summaryrefslogtreecommitdiffstats
path: root/kernel/Documentation/devicetree/bindings/mfd/tps65910.txt
blob: 38833e63a59f901f79578f3ec7bba01227ec770d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
TPS65910 Power Management Integrated Circuit

Required properties:
- compatible: "ti,tps65910" or "ti,tps65911"
- reg: I2C slave address
- interrupts: the interrupt outputs of the controller
- #gpio-cells: number of cells to describe a GPIO, this should be 2.
  The first cell is the GPIO number.
  The second cell is used to specify additional options <unused>.
- gpio-controller: mark the device as a GPIO controller
- #interrupt-cells: the number of cells to describe an IRQ, this should be 2.
  The first cell is the IRQ number.
  The second cell is the flags, encoded as the trigger masks from
  Documentation/devicetree/bindings/interrupt-controller/interrupts.txt
- regulators: This is the list of child nodes that specify the regulator
  initialization data for defined regulators. Not all regulators for the given
  device need to be present. The definition for each of these nodes is defined
  using the standard binding for regulators found at
  Documentation/devicetree/bindings/regulator/regulator.txt.
  The regulator is matched with the regulator-compatible.

  The valid regulator-compatible values are:
  tps65910: vrtc, vio, vdd1, vdd2, vdd3, vdig1, vdig2, vpll, vdac, vaux1,
            vaux2, vaux33, vmmc, vbb
  tps65911: vrtc, vio, vdd1, vdd3, vddctrl, ldo1, ldo2, ldo3, ldo4, ldo5,
            ldo6, ldo7, ldo8

- xxx-supply: Input voltage supply regulator.
  These entries are require if regulators are enabled for a device. Missing of these
  properties can cause the regulator registration fails.
  If some of input supply is powered through battery or always-on supply then
  also it is require to have these parameters with proper node handle of always
  on power supply.
  tps65910:
	vcc1-supply: VDD1 input.
	vcc2-supply: VDD2 input.
	vcc3-supply: VAUX33 and VMMC input.
	vcc4-supply: VAUX1 and VAUX2 input.
	vcc5-supply: VPLL and VDAC input.
	vcc6-supply: VDIG1 and VDIG2 input.
	vcc7-supply: VRTC and VBB input.
	vccio-supply: VIO input.
  tps65911:
	vcc1-supply: VDD1 input.
	vcc2-supply: VDD2 input.
	vcc3-supply: LDO6, LDO7 and LDO8 input.
	vcc4-supply: LDO5 input.
	vcc5-supply: LDO3 and LDO4 input.
	vcc6-supply: LDO1 and LDO2 input.
	vcc7-supply: VRTC input.
	vccio-supply: VIO input.

Optional properties:
- ti,vmbch-threshold: (tps65911) main battery charged threshold
  comparator. (see VMBCH_VSEL in TPS65910 datasheet)
- ti,vmbch2-threshold: (tps65911) main battery discharged threshold
  comparator. (see VMBCH_VSEL in TPS65910 datasheet)
- ti,en-ck32k-xtal: enable external 32-kHz crystal oscillator (see CK32K_CTRL
  in TPS6591X datasheet)
- ti,en-gpio-sleep: enable sleep control for gpios
  There should be 9 entries here, one for each gpio.
- ti,system-power-controller: Telling whether or not this pmic is controlling
  the system power.

Regulator Optional properties:
- ti,regulator-ext-sleep-control: enable external sleep
  control through external inputs [0 (not enabled), 1 (EN1), 2 (EN2) or 4(EN3)]
  If this property is not defined, it defaults to 0 (not enabled).

Example:

	pmu: tps65910@d2 {
		compatible = "ti,tps65910";
		reg = <0xd2>;
		interrupt-parent = <&intc>;
		interrupts = < 0 118 0x04 >;

		#gpio-cells = <2>;
		gpio-controller;

		#interrupt-cells = <2>;
		interrupt-controller;

		ti,system-power-controller;

		ti,vmbch-threshold = 0;
		ti,vmbch2-threshold = 0;
		ti,en-ck32k-xtal;
		ti,en-gpio-sleep = <0 0 1 0 0 0 0 0 0>;

		vcc1-supply = <&reg_parent>;
		vcc2-supply = <&some_reg>;
		vcc3-supply = <...>;
		vcc4-supply = <...>;
		vcc5-supply = <...>;
		vcc6-supply = <...>;
		vcc7-supply = <...>;
		vccio-supply = <...>;

		regulators {
			#address-cells = <1>;
			#size-cells = <0>;

			vdd1_reg: regulator@0 {
				regulator-compatible = "vdd1";
				reg = <0>;
				regulator-min-microvolt = < 600000>;
				regulator-max-microvolt = <1500000>;
				regulator-always-on;
				regulator-boot-on;
				ti,regulator-ext-sleep-control = <0>;
			};
			vdd2_reg: regulator@1 {
				regulator-compatible = "vdd2";
				reg = <1>;
				regulator-min-microvolt = < 600000>;
				regulator-max-microvolt = <1500000>;
				regulator-always-on;
				regulator-boot-on;
				ti,regulator-ext-sleep-control = <4>;
			};
			vddctrl_reg: regulator@2 {
				regulator-compatible = "vddctrl";
				reg = <2>;
				regulator-min-microvolt = < 600000>;
				regulator-max-microvolt = <1400000>;
				regulator-always-on;
				regulator-boot-on;
				ti,regulator-ext-sleep-control = <0>;
			};
			vio_reg: regulator@3 {
				regulator-compatible = "vio";
				reg = <3>;
				regulator-min-microvolt = <1500000>;
				regulator-max-microvolt = <1800000>;
				regulator-always-on;
				regulator-boot-on;
				ti,regulator-ext-sleep-control = <1>;
			};
			ldo1_reg: regulator@4 {
				regulator-compatible = "ldo1";
				reg = <4>;
				regulator-min-microvolt = <1000000>;
				regulator-max-microvolt = <3300000>;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo2_reg: regulator@5 {
				regulator-compatible = "ldo2";
				reg = <5>;
				regulator-min-microvolt = <1050000>;
				regulator-max-microvolt = <1050000>;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo3_reg: regulator@6 {
				regulator-compatible = "ldo3";
				reg = <6>;
				regulator-min-microvolt = <1000000>;
				regulator-max-microvolt = <3300000>;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo4_reg: regulator@7 {
				regulator-compatible = "ldo4";
				reg = <7>;
				regulator-min-microvolt = <1000000>;
				regulator-max-microvolt = <3300000>;
				regulator-always-on;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo5_reg: regulator@8 {
				regulator-compatible = "ldo5";
				reg = <8>;
				regulator-min-microvolt = <1000000>;
				regulator-max-microvolt = <3300000>;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo6_reg: regulator@9 {
				regulator-compatible = "ldo6";
				reg = <9>;
				regulator-min-microvolt = <1200000>;
				regulator-max-microvolt = <1200000>;
				ti,regulator-ext-sleep-control = <0>;
			};
			ldo7_reg: regulator@10 {
				regulator-compatible = "ldo7";
				reg = <10>;
				regulator-min-microvolt = <1200000>;
				regulator-max-microvolt = <1200000>;
				regulator-always-on;
				regulator-boot-on;
				ti,regulator-ext-sleep-control = <1>;
			};
			ldo8_reg: regulator@11 {
				regulator-compatible = "ldo8";
				reg = <11>;
				regulator-min-microvolt = <1000000>;
				regulator-max-microvolt = <3300000>;
				regulator-always-on;
				ti,regulator-ext-sleep-control = <1>;
			};
		};
	};
color = rte_sched_port_pkt_read_color(mbuf); rte_sched_port_pkt_write(mbuf, subport, pipe, tc, queue, color); #else struct rte_sched_port_hierarchy *sched = (struct rte_sched_port_hierarchy *) &mbuf->pkt.hash.sched; sched->traffic_class = tc; #endif } static int handle_acl_bulk(struct task_base *tbase, struct rte_mbuf **mbufs, uint16_t n_pkts) { struct task_acl *task = (struct task_acl *)tbase; uint32_t results[64]; uint8_t out[MAX_PKT_BURST]; uint16_t j; #ifdef PROX_PREFETCH_OFFSET for (j = 0; j < PROX_PREFETCH_OFFSET && j < n_pkts; ++j) { PREFETCH0(mbufs[j]); } for (j = 1; j < PROX_PREFETCH_OFFSET && j < n_pkts; ++j) { PREFETCH0(rte_pktmbuf_mtod(mbufs[j - 1], void *)); } #endif for (j = 0; j + PREFETCH_OFFSET < n_pkts; ++j) { #ifdef PROX_PREFETCH_OFFSET PREFETCH0(mbufs[j + PREFETCH_OFFSET]); PREFETCH0(rte_pktmbuf_mtod(mbufs[j + PREFETCH_OFFSET - 1], void *)); #endif /* TODO: detect version_ihl != 0x45. Extract relevant fields of that packet and point ptuples[j] to the extracted verion. Note that this is very unlikely. */ task->ptuples[j] = rte_pktmbuf_mtod(mbufs[j], uint8_t *); } #ifdef PROX_PREFETCH_OFFSET PREFETCH0(rte_pktmbuf_mtod(mbufs[n_pkts - 1], void *)); for (; j < n_pkts; ++j) { task->ptuples[j] = rte_pktmbuf_mtod(mbufs[j], uint8_t *); } #endif rte_acl_classify(task->context, (const uint8_t **)task->ptuples, results, n_pkts, 1); for (uint8_t i = 0; i < n_pkts; ++i) { switch (results[i]) { default: case ACL_NOT_SET: case ACL_DROP: out[i] = OUT_DISCARD; break; case ACL_ALLOW: out[i] = 0; case ACL_RATE_LIMIT: set_tc(mbufs[i], 3); break; }; } return task->base.tx_pkt(&task->base, mbufs, n_pkts, out); } static void acl_msg(struct task_base *tbase, void **data, uint16_t n_msgs) { struct task_acl *task = (struct task_acl *)tbase; struct acl4_rule **new_rules = (struct acl4_rule **)data; uint16_t i; for (i = 0; i < n_msgs; ++i) { if (task->n_rules == task->n_max_rules) { plog_err("Failed to add %d rule%s (already at maximum number of rules (%d))", n_msgs - i, (n_msgs - i)? "s" : "", task->n_max_rules); break; } new_rules[i]->data.priority = ++task->n_rules; rte_acl_add_rules(task->context, (struct rte_acl_rule*) new_rules[i], 1); } /* No need to rebuild if no rules have been added */ if (!i) { return ; } struct rte_acl_config acl_build_param; /* Perform builds */ acl_build_param.num_categories = 1; acl_build_param.num_fields = task->n_field_defs; rte_memcpy(&acl_build_param.defs, task->field_defs, task->field_defs_size); int ret; PROX_PANIC((ret = rte_acl_build(task->context, &acl_build_param)), "Failed to build ACL trie (%d)\n", ret); } static void init_task_acl(struct task_base *tbase, struct task_args *targ) { struct task_acl *task = (struct task_acl *)tbase; int use_qinq = targ->flags & TASK_ARG_QINQ_ACL; char name[PATH_MAX]; struct rte_acl_param acl_param; /* Create ACL contexts */ snprintf(name, sizeof(name), "acl-%d-%d", targ->lconf->id, targ->task); if (use_qinq) { task->n_field_defs = RTE_DIM(pkt_qinq_ipv4_udp_defs); task->field_defs = pkt_qinq_ipv4_udp_defs; task->field_defs_size = sizeof(pkt_qinq_ipv4_udp_defs); } else { task->n_field_defs = RTE_DIM(pkt_eth_ipv4_udp_defs); task->field_defs = pkt_eth_ipv4_udp_defs; task->field_defs_size = sizeof(pkt_eth_ipv4_udp_defs); } acl_param.name = name; acl_param.socket_id = rte_lcore_to_socket_id(targ->lconf->id); acl_param.rule_size = RTE_ACL_RULE_SZ(task->n_field_defs); acl_param.max_rule_num = targ->n_max_rules; task->n_max_rules = targ->n_max_rules; task->context = rte_acl_create(&acl_param); PROX_PANIC(task->context == NULL, "Failed to create ACL context\n"); uint32_t free_rules = targ->n_max_rules; PROX_PANIC(!strcmp(targ->rules, ""), "No rule specified for ACL\n"); int ret = lua_to_rules(prox_lua(), GLOBAL, targ->rules, task->context, &free_rules, use_qinq, targ->qinq_tag); PROX_PANIC(ret, "Failed to read rules from config:\n%s\n", get_lua_to_errors()); task->n_rules = targ->n_max_rules - free_rules; plog_info("Configured %d rules\n", task->n_rules); if (task->n_rules) { struct rte_acl_config acl_build_param; /* Perform builds */ acl_build_param.num_categories = 1; #if RTE_VERSION >= RTE_VERSION_NUM(2,1,0,0) acl_build_param.max_size = 0; #endif acl_build_param.num_fields = task->n_field_defs; rte_memcpy(&acl_build_param.defs, task->field_defs, task->field_defs_size); plog_info("Building trie structure\n"); PROX_PANIC(rte_acl_build(task->context, &acl_build_param), "Failed to build ACL trie\n"); } targ->lconf->ctrl_timeout = freq_to_tsc(targ->ctrl_freq); targ->lconf->ctrl_func_m[targ->task] = acl_msg; } int str_to_rule(struct acl4_rule *rule, char** fields, int n_rules, int use_qinq) { uint32_t svlan, svlan_mask; uint32_t cvlan, cvlan_mask; uint32_t ip_proto, ip_proto_mask; struct ip4_subnet ip_src; struct ip4_subnet ip_dst; uint32_t sport_lo, sport_hi; uint32_t dport_lo, dport_hi; enum acl_action class = ACL_NOT_SET; char class_str[24]; PROX_PANIC(parse_int_mask(&svlan, &svlan_mask, fields[0]), "Error parsing svlan: %s\n", get_parse_err()); PROX_PANIC(parse_int_mask(&cvlan, &cvlan_mask, fields[1]), "Error parsing cvlan: %s\n", get_parse_err()); PROX_PANIC(parse_int_mask(&ip_proto, &ip_proto_mask, fields[2]), "Error parsing ip protocol: %s\n", get_parse_err()); PROX_PANIC(parse_ip4_cidr(&ip_src, fields[3]), "Error parsing source IP subnet: %s\n", get_parse_err()); PROX_PANIC(parse_ip4_cidr(&ip_dst, fields[4]), "Error parsing dest IP subnet: %s\n", get_parse_err()); PROX_PANIC(parse_range(&sport_lo, &sport_hi, fields[5]), "Error parsing source port range: %s\n", get_parse_err()); PROX_PANIC(parse_range(&dport_lo, &dport_hi, fields[6]), "Error parsing destination port range: %s\n", get_parse_err()); PROX_PANIC(parse_str(class_str, fields[7], sizeof(class_str)), "Error parsing action: %s\n", get_parse_err()); if (!strcmp(class_str, "drop")) { class = ACL_DROP; } else if (!strcmp(class_str, "allow")) { class = ACL_ALLOW; } else if (!strcmp(class_str, "rate limit")) { class = ACL_RATE_LIMIT; } else { plog_err("unknown class type: %s\n", class_str); } rule->data.userdata = class; /* allow, drop or ratelimit */ rule->data.category_mask = 1; rule->data.priority = n_rules; /* Configuration for rules is done in little-endian so no bswap is needed here.. */ rule->fields[0].value.u8 = ip_proto; rule->fields[0].mask_range.u8 = ip_proto_mask; rule->fields[1].value.u32 = ip_src.ip; rule->fields[1].mask_range.u32 = ip_src.prefix; rule->fields[2].value.u32 = ip_dst.ip; rule->fields[2].mask_range.u32 = ip_dst.prefix; rule->fields[3].value.u16 = sport_lo; rule->fields[3].mask_range.u16 = sport_hi; rule->fields[4].value.u16 = dport_lo; rule->fields[4].mask_range.u16 = dport_hi; if (use_qinq) { rule->fields[5].value.u16 = rte_bswap16(ETYPE_8021ad); rule->fields[5].mask_range.u16 = 0xffff; /* To mask out the TCI and only keep the VID, the mask should be 0x0fff */ rule->fields[6].value.u16 = svlan; rule->fields[6].mask_range.u16 = svlan_mask; rule->fields[7].value.u16 = rte_bswap16(ETYPE_VLAN); rule->fields[7].mask_range.u16 = 0xffff; rule->fields[8].value.u16 = cvlan; rule->fields[8].mask_range.u16 = cvlan_mask; } else { /* Reuse first ethertype from vlan to check if packet is IPv4 packet */ rule->fields[5].value.u16 = rte_bswap16(ETYPE_IPv4); rule->fields[5].mask_range.u16 = 0xffff; /* Other fields are ignored */ rule->fields[6].value.u16 = 0; rule->fields[6].mask_range.u16 = 0; rule->fields[7].value.u16 = 0; rule->fields[7].mask_range.u16 = 0; rule->fields[8].value.u16 = 0; rule->fields[8].mask_range.u16 = 0; } return 0; } static struct task_init task_init_acl = { .mode_str = "acl", .init = init_task_acl, .handle = handle_acl_bulk, .size = sizeof(struct task_acl) }; __attribute__((constructor)) static void reg_task_acl(void) { reg_task(&task_init_acl); }