(algif_aead_init);
module_exit(algif_aead_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");