diff options
Diffstat (limited to 'qemu/tcg/README')
-rw-r--r-- | qemu/tcg/README | 551 |
1 files changed, 551 insertions, 0 deletions
diff --git a/qemu/tcg/README b/qemu/tcg/README new file mode 100644 index 000000000..a550ff176 --- /dev/null +++ b/qemu/tcg/README @@ -0,0 +1,551 @@ +Tiny Code Generator - Fabrice Bellard. + +1) Introduction + +TCG (Tiny Code Generator) began as a generic backend for a C +compiler. It was simplified to be used in QEMU. It also has its roots +in the QOP code generator written by Paul Brook. + +2) Definitions + +The TCG "target" is the architecture for which we generate the +code. It is of course not the same as the "target" of QEMU which is +the emulated architecture. As TCG started as a generic C backend used +for cross compiling, it is assumed that the TCG target is different +from the host, although it is never the case for QEMU. + +In this document, we use "guest" to specify what architecture we are +emulating; "target" always means the TCG target, the machine on which +we are running QEMU. + +A TCG "function" corresponds to a QEMU Translated Block (TB). + +A TCG "temporary" is a variable only live in a basic +block. Temporaries are allocated explicitly in each function. + +A TCG "local temporary" is a variable only live in a function. Local +temporaries are allocated explicitly in each function. + +A TCG "global" is a variable which is live in all the functions +(equivalent of a C global variable). They are defined before the +functions defined. A TCG global can be a memory location (e.g. a QEMU +CPU register), a fixed host register (e.g. the QEMU CPU state pointer) +or a memory location which is stored in a register outside QEMU TBs +(not implemented yet). + +A TCG "basic block" corresponds to a list of instructions terminated +by a branch instruction. + +An operation with "undefined behavior" may result in a crash. + +An operation with "unspecified behavior" shall not crash. However, +the result may be one of several possibilities so may be considered +an "undefined result". + +3) Intermediate representation + +3.1) Introduction + +TCG instructions operate on variables which are temporaries, local +temporaries or globals. TCG instructions and variables are strongly +typed. Two types are supported: 32 bit integers and 64 bit +integers. Pointers are defined as an alias to 32 bit or 64 bit +integers depending on the TCG target word size. + +Each instruction has a fixed number of output variable operands, input +variable operands and always constant operands. + +The notable exception is the call instruction which has a variable +number of outputs and inputs. + +In the textual form, output operands usually come first, followed by +input operands, followed by constant operands. The output type is +included in the instruction name. Constants are prefixed with a '$'. + +add_i32 t0, t1, t2 (t0 <- t1 + t2) + +3.2) Assumptions + +* Basic blocks + +- Basic blocks end after branches (e.g. brcond_i32 instruction), + goto_tb and exit_tb instructions. +- Basic blocks start after the end of a previous basic block, or at a + set_label instruction. + +After the end of a basic block, the content of temporaries is +destroyed, but local temporaries and globals are preserved. + +* Floating point types are not supported yet + +* Pointers: depending on the TCG target, pointer size is 32 bit or 64 + bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or + TCG_TYPE_I64. + +* Helpers: + +Using the tcg_gen_helper_x_y it is possible to call any function +taking i32, i64 or pointer types. By default, before calling a helper, +all globals are stored at their canonical location and it is assumed +that the function can modify them. By default, the helper is allowed to +modify the CPU state or raise an exception. + +This can be overridden using the following function modifiers: +- TCG_CALL_NO_READ_GLOBALS means that the helper does not read globals, + either directly or via an exception. They will not be saved to their + canonical locations before calling the helper. +- TCG_CALL_NO_WRITE_GLOBALS means that the helper does not modify any globals. + They will only be saved to their canonical location before calling helpers, + but they won't be reloaded afterwise. +- TCG_CALL_NO_SIDE_EFFECTS means that the call to the function is removed if + the return value is not used. + +Note that TCG_CALL_NO_READ_GLOBALS implies TCG_CALL_NO_WRITE_GLOBALS. + +On some TCG targets (e.g. x86), several calling conventions are +supported. + +* Branches: + +Use the instruction 'br' to jump to a label. + +3.3) Code Optimizations + +When generating instructions, you can count on at least the following +optimizations: + +- Single instructions are simplified, e.g. + + and_i32 t0, t0, $0xffffffff + + is suppressed. + +- A liveness analysis is done at the basic block level. The + information is used to suppress moves from a dead variable to + another one. It is also used to remove instructions which compute + dead results. The later is especially useful for condition code + optimization in QEMU. + + In the following example: + + add_i32 t0, t1, t2 + add_i32 t0, t0, $1 + mov_i32 t0, $1 + + only the last instruction is kept. + +3.4) Instruction Reference + +********* Function call + +* call <ret> <params> ptr + +call function 'ptr' (pointer type) + +<ret> optional 32 bit or 64 bit return value +<params> optional 32 bit or 64 bit parameters + +********* Jumps/Labels + +* set_label $label + +Define label 'label' at the current program point. + +* br $label + +Jump to label. + +* brcond_i32/i64 t0, t1, cond, label + +Conditional jump if t0 cond t1 is true. cond can be: + TCG_COND_EQ + TCG_COND_NE + TCG_COND_LT /* signed */ + TCG_COND_GE /* signed */ + TCG_COND_LE /* signed */ + TCG_COND_GT /* signed */ + TCG_COND_LTU /* unsigned */ + TCG_COND_GEU /* unsigned */ + TCG_COND_LEU /* unsigned */ + TCG_COND_GTU /* unsigned */ + +********* Arithmetic + +* add_i32/i64 t0, t1, t2 + +t0=t1+t2 + +* sub_i32/i64 t0, t1, t2 + +t0=t1-t2 + +* neg_i32/i64 t0, t1 + +t0=-t1 (two's complement) + +* mul_i32/i64 t0, t1, t2 + +t0=t1*t2 + +* div_i32/i64 t0, t1, t2 + +t0=t1/t2 (signed). Undefined behavior if division by zero or overflow. + +* divu_i32/i64 t0, t1, t2 + +t0=t1/t2 (unsigned). Undefined behavior if division by zero. + +* rem_i32/i64 t0, t1, t2 + +t0=t1%t2 (signed). Undefined behavior if division by zero or overflow. + +* remu_i32/i64 t0, t1, t2 + +t0=t1%t2 (unsigned). Undefined behavior if division by zero. + +********* Logical + +* and_i32/i64 t0, t1, t2 + +t0=t1&t2 + +* or_i32/i64 t0, t1, t2 + +t0=t1|t2 + +* xor_i32/i64 t0, t1, t2 + +t0=t1^t2 + +* not_i32/i64 t0, t1 + +t0=~t1 + +* andc_i32/i64 t0, t1, t2 + +t0=t1&~t2 + +* eqv_i32/i64 t0, t1, t2 + +t0=~(t1^t2), or equivalently, t0=t1^~t2 + +* nand_i32/i64 t0, t1, t2 + +t0=~(t1&t2) + +* nor_i32/i64 t0, t1, t2 + +t0=~(t1|t2) + +* orc_i32/i64 t0, t1, t2 + +t0=t1|~t2 + +********* Shifts/Rotates + +* shl_i32/i64 t0, t1, t2 + +t0=t1 << t2. Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64) + +* shr_i32/i64 t0, t1, t2 + +t0=t1 >> t2 (unsigned). Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64) + +* sar_i32/i64 t0, t1, t2 + +t0=t1 >> t2 (signed). Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64) + +* rotl_i32/i64 t0, t1, t2 + +Rotation of t2 bits to the left. +Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64) + +* rotr_i32/i64 t0, t1, t2 + +Rotation of t2 bits to the right. +Unspecified behavior if t2 < 0 or t2 >= 32 (resp 64) + +********* Misc + +* mov_i32/i64 t0, t1 + +t0 = t1 + +Move t1 to t0 (both operands must have the same type). + +* ext8s_i32/i64 t0, t1 +ext8u_i32/i64 t0, t1 +ext16s_i32/i64 t0, t1 +ext16u_i32/i64 t0, t1 +ext32s_i64 t0, t1 +ext32u_i64 t0, t1 + +8, 16 or 32 bit sign/zero extension (both operands must have the same type) + +* bswap16_i32/i64 t0, t1 + +16 bit byte swap on a 32/64 bit value. It assumes that the two/six high order +bytes are set to zero. + +* bswap32_i32/i64 t0, t1 + +32 bit byte swap on a 32/64 bit value. With a 64 bit value, it assumes that +the four high order bytes are set to zero. + +* bswap64_i64 t0, t1 + +64 bit byte swap + +* discard_i32/i64 t0 + +Indicate that the value of t0 won't be used later. It is useful to +force dead code elimination. + +* deposit_i32/i64 dest, t1, t2, pos, len + +Deposit T2 as a bitfield into T1, placing the result in DEST. +The bitfield is described by POS/LEN, which are immediate values: + + LEN - the length of the bitfield + POS - the position of the first bit, counting from the LSB + +For example, pos=8, len=4 indicates a 4-bit field at bit 8. +This operation would be equivalent to + + dest = (t1 & ~0x0f00) | ((t2 << 8) & 0x0f00) + +* trunc_shr_i32 t0, t1, pos + +For 64-bit hosts only, right shift the 64-bit input T1 by POS and +truncate to 32-bit output T0. Depending on the host, this may be +a simple mov/shift, or may require additional canonicalization. + +********* Conditional moves + +* setcond_i32/i64 dest, t1, t2, cond + +dest = (t1 cond t2) + +Set DEST to 1 if (T1 cond T2) is true, otherwise set to 0. + +* movcond_i32/i64 dest, c1, c2, v1, v2, cond + +dest = (c1 cond c2 ? v1 : v2) + +Set DEST to V1 if (C1 cond C2) is true, otherwise set to V2. + +********* Type conversions + +* ext_i32_i64 t0, t1 +Convert t1 (32 bit) to t0 (64 bit) and does sign extension + +* extu_i32_i64 t0, t1 +Convert t1 (32 bit) to t0 (64 bit) and does zero extension + +* trunc_i64_i32 t0, t1 +Truncate t1 (64 bit) to t0 (32 bit) + +* concat_i32_i64 t0, t1, t2 +Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half +from t2 (32 bit). + +* concat32_i64 t0, t1, t2 +Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half +from t2 (64 bit). + +********* Load/Store + +* ld_i32/i64 t0, t1, offset +ld8s_i32/i64 t0, t1, offset +ld8u_i32/i64 t0, t1, offset +ld16s_i32/i64 t0, t1, offset +ld16u_i32/i64 t0, t1, offset +ld32s_i64 t0, t1, offset +ld32u_i64 t0, t1, offset + +t0 = read(t1 + offset) +Load 8, 16, 32 or 64 bits with or without sign extension from host memory. +offset must be a constant. + +* st_i32/i64 t0, t1, offset +st8_i32/i64 t0, t1, offset +st16_i32/i64 t0, t1, offset +st32_i64 t0, t1, offset + +write(t0, t1 + offset) +Write 8, 16, 32 or 64 bits to host memory. + +All this opcodes assume that the pointed host memory doesn't correspond +to a global. In the latter case the behaviour is unpredictable. + +********* Multiword arithmetic support + +* add2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high +* sub2_i32/i64 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high + +Similar to add/sub, except that the double-word inputs T1 and T2 are +formed from two single-word arguments, and the double-word output T0 +is returned in two single-word outputs. + +* mulu2_i32/i64 t0_low, t0_high, t1, t2 + +Similar to mul, except two unsigned inputs T1 and T2 yielding the full +double-word product T0. The later is returned in two single-word outputs. + +* muls2_i32/i64 t0_low, t0_high, t1, t2 + +Similar to mulu2, except the two inputs T1 and T2 are signed. + +********* 64-bit guest on 32-bit host support + +The following opcodes are internal to TCG. Thus they are to be implemented by +32-bit host code generators, but are not to be emitted by guest translators. +They are emitted as needed by inline functions within "tcg-op.h". + +* brcond2_i32 t0_low, t0_high, t1_low, t1_high, cond, label + +Similar to brcond, except that the 64-bit values T0 and T1 +are formed from two 32-bit arguments. + +* setcond2_i32 dest, t1_low, t1_high, t2_low, t2_high, cond + +Similar to setcond, except that the 64-bit values T1 and T2 are +formed from two 32-bit arguments. The result is a 32-bit value. + +********* QEMU specific operations + +* exit_tb t0 + +Exit the current TB and return the value t0 (word type). + +* goto_tb index + +Exit the current TB and jump to the TB index 'index' (constant) if the +current TB was linked to this TB. Otherwise execute the next +instructions. Only indices 0 and 1 are valid and tcg_gen_goto_tb may be issued +at most once with each slot index per TB. + +* qemu_ld_i32/i64 t0, t1, flags, memidx +* qemu_st_i32/i64 t0, t1, flags, memidx + +Load data at the guest address t1 into t0, or store data in t0 at guest +address t1. The _i32/_i64 size applies to the size of the input/output +register t0 only. The address t1 is always sized according to the guest, +and the width of the memory operation is controlled by flags. + +Both t0 and t1 may be split into little-endian ordered pairs of registers +if dealing with 64-bit quantities on a 32-bit host. + +The memidx selects the qemu tlb index to use (e.g. user or kernel access). +The flags are the TCGMemOp bits, selecting the sign, width, and endianness +of the memory access. + +For a 32-bit host, qemu_ld/st_i64 is guaranteed to only be used with a +64-bit memory access specified in flags. + +********* + +Note 1: Some shortcuts are defined when the last operand is known to be +a constant (e.g. addi for add, movi for mov). + +Note 2: When using TCG, the opcodes must never be generated directly +as some of them may not be available as "real" opcodes. Always use the +function tcg_gen_xxx(args). + +4) Backend + +tcg-target.h contains the target specific definitions. tcg-target.c +contains the target specific code. + +4.1) Assumptions + +The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or +64 bit. It is expected that the pointer has the same size as the word. + +On a 32 bit target, all 64 bit operations are converted to 32 bits. A +few specific operations must be implemented to allow it (see add2_i32, +sub2_i32, brcond2_i32). + +Floating point operations are not supported in this version. A +previous incarnation of the code generator had full support of them, +but it is better to concentrate on integer operations first. + +On a 64 bit target, no assumption is made in TCG about the storage of +the 32 bit values in 64 bit registers. + +4.2) Constraints + +GCC like constraints are used to define the constraints of every +instruction. Memory constraints are not supported in this +version. Aliases are specified in the input operands as for GCC. + +The same register may be used for both an input and an output, even when +they are not explicitly aliased. If an op expands to multiple target +instructions then care must be taken to avoid clobbering input values. +GCC style "early clobber" outputs are not currently supported. + +A target can define specific register or constant constraints. If an +operation uses a constant input constraint which does not allow all +constants, it must also accept registers in order to have a fallback. + +The movi_i32 and movi_i64 operations must accept any constants. + +The mov_i32 and mov_i64 operations must accept any registers of the +same type. + +The ld/st instructions must accept signed 32 bit constant offsets. It +can be implemented by reserving a specific register to compute the +address if the offset is too big. + +The ld/st instructions must accept any destination (ld) or source (st) +register. + +4.3) Function call assumptions + +- The only supported types for parameters and return value are: 32 and + 64 bit integers and pointer. +- The stack grows downwards. +- The first N parameters are passed in registers. +- The next parameters are passed on the stack by storing them as words. +- Some registers are clobbered during the call. +- The function can return 0 or 1 value in registers. On a 32 bit + target, functions must be able to return 2 values in registers for + 64 bit return type. + +5) Recommended coding rules for best performance + +- Use globals to represent the parts of the QEMU CPU state which are + often modified, e.g. the integer registers and the condition + codes. TCG will be able to use host registers to store them. + +- Avoid globals stored in fixed registers. They must be used only to + store the pointer to the CPU state and possibly to store a pointer + to a register window. + +- Use temporaries. Use local temporaries only when really needed, + e.g. when you need to use a value after a jump. Local temporaries + introduce a performance hit in the current TCG implementation: their + content is saved to memory at end of each basic block. + +- Free temporaries and local temporaries when they are no longer used + (tcg_temp_free). Since tcg_const_x() also creates a temporary, you + should free it after it is used. Freeing temporaries does not yield + a better generated code, but it reduces the memory usage of TCG and + the speed of the translation. + +- Don't hesitate to use helpers for complicated or seldom used guest + instructions. There is little performance advantage in using TCG to + implement guest instructions taking more than about twenty TCG + instructions. Note that this rule of thumb is more applicable to + helpers doing complex logic or arithmetic, where the C compiler has + scope to do a good job of optimisation; it is less relevant where + the instruction is mostly doing loads and stores, and in those cases + inline TCG may still be faster for longer sequences. + +- The hard limit on the number of TCG instructions you can generate + per guest instruction is set by MAX_OP_PER_INSTR in exec-all.h -- + you cannot exceed this without risking a buffer overrun. + +- Use the 'discard' instruction if you know that TCG won't be able to + prove that a given global is "dead" at a given program point. The + x86 guest uses it to improve the condition codes optimisation. |