summaryrefslogtreecommitdiffstats
path: root/kernel/drivers/thermal/samsung/Makefile
AgeCommit message (Expand)AuthorFilesLines
2015-08-04Add the rt linux 4.1.3-rt3 as baseYunhong Jiang1-0/+5
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
/*
 *  Software MMU support
 *
 * Generate helpers used by TCG for qemu_ld/st ops and code load
 * functions.
 *
 * Included from target op helpers and exec.c.
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#include "qemu/timer.h"
#include "exec/address-spaces.h"
#include "exec/memory.h"

#define DATA_SIZE (1 << SHIFT)

#if DATA_SIZE == 8
#define SUFFIX q
#define LSUFFIX q
#define SDATA_TYPE  int64_t
#define DATA_TYPE  uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define LSUFFIX l
#define SDATA_TYPE  int32_t
#define DATA_TYPE  uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define LSUFFIX uw
#define SDATA_TYPE  int16_t
#define DATA_TYPE  uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define LSUFFIX ub
#define SDATA_TYPE  int8_t
#define DATA_TYPE  uint8_t
#else
#error unsupported data size
#endif


/* For the benefit of TCG generated code, we want to avoid the complication
   of ABI-specific return type promotion and always return a value extended
   to the register size of the host.  This is tcg_target_long, except in the
   case of a 32-bit host and 64-bit data, and for that we always have
   uint64_t.  Don't bother with this widened value for SOFTMMU_CODE_ACCESS.  */
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
# define WORD_TYPE  DATA_TYPE
# define USUFFIX    SUFFIX
#else
# define WORD_TYPE  tcg_target_ulong
# define USUFFIX    glue(u, SUFFIX)
# define SSUFFIX    glue(s, SUFFIX)
#endif

#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE MMU_INST_FETCH
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE MMU_DATA_LOAD
#define ADDR_READ addr_read
#endif

#if DATA_SIZE == 8
# define BSWAP(X)  bswap64(X)
#elif DATA_SIZE == 4
# define BSWAP(X)  bswap32(X)
#elif DATA_SIZE == 2
# define BSWAP(X)  bswap16(X)
#else
# define BSWAP(X)  (X)
#endif

#ifdef TARGET_WORDS_BIGENDIAN
# define TGT_BE(X)  (X)
# define TGT_LE(X)  BSWAP(X)
#else
# define TGT_BE(X)  BSWAP(X)
# define TGT_LE(X)  (X)
#endif

#if DATA_SIZE == 1
# define helper_le_ld_name  glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name  helper_le_ld_name
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name helper_le_lds_name
# define helper_le_st_name  glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name  helper_le_st_name
#else
# define helper_le_ld_name  glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name  glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
# define helper_le_st_name  glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name  glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
#endif

#ifdef TARGET_WORDS_BIGENDIAN
# define helper_te_ld_name  helper_be_ld_name
# define helper_te_st_name  helper_be_st_name
#else
# define helper_te_ld_name  helper_le_ld_name
# define helper_te_st_name  helper_le_st_name
#endif

/* macro to check the victim tlb */
#define VICTIM_TLB_HIT(ty)                                                    \
({                                                                            \
    /* we are about to do a page table walk. our last hope is the             \
     * victim tlb. try to refill from the victim tlb before walking the       \
     * page table. */                                                         \
    int vidx;                                                                 \
    CPUIOTLBEntry tmpiotlb;                                                   \
    CPUTLBEntry tmptlb;                                                       \
    for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) {                         \
        if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
            /* found entry in victim tlb, swap tlb and iotlb */               \
            tmptlb = env->tlb_table[mmu_idx][index];                          \
            env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
            env->tlb_v_table[mmu_idx][vidx] = tmptlb;                         \
            tmpiotlb = env->iotlb[mmu_idx][index];                            \
            env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx];         \
            env->iotlb_v[mmu_idx][vidx] = tmpiotlb;                           \
            break;                                                            \
        }                                                                     \
    }                                                                         \
    /* return true when there is a vtlb hit, i.e. vidx >=0 */                 \
    vidx >= 0;                                                                \
})

#ifndef SOFTMMU_CODE_ACCESS
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
                                              CPUIOTLBEntry *iotlbentry,
                                              target_ulong addr,
                                              uintptr_t retaddr)
{
    uint64_t val;
    CPUState *cpu = ENV_GET_CPU(env);
    hwaddr physaddr = iotlbentry->addr;
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);

    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
    cpu->mem_io_pc = retaddr;
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
        cpu_io_recompile(cpu, retaddr);
    }

    cpu->mem_io_vaddr = addr;
    memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
                                iotlbentry->attrs);
    return val;
}
#endif

WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
                            TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    uintptr_t haddr;
    DATA_TYPE res;

    /* Adjust the given return address.  */
    retaddr -= GETPC_ADJ;

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if ((addr & (DATA_SIZE - 1)) != 0
            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                                 mmu_idx, retaddr);
        }
        if (!VICTIM_TLB_HIT(ADDR_READ)) {
            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                     mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
        res = TGT_LE(res);
        return res;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                    >= TARGET_PAGE_SIZE)) {
        target_ulong addr1, addr2;
        DATA_TYPE res1, res2;
        unsigned shift;
    do_unaligned_access:
        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                                 mmu_idx, retaddr);
        }
        addr1 = addr & ~(DATA_SIZE - 1);
        addr2 = addr1 + DATA_SIZE;
        /* Note the adjustment at the beginning of the function.
           Undo that for the recursion.  */
        res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
        res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
        shift = (addr & (DATA_SIZE - 1)) * 8;

        /* Little-endian combine.  */
        res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
        return res;
    }

    /* Handle aligned access or unaligned access in the same page.  */
    if ((addr & (DATA_SIZE - 1)) != 0
        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                             mmu_idx, retaddr);
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
    res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
#else
    res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
#endif
    return res;
}

#if DATA_SIZE > 1
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
                            TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    uintptr_t haddr;
    DATA_TYPE res;

    /* Adjust the given return address.  */
    retaddr -= GETPC_ADJ;

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if ((addr & (DATA_SIZE - 1)) != 0
            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                                 mmu_idx, retaddr);
        }
        if (!VICTIM_TLB_HIT(ADDR_READ)) {
            tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                     mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
        res = TGT_BE(res);
        return res;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                    >= TARGET_PAGE_SIZE)) {
        target_ulong addr1, addr2;
        DATA_TYPE res1, res2;
        unsigned shift;
    do_unaligned_access:
        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                                 mmu_idx, retaddr);
        }
        addr1 = addr & ~(DATA_SIZE - 1);
        addr2 = addr1 + DATA_SIZE;
        /* Note the adjustment at the beginning of the function.
           Undo that for the recursion.  */
        res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
        res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
        shift = (addr & (DATA_SIZE - 1)) * 8;

        /* Big-endian combine.  */
        res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
        return res;
    }

    /* Handle aligned access or unaligned access in the same page.  */
    if ((addr & (DATA_SIZE - 1)) != 0
        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
                             mmu_idx, retaddr);
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
    res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
    return res;
}
#endif /* DATA_SIZE > 1 */

#ifndef SOFTMMU_CODE_ACCESS

/* Provide signed versions of the load routines as well.  We can of course
   avoid this for 64-bit data, or for 32-bit data on 32-bit host.  */
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
                             TCGMemOpIdx oi, uintptr_t retaddr)
{
    return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
}

# if DATA_SIZE > 1
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
                             TCGMemOpIdx oi, uintptr_t retaddr)
{
    return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
}
# endif
#endif

static inline void glue(io_write, SUFFIX)(CPUArchState *env,
                                          CPUIOTLBEntry *iotlbentry,
                                          DATA_TYPE val,
                                          target_ulong addr,
                                          uintptr_t retaddr)
{
    CPUState *cpu = ENV_GET_CPU(env);
    hwaddr physaddr = iotlbentry->addr;
    MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);

    physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
    if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
        cpu_io_recompile(cpu, retaddr);
    }

    cpu->mem_io_vaddr = addr;
    cpu->mem_io_pc = retaddr;
    memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
                                 iotlbentry->attrs);
}

void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
                       TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    uintptr_t haddr;

    /* Adjust the given return address.  */
    retaddr -= GETPC_ADJ;

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if ((addr & (DATA_SIZE - 1)) != 0
            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                                 mmu_idx, retaddr);
        }
        if (!VICTIM_TLB_HIT(addr_write)) {
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        val = TGT_LE(val);
        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
        return;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                     >= TARGET_PAGE_SIZE)) {
        int i;
    do_unaligned_access:
        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                                 mmu_idx, retaddr);
        }
        /* XXX: not efficient, but simple */
        /* Note: relies on the fact that tlb_fill() does not remove the
         * previous page from the TLB cache.  */
        for (i = DATA_SIZE - 1; i >= 0; i--) {
            /* Little-endian extract.  */
            uint8_t val8 = val >> (i * 8);
            /* Note the adjustment at the beginning of the function.
               Undo that for the recursion.  */
            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
                                            oi, retaddr + GETPC_ADJ);
        }
        return;
    }

    /* Handle aligned access or unaligned access in the same page.  */
    if ((addr & (DATA_SIZE - 1)) != 0
        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                             mmu_idx, retaddr);
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
    glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
#else
    glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
#endif
}

#if DATA_SIZE > 1
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
                       TCGMemOpIdx oi, uintptr_t retaddr)
{
    unsigned mmu_idx = get_mmuidx(oi);
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    uintptr_t haddr;

    /* Adjust the given return address.  */
    retaddr -= GETPC_ADJ;

    /* If the TLB entry is for a different page, reload and try again.  */
    if ((addr & TARGET_PAGE_MASK)
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        if ((addr & (DATA_SIZE - 1)) != 0
            && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                                 mmu_idx, retaddr);
        }
        if (!VICTIM_TLB_HIT(addr_write)) {
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
        }
        tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
    }

    /* Handle an IO access.  */
    if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
        CPUIOTLBEntry *iotlbentry;
        if ((addr & (DATA_SIZE - 1)) != 0) {
            goto do_unaligned_access;
        }
        iotlbentry = &env->iotlb[mmu_idx][index];

        /* ??? Note that the io helpers always read data in the target
           byte ordering.  We should push the LE/BE request down into io.  */
        val = TGT_BE(val);
        glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
        return;
    }

    /* Handle slow unaligned access (it spans two pages or IO).  */
    if (DATA_SIZE > 1
        && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
                     >= TARGET_PAGE_SIZE)) {
        int i;
    do_unaligned_access:
        if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
            cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                                 mmu_idx, retaddr);
        }
        /* XXX: not efficient, but simple */
        /* Note: relies on the fact that tlb_fill() does not remove the
         * previous page from the TLB cache.  */
        for (i = DATA_SIZE - 1; i >= 0; i--) {
            /* Big-endian extract.  */
            uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
            /* Note the adjustment at the beginning of the function.
               Undo that for the recursion.  */
            glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
                                            oi, retaddr + GETPC_ADJ);
        }
        return;
    }

    /* Handle aligned access or unaligned access in the same page.  */
    if ((addr & (DATA_SIZE - 1)) != 0
        && (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
        cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
                             mmu_idx, retaddr);
    }

    haddr = addr + env->tlb_table[mmu_idx][index].addend;
    glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
}
#endif /* DATA_SIZE > 1 */

#if DATA_SIZE == 1
/* Probe for whether the specified guest write access is permitted.
 * If it is not permitted then an exception will be taken in the same
 * way as if this were a real write access (and we will not return).
 * Otherwise the function will return, and there will be a valid
 * entry in the TLB for this access.
 */
void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
                 uintptr_t retaddr)
{
    int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
    target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;

    if ((addr & TARGET_PAGE_MASK)
        != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
        /* TLB entry is for a different page */
        if (!VICTIM_TLB_HIT(addr_write)) {
            tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
        }
    }
}
#endif
#endif /* !defined(SOFTMMU_CODE_ACCESS) */

#undef READ_ACCESS_TYPE
#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef LSUFFIX
#undef DATA_SIZE
#undef ADDR_READ
#undef WORD_TYPE
#undef SDATA_TYPE
#undef USUFFIX
#undef SSUFFIX
#undef BSWAP
#undef TGT_BE
#undef TGT_LE
#undef CPU_BE
#undef CPU_LE
#undef helper_le_ld_name
#undef helper_be_ld_name
#undef helper_le_lds_name
#undef helper_be_lds_name
#undef helper_le_st_name
#undef helper_be_st_name
#undef helper_te_ld_name
#undef helper_te_st_name