summaryrefslogtreecommitdiffstats
path: root/kernel/net/key/af_key.c
AgeCommit message (Collapse)AuthorFilesLines
2016-04-13These changes are the raw update to linux-4.4.6-rt14. Kernel sourcesJosé Pekkarinen1-25/+26
are taken from kernel.org, and rt patch from the rt wiki download page. During the rebasing, the following patch collided: Force tick interrupt and get rid of softirq magic(I70131fb85). Collisions have been removed because its logic was found on the source already. Change-Id: I7f57a4081d9deaa0d9ccfc41a6c8daccdee3b769 Signed-off-by: José Pekkarinen <jose.pekkarinen@nokia.com>
2015-08-04Add the rt linux 4.1.3-rt3 as baseYunhong Jiang1-0/+3871
Import the rt linux 4.1.3-rt3 as OPNFV kvm base. It's from git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-rt-devel.git linux-4.1.y-rt and the base is: commit 0917f823c59692d751951bf5ea699a2d1e2f26a2 Author: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Date: Sat Jul 25 12:13:34 2015 +0200 Prepare v4.1.3-rt3 Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> We lose all the git history this way and it's not good. We should apply another opnfv project repo in future. Change-Id: I87543d81c9df70d99c5001fbdf646b202c19f423 Signed-off-by: Yunhong Jiang <yunhong.jiang@intel.com>
ef='#n124'>124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
/*
 * SPI bus driver for CSR SiRFprimaII
 *
 * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
 *
 * Licensed under GPLv2 or later.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/reset.h>

#define DRIVER_NAME "sirfsoc_spi"
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE		BIT(16)
#define SIRFSOC_SPI_CMD_MODE		BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT		BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE		BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT	BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT	BIT(21)
#define SIRFSOC_SPI_TRAN_MSB		BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE	BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME	BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE	BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8	(0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12	(1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16	(2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32	(3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x)	((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR	BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE	BIT(31)

/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN	BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN	BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN	BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN	BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN	BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN	BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN	BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN	BIT(10)

/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE		BIT(0)
#define SIRFSOC_SPI_TX_DONE		BIT(1)
#define SIRFSOC_SPI_RX_OFLOW		BIT(2)
#define SIRFSOC_SPI_TX_UFLOW		BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA		BIT(4)
#define SIRFSOC_SPI_RX_FIFO_FULL	BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY	BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH	BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH	BIT(9)
#define SIRFSOC_SPI_FRM_END		BIT(10)

/* TX RX enable */
#define SIRFSOC_SPI_RX_EN		BIT(0)
#define SIRFSOC_SPI_TX_EN		BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN		BIT(2)

#define SIRFSOC_SPI_IO_MODE_SEL		BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH	BIT(2)

/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET		BIT(0)
#define SIRFSOC_SPI_FIFO_START		BIT(1)

/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE	(0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD	(1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD	(2 << 0)
/* USP related */
#define SIRFSOC_USP_SYNC_MODE		BIT(0)
#define SIRFSOC_USP_SLV_MODE		BIT(1)
#define SIRFSOC_USP_LSB			BIT(4)
#define SIRFSOC_USP_EN			BIT(5)
#define SIRFSOC_USP_RXD_FALLING_EDGE	BIT(6)
#define SIRFSOC_USP_TXD_FALLING_EDGE	BIT(7)
#define SIRFSOC_USP_CS_HIGH_VALID	BIT(9)
#define SIRFSOC_USP_SCLK_IDLE_STAT	BIT(11)
#define SIRFSOC_USP_TFS_IO_MODE		BIT(14)
#define SIRFSOC_USP_TFS_IO_INPUT	BIT(19)

#define SIRFSOC_USP_RXD_DELAY_LEN_MASK	0xFF
#define SIRFSOC_USP_TXD_DELAY_LEN_MASK	0xFF
#define SIRFSOC_USP_RXD_DELAY_OFFSET	0
#define SIRFSOC_USP_TXD_DELAY_OFFSET	8
#define SIRFSOC_USP_RXD_DELAY_LEN	1
#define SIRFSOC_USP_TXD_DELAY_LEN	1
#define SIRFSOC_USP_CLK_DIVISOR_OFFSET	21
#define SIRFSOC_USP_CLK_DIVISOR_MASK	0x3FF
#define SIRFSOC_USP_CLK_10_11_MASK	0x3
#define SIRFSOC_USP_CLK_10_11_OFFSET	30
#define SIRFSOC_USP_CLK_12_15_MASK	0xF
#define SIRFSOC_USP_CLK_12_15_OFFSET	24

#define SIRFSOC_USP_TX_DATA_OFFSET	0
#define SIRFSOC_USP_TX_SYNC_OFFSET	8
#define SIRFSOC_USP_TX_FRAME_OFFSET	16
#define SIRFSOC_USP_TX_SHIFTER_OFFSET	24

#define SIRFSOC_USP_TX_DATA_MASK	0xFF
#define SIRFSOC_USP_TX_SYNC_MASK	0xFF
#define SIRFSOC_USP_TX_FRAME_MASK	0xFF
#define SIRFSOC_USP_TX_SHIFTER_MASK	0x1F

#define SIRFSOC_USP_RX_DATA_OFFSET	0
#define SIRFSOC_USP_RX_FRAME_OFFSET	8
#define SIRFSOC_USP_RX_SHIFTER_OFFSET	16

#define SIRFSOC_USP_RX_DATA_MASK	0xFF
#define SIRFSOC_USP_RX_FRAME_MASK	0xFF
#define SIRFSOC_USP_RX_SHIFTER_MASK	0x1F
#define SIRFSOC_USP_CS_HIGH_VALUE	BIT(1)

#define SIRFSOC_SPI_FIFO_SC_OFFSET	0
#define SIRFSOC_SPI_FIFO_LC_OFFSET	10
#define SIRFSOC_SPI_FIFO_HC_OFFSET	20

#define SIRFSOC_SPI_FIFO_FULL_MASK(s)	(1 << ((s)->fifo_full_offset))
#define SIRFSOC_SPI_FIFO_EMPTY_MASK(s)	(1 << ((s)->fifo_full_offset + 1))
#define SIRFSOC_SPI_FIFO_THD_MASK(s)	((s)->fifo_size - 1)
#define SIRFSOC_SPI_FIFO_THD_OFFSET	2
#define SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(s, val)	\
	((val) & (s)->fifo_level_chk_mask)

enum sirf_spi_type {
	SIRF_REAL_SPI,
	SIRF_USP_SPI_P2,
	SIRF_USP_SPI_A7,
};

/*
 * only if the rx/tx buffer and transfer size are 4-bytes aligned, we use dma
 * due to the limitation of dma controller
 */

#define ALIGNED(x) (!((u32)x & 0x3))
#define IS_DMA_VALID(x) (x && ALIGNED(x->tx_buf) && ALIGNED(x->rx_buf) && \
	ALIGNED(x->len) && (x->len < 2 * PAGE_SIZE))

#define SIRFSOC_MAX_CMD_BYTES	4
#define SIRFSOC_SPI_DEFAULT_FRQ 1000000

struct sirf_spi_register {
	/*SPI and USP-SPI common*/
	u32 tx_rx_en;
	u32 int_en;
	u32 int_st;
	u32 tx_dma_io_ctrl;
	u32 tx_dma_io_len;
	u32 txfifo_ctrl;
	u32 txfifo_level_chk;
	u32 txfifo_op;
	u32 txfifo_st;
	u32 txfifo_data;
	u32 rx_dma_io_ctrl;
	u32 rx_dma_io_len;
	u32 rxfifo_ctrl;
	u32 rxfifo_level_chk;
	u32 rxfifo_op;
	u32 rxfifo_st;
	u32 rxfifo_data;
	/*SPI self*/
	u32 spi_ctrl;
	u32 spi_cmd;
	u32 spi_dummy_delay_ctrl;
	/*USP-SPI self*/
	u32 usp_mode1;
	u32 usp_mode2;
	u32 usp_tx_frame_ctrl;
	u32 usp_rx_frame_ctrl;
	u32 usp_pin_io_data;
	u32 usp_risc_dsp_mode;
	u32 usp_async_param_reg;
	u32 usp_irda_x_mode_div;
	u32 usp_sm_cfg;
	u32 usp_int_en_clr;
};

static const struct sirf_spi_register real_spi_register = {
	.tx_rx_en		= 0x8,
	.int_en		= 0xc,
	.int_st		= 0x10,
	.tx_dma_io_ctrl	= 0x100,
	.tx_dma_io_len	= 0x104,
	.txfifo_ctrl	= 0x108,
	.txfifo_level_chk	= 0x10c,
	.txfifo_op		= 0x110,
	.txfifo_st		= 0x114,
	.txfifo_data	= 0x118,
	.rx_dma_io_ctrl	= 0x120,
	.rx_dma_io_len	= 0x124,
	.rxfifo_ctrl	= 0x128,
	.rxfifo_level_chk	= 0x12c,
	.rxfifo_op		= 0x130,
	.rxfifo_st		= 0x134,
	.rxfifo_data	= 0x138,
	.spi_ctrl		= 0x0,
	.spi_cmd		= 0x4,
	.spi_dummy_delay_ctrl	= 0x144,
};

static const struct sirf_spi_register usp_spi_register = {
	.tx_rx_en		= 0x10,
	.int_en		= 0x14,
	.int_st		= 0x18,
	.tx_dma_io_ctrl	= 0x100,
	.tx_dma_io_len	= 0x104,
	.txfifo_ctrl	= 0x108,
	.txfifo_level_chk	= 0x10c,
	.txfifo_op		= 0x110,
	.txfifo_st		= 0x114,
	.txfifo_data	= 0x118,
	.rx_dma_io_ctrl	= 0x120,
	.rx_dma_io_len	= 0x124,
	.rxfifo_ctrl	= 0x128,
	.rxfifo_level_chk	= 0x12c,
	.rxfifo_op		= 0x130,
	.rxfifo_st		= 0x134,
	.rxfifo_data	= 0x138,
	.usp_mode1		= 0x0,
	.usp_mode2		= 0x4,
	.usp_tx_frame_ctrl	= 0x8,
	.usp_rx_frame_ctrl	= 0xc,
	.usp_pin_io_data	= 0x1c,
	.usp_risc_dsp_mode	= 0x20,
	.usp_async_param_reg	= 0x24,
	.usp_irda_x_mode_div	= 0x28,
	.usp_sm_cfg		= 0x2c,
	.usp_int_en_clr		= 0x140,
};

struct sirfsoc_spi {
	struct spi_bitbang bitbang;
	struct completion rx_done;
	struct completion tx_done;

	void __iomem *base;
	u32 ctrl_freq;  /* SPI controller clock speed */
	struct clk *clk;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	/* place received word into rx buffer */
	void (*rx_word) (struct sirfsoc_spi *);
	/* get word from tx buffer for sending */
	void (*tx_word) (struct sirfsoc_spi *);

	/* number of words left to be tranmitted/received */
	unsigned int left_tx_word;
	unsigned int left_rx_word;

	/* rx & tx DMA channels */
	struct dma_chan *rx_chan;
	struct dma_chan *tx_chan;
	dma_addr_t src_start;
	dma_addr_t dst_start;
	int word_width; /* in bytes */

	/*
	 * if tx size is not more than 4 and rx size is NULL, use
	 * command model
	 */
	bool	tx_by_cmd;
	bool	hw_cs;
	enum sirf_spi_type type;
	const struct sirf_spi_register *regs;
	unsigned int fifo_size;
	/* fifo empty offset is (fifo full offset + 1)*/
	unsigned int fifo_full_offset;
	/* fifo_level_chk_mask is (fifo_size/4 - 1) */
	unsigned int fifo_level_chk_mask;
	unsigned int dat_max_frm_len;
};

struct sirf_spi_comp_data {
	const struct sirf_spi_register *regs;
	enum sirf_spi_type type;
	unsigned int dat_max_frm_len;
	unsigned int fifo_size;
	void (*hwinit)(struct sirfsoc_spi *sspi);
};

static void sirfsoc_usp_hwinit(struct sirfsoc_spi *sspi)
{
	/* reset USP and let USP can operate */
	writel(readl(sspi->base + sspi->regs->usp_mode1) &
		~SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
	writel(readl(sspi->base + sspi->regs->usp_mode1) |
		SIRFSOC_USP_EN, sspi->base + sspi->regs->usp_mode1);
}

static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data;
	u8 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u8) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;
}

static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u8 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}
	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data;
	u16 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u16) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;
}

static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u16 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data;
	u32 *rx = sspi->rx;

	data = readl(sspi->base + sspi->regs->rxfifo_data);

	if (rx) {
		*rx++ = (u32) data;
		sspi->rx = rx;
	}

	sspi->left_rx_word--;

}

static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
	u32 data = 0;
	const u32 *tx = sspi->tx;

	if (tx) {
		data = *tx++;
		sspi->tx = tx;
	}

	writel(data, sspi->base + sspi->regs->txfifo_data);
	sspi->left_tx_word--;
}

static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
	struct sirfsoc_spi *sspi = dev_id;
	u32 spi_stat;

	spi_stat = readl(sspi->base + sspi->regs->int_st);
	if (sspi->tx_by_cmd && sspi->type == SIRF_REAL_SPI
		&& (spi_stat & SIRFSOC_SPI_FRM_END)) {
		complete(&sspi->tx_done);
		writel(0x0, sspi->base + sspi->regs->int_en);
		writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
		return IRQ_HANDLED;
	}
	/* Error Conditions */
	if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
			spi_stat & SIRFSOC_SPI_TX_UFLOW) {
		complete(&sspi->tx_done);
		complete(&sspi->rx_done);
		switch (sspi->type) {
		case SIRF_REAL_SPI:
		case SIRF_USP_SPI_P2:
			writel(0x0, sspi->base + sspi->regs->int_en);
			break;
		case SIRF_USP_SPI_A7:
			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
			break;
		}
		writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
		return IRQ_HANDLED;
	}
	if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
		complete(&sspi->tx_done);
	while (!(readl(sspi->base + sspi->regs->int_st) &
		SIRFSOC_SPI_RX_IO_DMA))
		cpu_relax();
	complete(&sspi->rx_done);
	switch (sspi->type) {
	case SIRF_REAL_SPI:
	case SIRF_USP_SPI_P2:
		writel(0x0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_A7:
		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
		break;
	}
	writel(readl(sspi->base + sspi->regs->int_st),
			sspi->base + sspi->regs->int_st);

	return IRQ_HANDLED;
}

static void spi_sirfsoc_dma_fini_callback(void *data)
{
	struct completion *dma_complete = data;

	complete(dma_complete);
}

static void spi_sirfsoc_cmd_transfer(struct spi_device *spi,
	struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	u32 cmd;

	sspi = spi_master_get_devdata(spi->master);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
	memcpy(&cmd, sspi->tx, t->len);
	if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
		cmd = cpu_to_be32(cmd) >>
			((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
	if (sspi->word_width == 2 && t->len == 4 &&
			(!(spi->mode & SPI_LSB_FIRST)))
		cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
	writel(cmd, sspi->base + sspi->regs->spi_cmd);
	writel(SIRFSOC_SPI_FRM_END_INT_EN,
		sspi->base + sspi->regs->int_en);
	writel(SIRFSOC_SPI_CMD_TX_EN,
		sspi->base + sspi->regs->tx_rx_en);
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "cmd transfer timeout\n");
		return;
	}
	sspi->left_rx_word -= t->len;
}

static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
	struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	struct dma_async_tx_descriptor *rx_desc, *tx_desc;
	int timeout = t->len * 10;

	sspi = spi_master_get_devdata(spi->master);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	switch (sspi->type) {
	case SIRF_REAL_SPI:
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->txfifo_op);
		writel(0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_P2:
		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
		writel(0x0, sspi->base + sspi->regs->txfifo_op);
		writel(0, sspi->base + sspi->regs->int_en);
		break;
	case SIRF_USP_SPI_A7:
		writel(0x0, sspi->base + sspi->regs->rxfifo_op);
		writel(0x0, sspi->base + sspi->regs->txfifo_op);
		writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
		break;
	}
	writel(readl(sspi->base + sspi->regs->int_st),
		sspi->base + sspi->regs->int_st);
	if (sspi->left_tx_word < sspi->dat_max_frm_len) {
		switch (sspi->type) {
		case SIRF_REAL_SPI:
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				SIRFSOC_SPI_ENA_AUTO_CLR |
				SIRFSOC_SPI_MUL_DAT_MODE,
				sspi->base + sspi->regs->spi_ctrl);
			writel(sspi->left_tx_word - 1,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(sspi->left_tx_word - 1,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_USP_SPI_P2:
		case SIRF_USP_SPI_A7:
			/*USP simulate SPI, tx/rx_dma_io_len indicates bytes*/
			writel(sspi->left_tx_word * sspi->word_width,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(sspi->left_tx_word * sspi->word_width,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		}
	} else {
		if (sspi->type == SIRF_REAL_SPI)
			writel(readl(sspi->base + sspi->regs->spi_ctrl),
				sspi->base + sspi->regs->spi_ctrl);
		writel(0, sspi->base + sspi->regs->tx_dma_io_len);
		writel(0, sspi->base + sspi->regs->rx_dma_io_len);
	}
	sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
	rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
		sspi->dst_start, t->len, DMA_DEV_TO_MEM,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	rx_desc->callback = spi_sirfsoc_dma_fini_callback;
	rx_desc->callback_param = &sspi->rx_done;

	sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
					(t->tx_buf != t->rx_buf) ?
					DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
	tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
		sspi->src_start, t->len, DMA_MEM_TO_DEV,
		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	tx_desc->callback = spi_sirfsoc_dma_fini_callback;
	tx_desc->callback_param = &sspi->tx_done;

	dmaengine_submit(tx_desc);
	dmaengine_submit(rx_desc);
	dma_async_issue_pending(sspi->tx_chan);
	dma_async_issue_pending(sspi->rx_chan);
	writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
			sspi->base + sspi->regs->tx_rx_en);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7) {
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_START,
			sspi->base + sspi->regs->txfifo_op);
	}
	if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		dmaengine_terminate_all(sspi->rx_chan);
	} else
		sspi->left_rx_word = 0;
	/*
	 * we only wait tx-done event if transferring by DMA. for PIO,
	 * we get rx data by writing tx data, so if rx is done, tx has
	 * done earlier
	 */
	if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
		dev_err(&spi->dev, "transfer timeout\n");
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7)
			writel(0, sspi->base + sspi->regs->tx_rx_en);
		dmaengine_terminate_all(sspi->tx_chan);
	}
	dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
	dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
	/* TX, RX FIFO stop */
	writel(0, sspi->base + sspi->regs->rxfifo_op);
	writel(0, sspi->base + sspi->regs->txfifo_op);
	if (sspi->left_tx_word >= sspi->dat_max_frm_len)
		writel(0, sspi->base + sspi->regs->tx_rx_en);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7)
		writel(0, sspi->base + sspi->regs->tx_rx_en);
}

static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
		struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	int timeout = t->len * 10;
	unsigned int data_units;

	sspi = spi_master_get_devdata(spi->master);
	do {
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + sspi->regs->rxfifo_op);
		writel(SIRFSOC_SPI_FIFO_RESET,
			sspi->base + sspi->regs->txfifo_op);
		switch (sspi->type) {
		case SIRF_USP_SPI_P2:
			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
			writel(0x0, sspi->base + sspi->regs->txfifo_op);
			writel(0, sspi->base + sspi->regs->int_en);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(min((sspi->left_tx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min((sspi->left_rx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_USP_SPI_A7:
			writel(0x0, sspi->base + sspi->regs->rxfifo_op);
			writel(0x0, sspi->base + sspi->regs->txfifo_op);
			writel(~0UL, sspi->base + sspi->regs->usp_int_en_clr);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(min((sspi->left_tx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min((sspi->left_rx_word * sspi->word_width),
				sspi->fifo_size),
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		case SIRF_REAL_SPI:
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->rxfifo_op);
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->txfifo_op);
			writel(0, sspi->base + sspi->regs->int_en);
			writel(readl(sspi->base + sspi->regs->int_st),
				sspi->base + sspi->regs->int_st);
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				SIRFSOC_SPI_MUL_DAT_MODE |
				SIRFSOC_SPI_ENA_AUTO_CLR,
				sspi->base + sspi->regs->spi_ctrl);
			data_units = sspi->fifo_size / sspi->word_width;
			writel(min(sspi->left_tx_word, data_units) - 1,
				sspi->base + sspi->regs->tx_dma_io_len);
			writel(min(sspi->left_rx_word, data_units) - 1,
				sspi->base + sspi->regs->rx_dma_io_len);
			break;
		}
		while (!((readl(sspi->base + sspi->regs->txfifo_st)
			& SIRFSOC_SPI_FIFO_FULL_MASK(sspi))) &&
			sspi->left_tx_word)
			sspi->tx_word(sspi);
		writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
			SIRFSOC_SPI_TX_UFLOW_INT_EN |
			SIRFSOC_SPI_RX_OFLOW_INT_EN |
			SIRFSOC_SPI_RX_IO_DMA_INT_EN,
			sspi->base + sspi->regs->int_en);
		writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
			sspi->base + sspi->regs->tx_rx_en);
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7) {
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->rxfifo_op);
			writel(SIRFSOC_SPI_FIFO_START,
				sspi->base + sspi->regs->txfifo_op);
		}
		if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
			!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
			dev_err(&spi->dev, "transfer timeout\n");
			if (sspi->type == SIRF_USP_SPI_P2 ||
				sspi->type == SIRF_USP_SPI_A7)
				writel(0, sspi->base + sspi->regs->tx_rx_en);
			break;
		}
		while (!((readl(sspi->base + sspi->regs->rxfifo_st)
			& SIRFSOC_SPI_FIFO_EMPTY_MASK(sspi))) &&
			sspi->left_rx_word)
			sspi->rx_word(sspi);
		if (sspi->type == SIRF_USP_SPI_P2 ||
			sspi->type == SIRF_USP_SPI_A7)
			writel(0, sspi->base + sspi->regs->tx_rx_en);
		writel(0, sspi->base + sspi->regs->rxfifo_op);
		writel(0, sspi->base + sspi->regs->txfifo_op);
	} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
}

static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;

	sspi = spi_master_get_devdata(spi->master);
	sspi->tx = t->tx_buf;
	sspi->rx = t->rx_buf;
	sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
	reinit_completion(&sspi->rx_done);
	reinit_completion(&sspi->tx_done);
	/*
	 * in the transfer, if transfer data using command register with rx_buf
	 * null, just fill command data into command register and wait for its
	 * completion.
	 */
	if (sspi->type == SIRF_REAL_SPI && sspi->tx_by_cmd)
		spi_sirfsoc_cmd_transfer(spi, t);
	else if (IS_DMA_VALID(t))
		spi_sirfsoc_dma_transfer(spi, t);
	else
		spi_sirfsoc_pio_transfer(spi, t);

	return t->len - sspi->left_rx_word * sspi->word_width;
}

static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
	struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);

	if (sspi->hw_cs) {
		u32 regval;

		switch (sspi->type) {
		case SIRF_REAL_SPI:
			regval = readl(sspi->base + sspi->regs->spi_ctrl);
			switch (value) {
			case BITBANG_CS_ACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval |= SIRFSOC_SPI_CS_IO_OUT;
				else
					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
				break;
			case BITBANG_CS_INACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval &= ~SIRFSOC_SPI_CS_IO_OUT;
				else
					regval |= SIRFSOC_SPI_CS_IO_OUT;
				break;
			}
			writel(regval, sspi->base + sspi->regs->spi_ctrl);
			break;
		case SIRF_USP_SPI_P2:
		case SIRF_USP_SPI_A7:
			regval = readl(sspi->base +
					sspi->regs->usp_pin_io_data);
			switch (value) {
			case BITBANG_CS_ACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
				else
					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
				break;
			case BITBANG_CS_INACTIVE:
				if (spi->mode & SPI_CS_HIGH)
					regval &= ~(SIRFSOC_USP_CS_HIGH_VALUE);
				else
					regval |= SIRFSOC_USP_CS_HIGH_VALUE;
				break;
			}
			writel(regval,
				sspi->base + sspi->regs->usp_pin_io_data);
			break;
		}
	} else {
		switch (value) {
		case BITBANG_CS_ACTIVE:
			gpio_direction_output(spi->cs_gpio,
					spi->mode & SPI_CS_HIGH ? 1 : 0);
			break;
		case BITBANG_CS_INACTIVE:
			gpio_direction_output(spi->cs_gpio,
					spi->mode & SPI_CS_HIGH ? 0 : 1);
			break;
		}
	}
}

static int spi_sirfsoc_config_mode(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;
	u32 regval, usp_mode1;

	sspi = spi_master_get_devdata(spi->master);
	regval = readl(sspi->base + sspi->regs->spi_ctrl);
	usp_mode1 = readl(sspi->base + sspi->regs->usp_mode1);
	if (!(spi->mode & SPI_CS_HIGH)) {
		regval |= SIRFSOC_SPI_CS_IDLE_STAT;
		usp_mode1 &= ~SIRFSOC_USP_CS_HIGH_VALID;
	} else {
		regval &= ~SIRFSOC_SPI_CS_IDLE_STAT;
		usp_mode1 |= SIRFSOC_USP_CS_HIGH_VALID;
	}
	if (!(spi->mode & SPI_LSB_FIRST)) {
		regval |= SIRFSOC_SPI_TRAN_MSB;
		usp_mode1 &= ~SIRFSOC_USP_LSB;
	} else {
		regval &= ~SIRFSOC_SPI_TRAN_MSB;
		usp_mode1 |= SIRFSOC_USP_LSB;
	}
	if (spi->mode & SPI_CPOL) {
		regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
		usp_mode1 |= SIRFSOC_USP_SCLK_IDLE_STAT;
	} else {
		regval &= ~SIRFSOC_SPI_CLK_IDLE_STAT;
		usp_mode1 &= ~SIRFSOC_USP_SCLK_IDLE_STAT;
	}
	/*
	 * Data should be driven at least 1/2 cycle before the fetch edge
	 * to make sure that data gets stable at the fetch edge.
	 */
	if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
	    (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) {
		regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
		usp_mode1 |= (SIRFSOC_USP_TXD_FALLING_EDGE |
				SIRFSOC_USP_RXD_FALLING_EDGE);
	} else {
		regval |= SIRFSOC_SPI_DRV_POS_EDGE;
		usp_mode1 &= ~(SIRFSOC_USP_RXD_FALLING_EDGE |
				SIRFSOC_USP_TXD_FALLING_EDGE);
	}
	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
		SIRFSOC_SPI_FIFO_SC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
		SIRFSOC_SPI_FIFO_LC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
		SIRFSOC_SPI_FIFO_HC_OFFSET),
		sspi->base + sspi->regs->txfifo_level_chk);
	writel((SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, 2) <<
		SIRFSOC_SPI_FIFO_SC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size / 2) <<
		SIRFSOC_SPI_FIFO_LC_OFFSET) |
		(SIRFSOC_SPI_FIFO_LEVEL_CHK_MASK(sspi, sspi->fifo_size - 2) <<
		SIRFSOC_SPI_FIFO_HC_OFFSET),
		sspi->base + sspi->regs->rxfifo_level_chk);
	/*
	 * it should never set to hardware cs mode because in hardware cs mode,
	 * cs signal can't controlled by driver.
	 */
	switch (sspi->type) {
	case SIRF_REAL_SPI:
		regval |= SIRFSOC_SPI_CS_IO_MODE;
		writel(regval, sspi->base + sspi->regs->spi_ctrl);
		break;
	case SIRF_USP_SPI_P2:
	case SIRF_USP_SPI_A7:
		usp_mode1 |= SIRFSOC_USP_SYNC_MODE;
		usp_mode1 |= SIRFSOC_USP_TFS_IO_MODE;
		usp_mode1 &= ~SIRFSOC_USP_TFS_IO_INPUT;
		writel(usp_mode1, sspi->base + sspi->regs->usp_mode1);
		break;
	}

	return 0;
}

static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
	struct sirfsoc_spi *sspi;
	u8 bits_per_word = 0;
	int hz = 0;
	u32 regval, txfifo_ctrl, rxfifo_ctrl, tx_frm_ctl, rx_frm_ctl, usp_mode2;

	sspi = spi_master_get_devdata(spi->master);

	bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
	hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;

	usp_mode2 = regval = (sspi->ctrl_freq / (2 * hz)) - 1;
	if (regval > 0xFFFF || regval < 0) {
		dev_err(&spi->dev, "Speed %d not supported\n", hz);
		return -EINVAL;
	}
	switch (bits_per_word) {
	case 8:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
		sspi->rx_word = spi_sirfsoc_rx_word_u8;
		sspi->tx_word = spi_sirfsoc_tx_word_u8;
		break;
	case 12:
	case 16:
		regval |= (bits_per_word ==  12) ?
			SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
			SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
		sspi->rx_word = spi_sirfsoc_rx_word_u16;
		sspi->tx_word = spi_sirfsoc_tx_word_u16;
		break;
	case 32:
		regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
		sspi->rx_word = spi_sirfsoc_rx_word_u32;
		sspi->tx_word = spi_sirfsoc_tx_word_u32;
		break;
	default:
		dev_err(&spi->dev, "bpw %d not supported\n", bits_per_word);
		return -EINVAL;
	}
	sspi->word_width = DIV_ROUND_UP(bits_per_word, 8);
	txfifo_ctrl = (((sspi->fifo_size / 2) &
			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
			(sspi->word_width >> 1);
	rxfifo_ctrl = (((sspi->fifo_size / 2) &
			SIRFSOC_SPI_FIFO_THD_MASK(sspi))
			<< SIRFSOC_SPI_FIFO_THD_OFFSET) |
			(sspi->word_width >> 1);
	writel(txfifo_ctrl, sspi->base + sspi->regs->txfifo_ctrl);
	writel(rxfifo_ctrl, sspi->base + sspi->regs->rxfifo_ctrl);
	if (sspi->type == SIRF_USP_SPI_P2 ||
		sspi->type == SIRF_USP_SPI_A7) {
		tx_frm_ctl = 0;
		tx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_TX_DATA_MASK)
				<< SIRFSOC_USP_TX_DATA_OFFSET;
		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
				- 1) & SIRFSOC_USP_TX_SYNC_MASK) <<
				SIRFSOC_USP_TX_SYNC_OFFSET;
		tx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_TXD_DELAY_LEN
				+ 2 - 1) & SIRFSOC_USP_TX_FRAME_MASK) <<
				SIRFSOC_USP_TX_FRAME_OFFSET;
		tx_frm_ctl |= ((bits_per_word - 1) &
				SIRFSOC_USP_TX_SHIFTER_MASK) <<
				SIRFSOC_USP_TX_SHIFTER_OFFSET;
		rx_frm_ctl = 0;
		rx_frm_ctl |= ((bits_per_word - 1) & SIRFSOC_USP_RX_DATA_MASK)
				<< SIRFSOC_USP_RX_DATA_OFFSET;
		rx_frm_ctl |= ((bits_per_word + 1 + SIRFSOC_USP_RXD_DELAY_LEN
				+ 2 - 1) & SIRFSOC_USP_RX_FRAME_MASK) <<
				SIRFSOC_USP_RX_FRAME_OFFSET;
		rx_frm_ctl |= ((bits_per_word - 1)
				& SIRFSOC_USP_RX_SHIFTER_MASK) <<
				SIRFSOC_USP_RX_SHIFTER_OFFSET;
		writel(tx_frm_ctl | (((usp_mode2 >> 10) &
			SIRFSOC_USP_CLK_10_11_MASK) <<
			SIRFSOC_USP_CLK_10_11_OFFSET),
			sspi->base + sspi->regs->usp_tx_frame_ctrl);
		writel(rx_frm_ctl | (((usp_mode2 >> 12) &
			SIRFSOC_USP_CLK_12_15_MASK) <<
			SIRFSOC_USP_CLK_12_15_OFFSET),
			sspi->base + sspi->regs->usp_rx_frame_ctrl);
		writel(readl(sspi->base + sspi->regs->usp_mode2) |
			((usp_mode2 & SIRFSOC_USP_CLK_DIVISOR_MASK) <<
			SIRFSOC_USP_CLK_DIVISOR_OFFSET) |
			(SIRFSOC_USP_RXD_DELAY_LEN <<
			 SIRFSOC_USP_RXD_DELAY_OFFSET) |
			(SIRFSOC_USP_TXD_DELAY_LEN <<
			 SIRFSOC_USP_TXD_DELAY_OFFSET),
			sspi->base + sspi->regs->usp_mode2);
	}
	if (sspi->type == SIRF_REAL_SPI)
		writel(regval, sspi->base + sspi->regs->spi_ctrl);
	spi_sirfsoc_config_mode(spi);
	if (sspi->type == SIRF_REAL_SPI) {
		if (t && t->tx_buf && !t->rx_buf &&
			(t->len <= SIRFSOC_MAX_CMD_BYTES)) {
			sspi->tx_by_cmd = true;
			writel(readl(sspi->base + sspi->regs->spi_ctrl) |
				(SIRFSOC_SPI_CMD_BYTE_NUM((t->len - 1)) |
				SIRFSOC_SPI_CMD_MODE),
				sspi->base + sspi->regs->spi_ctrl);
		} else {
			sspi->tx_by_cmd = false;
			writel(readl(sspi->base + sspi->regs->spi_ctrl) &
				~SIRFSOC_SPI_CMD_MODE,
				sspi->base + sspi->regs->spi_ctrl);
		}
	}
	if (IS_DMA_VALID(t)) {
		/* Enable DMA mode for RX, TX */
		writel(0, sspi->base + sspi->regs->tx_dma_io_ctrl);
		writel(SIRFSOC_SPI_RX_DMA_FLUSH,
			sspi->base + sspi->regs->rx_dma_io_ctrl);
	} else {
		/* Enable IO mode for RX, TX */
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + sspi->regs->tx_dma_io_ctrl);
		writel(SIRFSOC_SPI_IO_MODE_SEL,
			sspi->base + sspi->regs->rx_dma_io_ctrl);
	}
	return 0;
}

static int spi_sirfsoc_setup(struct spi_device *spi)
{
	struct sirfsoc_spi *sspi;
	int ret = 0;

	sspi = spi_master_get_devdata(spi->master);
	if (spi->cs_gpio == -ENOENT)
		sspi->hw_cs = true;
	else {
		sspi->hw_cs = false;
		if (!spi_get_ctldata(spi)) {
			void *cs = kmalloc(sizeof(int), GFP_KERNEL);
			if (!cs) {
				ret = -ENOMEM;
				goto exit;
			}
			ret = gpio_is_valid(spi->cs_gpio);
			if (!ret) {
				dev_err(&spi->dev, "no valid gpio\n");
				ret = -ENOENT;
				goto exit;
			}
			ret = gpio_request(spi->cs_gpio, DRIVER_NAME);
			if (ret) {
				dev_err(&spi->dev, "failed to request gpio\n");
				goto exit;
			}
			spi_set_ctldata(spi, cs);
		}
	}
	spi_sirfsoc_config_mode(spi);
	spi_sirfsoc_chipselect(spi, BITBANG_CS_INACTIVE);
exit:
	return ret;
}

static void spi_sirfsoc_cleanup(struct spi_device *spi)
{
	if (spi_get_ctldata(spi)) {
		gpio_free(spi->cs_gpio);
		kfree(spi_get_ctldata(spi));
	}
}

static const struct sirf_spi_comp_data sirf_real_spi = {
	.regs = &real_spi_register,
	.type = SIRF_REAL_SPI,
	.dat_max_frm_len = 64 * 1024,
	.fifo_size = 256,
};

static const struct sirf_spi_comp_data sirf_usp_spi_p2 = {
	.regs = &usp_spi_register,
	.type = SIRF_USP_SPI_P2,
	.dat_max_frm_len = 1024 * 1024,
	.fifo_size = 128,
	.hwinit = sirfsoc_usp_hwinit,
};

static const struct sirf_spi_comp_data sirf_usp_spi_a7 = {
	.regs = &usp_spi_register,
	.type = SIRF_USP_SPI_A7,
	.dat_max_frm_len = 1024 * 1024,
	.fifo_size = 512,
	.hwinit = sirfsoc_usp_hwinit,
};

static const struct of_device_id spi_sirfsoc_of_match[] = {
	{ .compatible = "sirf,prima2-spi", .data = &sirf_real_spi},
	{ .compatible = "sirf,prima2-usp-spi", .data = &sirf_usp_spi_p2},
	{ .compatible = "sirf,atlas7-usp-spi", .data = &sirf_usp_spi_a7},
	{}
};
MODULE_DEVICE_TABLE(of, spi_sirfsoc_of_match);

static int spi_sirfsoc_probe(struct platform_device *pdev)
{
	struct sirfsoc_spi *sspi;
	struct spi_master *master;
	struct resource *mem_res;
	struct sirf_spi_comp_data *spi_comp_data;
	int irq;
	int ret;
	const struct of_device_id *match;

	ret = device_reset(&pdev->dev);
	if (ret) {
		dev_err(&pdev->dev, "SPI reset failed!\n");
		return ret;
	}

	master = spi_alloc_master(&pdev->dev, sizeof(*sspi));
	if (!master) {
		dev_err(&pdev->dev, "Unable to allocate SPI master\n");
		return -ENOMEM;
	}
	match = of_match_node(spi_sirfsoc_of_match, pdev->dev.of_node);
	platform_set_drvdata(pdev, master);
	sspi = spi_master_get_devdata(master);
	sspi->fifo_full_offset = ilog2(sspi->fifo_size);
	spi_comp_data = (struct sirf_spi_comp_data *)match->data;
	sspi->regs = spi_comp_data->regs;
	sspi->type = spi_comp_data->type;
	sspi->fifo_level_chk_mask = (sspi->fifo_size / 4) - 1;
	sspi->dat_max_frm_len = spi_comp_data->dat_max_frm_len;
	sspi->fifo_size = spi_comp_data->fifo_size;
	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
	if (IS_ERR(sspi->base)) {
		ret = PTR_ERR(sspi->base);
		goto free_master;
	}
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		ret = -ENXIO;
		goto free_master;
	}
	ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
				DRIVER_NAME, sspi);
	if (ret)
		goto free_master;

	sspi->bitbang.master = master;
	sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
	sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
	sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
	sspi->bitbang.master->setup = spi_sirfsoc_setup;
	sspi->bitbang.master->cleanup = spi_sirfsoc_cleanup;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(12) |
					SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
	master->max_speed_hz = SIRFSOC_SPI_DEFAULT_FRQ;
	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
	sspi->bitbang.master->dev.of_node = pdev->dev.of_node;

	/* request DMA channels */
	sspi->rx_chan = dma_request_slave_channel(&pdev->dev, "rx");
	if (!sspi->rx_chan) {
		dev_err(&pdev->dev, "can not allocate rx dma channel\n");
		ret = -ENODEV;
		goto free_master;
	}
	sspi->tx_chan = dma_request_slave_channel(&pdev->dev, "tx");
	if (!sspi->tx_chan) {
		dev_err(&pdev->dev, "can not allocate tx dma channel\n");
		ret = -ENODEV;
		goto free_rx_dma;
	}

	sspi->clk = clk_get(&pdev->dev, NULL);
	if (IS_ERR(sspi->clk)) {
		ret = PTR_ERR(sspi->clk);
		goto free_tx_dma;
	}
	clk_prepare_enable(sspi->clk);
	if (spi_comp_data->hwinit)
		spi_comp_data->hwinit(sspi);
	sspi->ctrl_freq = clk_get_rate(sspi->clk);

	init_completion(&sspi->rx_done);
	init_completion(&sspi->tx_done);

	ret = spi_bitbang_start(&sspi->bitbang);
	if (ret)
		goto free_clk;
	dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);

	return 0;
free_clk:
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
free_tx_dma:
	dma_release_channel(sspi->tx_chan);
free_rx_dma:
	dma_release_channel(sspi->rx_chan);
free_master:
	spi_master_put(master);

	return ret;
}

static int  spi_sirfsoc_remove(struct platform_device *pdev)
{
	struct spi_master *master;
	struct sirfsoc_spi *sspi;

	master = platform_get_drvdata(pdev);
	sspi = spi_master_get_devdata(master);
	spi_bitbang_stop(&sspi->bitbang);
	clk_disable_unprepare(sspi->clk);
	clk_put(sspi->clk);
	dma_release_channel(sspi->rx_chan);
	dma_release_channel(sspi->tx_chan);
	spi_master_put(master);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int spi_sirfsoc_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

	clk_disable(sspi->clk);
	return 0;
}

static int spi_sirfsoc_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct sirfsoc_spi *sspi = spi_master_get_devdata(master);

	clk_enable(sspi->clk);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + sspi->regs->rxfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->txfifo_op);
	writel(SIRFSOC_SPI_FIFO_START, sspi->base + sspi->regs->rxfifo_op);
	return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(spi_sirfsoc_pm_ops, spi_sirfsoc_suspend,
			 spi_sirfsoc_resume);

static struct platform_driver spi_sirfsoc_driver = {
	.driver = {
		.name = DRIVER_NAME,
		.pm     = &spi_sirfsoc_pm_ops,
		.of_match_table = spi_sirfsoc_of_match,
	},
	.probe = spi_sirfsoc_probe,
	.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
MODULE_AUTHOR("Qipan Li <Qipan.Li@csr.com>");
MODULE_LICENSE("GPL v2");